For EDITORS

For READERS

All Issues

Vol.15, 2025
Vol.14, 2024
Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 6, Number 2, 2016, Pages 543-581                                                                DOI:10.11948/2016039
Numerical methods for coupled systems of quasilinear elliptic equations with nonlinear boundary conditions
C.~V. Pao,Taiping He
Keywords:Quasilinear elliptic equations, degenerate diffusion, monotone iterative schemes, upper and lower solutions, convergence of discrete solution, Lotka-Volterra cooperation system
Abstract:
      This paper is concerned with numerical solutions of a coupled system of arbitrary number of quasilinear elliptic equations under combined Dirichlet and nonlinear boundary conditions. A finite difference system for a transformed system of the quasilinear equations is formulated, and three monotone iterative schemes for the computation of numerical solutions are given using the method of upper and lower solutions. It is shown that each of the three monotone iterations converges to a minimal solution or a maximal solution depending on whether the initial iteration is a lower solution or an upper solution. A comparison result among the three iterative schemes is given. Also shown is the convergence of the minimal and maximal discrete solutions to the corresponding minimal and maximal solutions of the continuous system as the mesh size tends to zero. These results are applied to a heat transfer problem with temperature dependent thermal conductivity and a Lotka-Volterra cooperation system with degenerate diffusion. This degenerate property leads to some interesting distinct property of the system when compared with the non-degenerate semilinear systems. Numerical results are given to the above problems, and in each problem an explicit continuous solution is constructed and is used to compare with the computed solution
PDF      Download reader