For EDITORS

For READERS

All Issues

Vol.15, 2025
Vol.14, 2024
Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 6, Number 2, 2016, Pages 515-530                                                                DOI:10.11948/2016037
Evans functions and bifurcations of standing wave fronts ofa nonlinear system of reaction diffusion equations
Linghai Zhang
Keywords:Nonlinear system of reaction diffusion equations, standing wave fronts, existence, stability, instability, bifurcation, linearized stability criterion, Evans functions
Abstract:
      Consider the following nonlinear system of reaction diffusion equations arising from mathematical neuroscience $\frac{\partial u}{\partial t}=\frac{\partial^2u}{\partial x^2}+\alpha[\beta H(u-\theta)-u]-w,~ \frac{\partial w}{\partial t}=\varepsilon(u-\gamma w).$ Also consider the nonlinear scalar reaction diffusion equation $\frac{\partial u}{\partial t}=\frac{\partial^2u}{\partial x^2}+\alpha[\beta H(u-\theta)-u].$ In these model equations, $\alpha>0$, $\beta>0$, $\gamma>0$, $\varepsilon>0$ and $\theta>0$ are positive constants, such that $0<2\theta<\beta$. In the model equations, $u=u(x,t)$ represents the membrane potential of a neuron at position $x$ and time $t$, $w=w(x,t)$ represents the leaking current, a slow process that controls the excitation.\\indent The main purpose of this paper is to couple together linearized stability criterion (the equivalence of the nonlinear stability, the linear stability and the spectral stability of the standing wave fronts) and Evans functions (complex analytic functions) to establish the existence, stability, instability and bifurcations of standing wave fronts of the nonlinear system of reaction diffusion equations and to establish the existence and stability of the standing wave fronts of the nonlinear scalar reaction diffusion equation.
PDF      Download reader