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NUMERICAL METHODS FOR COUPLED
SYSTEMS OF QUASILINEAR ELLIPTIC

EQUATIONS WITH NONLINEAR BOUNDARY
CONDITIONS
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Abstract This paper is concerned with numerical solutions of a coupled
system of arbitrary number of quasilinear elliptic equations under combined
Dirichlet and nonlinear boundary conditions. A finite difference system for
a transformed system of the quasilinear equations is formulated, and three
monotone iterative schemes for the computation of numerical solutions are
given using the method of upper and lower solutions. It is shown that each of
the three monotone iterations converges to a minimal solution or a maximal
solution depending on whether the initial iteration is a lower solution or an up-
per solution. A comparison result among the three iterative schemes is given.
Also shown is the convergence of the minimal and maximal discrete solutions to
the corresponding minimal and maximal solutions of the continuous system as
the mesh size tends to zero. These results are applied to a heat transfer prob-
lem with temperature dependent thermal conductivity and a Lotka-Volterra
cooperation system with degenerate diffusion. This degenerate property leads
to some interesting distinct property of the system when compared with the
non-degenerate semilinear systems. Numerical results are given to the above
problems, and in each problem an explicit continuous solution is constructed
and is used to compare with the computed solution.

Keywords Quasilinear elliptic equations, degenerate diffusion, monotone it-
erative schemes, upper and lower solutions, convergence of discrete solution,
Lotka-Volterra cooperation system.
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1. Introduction

In the theory of heat transfer if the thermal conductivity is temperature dependent
and the boundary is subjected to a Boltzmann fourth-power radiation law then
for certain participating media such as glass, fibers, and powders, the steady–state
temperature u(x) is governed by the quasilinear boundary-value problem

−∇ · (D(u)∇u) = f(x, u), (x ∈ Ω),

D(u)∂u/∂ν = σ0(x)(a40 − u4), (x ∈ ∂Ω),
(1.1)

where Ω is a bounded domain in lRp with boundary ∂Ω (p = 1, 2, . . .), ∂/∂ν denotes
the outward normal derivative on ∂Ω, σ0(x) ≥ 0 on ∂Ω is the so-called Stefan-
Boltzmann function, and a0 > 0 is the surrounding temperature. The functions
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D(u) and f(x, u) are given by

D(u) = kc + kru
3, f(x, u) = p(x)− c(x)uα (1.1a)

for some α ≥ 1, where kc and kr are the thermal conductivity constants based on
conduction and radiation, respectively, while p(x) and c(x) are positive functions
representing the internal source and evaporation coefficients(cf [15, p249]). The
function D(u) in (1.1a) is due to the effect of simultaneous conduction and radiation
in the participating medium.

On the other hand, in the Lotka–Volterra cooperation system of two-cooperating
species the steady-state density functions of the species u(x), v(x) are governed by
the coupled system

−∆um = u(a(1) − b(1)u+ c(1)v), (x ∈ Ω),

−∆vn = v(a(2) − b(2)v + c(2)u), (x ∈ Ω),

u(x) = v(x) = 0, (x ∈ ∂Ω),

(1.2)

where m > 1, n > 1 and (a(l), b(l), c(l)), l = 1, 2, are positive constants(cf [17, 19]).
The terms ∆um, ∆vn with m > 1, n > 1 implies that the diffusion rate of movement
from high density region to low density region is slow, and it models a tendency to
avoid crowding(cf. [12, 13,23]).

Problem (1.2) and its corresponding time-dependent system have been exten-
sively investigated in the field of ecology, but most of the investigations are devoted
to the semilinear case m = n = 1 (cf [6–8, 13, 27, 28]). This system has also been
used as a mathematical model in economics where u and v represent the wealth of
two cooperating nations or regions (cf. [1]).

Motivated by the above model problems and many others we consider a general
class of coupled system of quasilinear elliptic boundary-value problems in the form

−∇ · (D(l)(u(l))) + b(l)(x)(D(l)(u(l))∇u(l)) = f (l)(x,u), l = 1, . . . , N, (x ∈ Ω),

u(l)(x) = ξ(l)(x), l = 1, . . . , n0 − 1, (x ∈ ∂Ω),

D(l)(u(l))∂u(l)/∂ν = g(l)(x,u), l = n0, . . . , N, (x ∈ ∂Ω),
(1.3)

where u = (u(1), . . . , u(N)), 1 ≤ n0 ≤ N + 1, and for each l = 1, . . . , N , D(l)(u(l)),

b(l)(x) = (b
(l)
1 (x), . . . , b

(l)
N (x)), ξ(l)(x), f (l)(x,u) and g(l)(x,u) are continuous func-

tions satisfying the conditions in Hypothesis (H1) in Section 2. It is assumed that
D(l)(u(l)) > 0 for u(l) > 0 and D(l)(0) ≥ 0, including the degenerate case D(l)(0) = 0
and ξ(l) = 0. The condition on n0 implies that the system (1.3) may consists of
Dirichlet boundary condition for some i and nonlinear boundary condition for the
remaining i, including the linear Neumann-Robin boundary condition

∂u(l)/∂ν + β(l)u(l) = g(l)(x), (x ∈ ∂Ω).

In particular, the boundary condition in (1.3) is of Dirichlet type for all l if n0 =
N + 1, and it is nonlinear (or linear Neumann-Robin type) if n0 = 1. We also
allow D(l)(u(l)) = d(l) to be independent of u(l) for some or all l. In the later case,
problem (1.3) becomes a coupled system of semilinear elliptic boundary problems.

The purpose of this paper is the following: (a) To present three monotone iter-
ative schemes for the computation of positive minimal and maximal solutions of a
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discrete system of (1.3), including the existence of these solutions. (b) To show the
convergence of the discrete solutions to the corresponding solutions of the continu-
ous problem as the mesh size decreases to zero. (c) To apply the results in (a) and
(b) to the heat transfer problem (1.1) and the cooperation system (1.2), including
some numerical results for these two problems. In the computation of numerical
solutions we first construct a source function so that a continuous solution of the
problem is explicitly known and is used to compare with the computed solution
by the monotone iterative schemes. Our numerical results demonstrate excellent
agreement between the computed solution and the true continuous solution.

Literature dealing with numerical solutions of quasilinear elliptic equations is
extensive and various topics of the problem, such as method of computation, error
estimate, and convergence of the discrete solution have been discussed (cf. [2,9,11,21,
26]). Most of the discussions in the above works are for scalar equations with linear
boundary condition. The work in [21] treated a scalar quasilinear equation with
either Dirichlet or nonlinear boundary condition. Similar discussions for semilinear
elliptic equations, including coupled system of two or more equation have been
treated by either the finite difference method or the finite element method (cf.
[10, 16, 18, 19]). For numerical solutions of quasilinear elliptic equations, it is often
assumed that the equation is non-degenerate and the problem has a unique solution.
An example of this situation is the heat transfer problem (1.1) where the thermal
conductivity is temperature dependent. This equation with D(u) = kc + kru

3 and
the physical meaning of the constants kc and kr have been derived in [3,15]. Other
models and many relevant references in this area can be found in chapter 9 of [15].
On the other hand, in many reaction-diffusion problems with density dependent
diffusion coefficients the governing equations are either degenerate or it is non-
degenerate but the solution is not unique. This type of equations, including the
system (1.3) have been treated recently in [22]. The emphasis in this paper is on
the degenerate property of the system. This property and the non-uniqueness of
the solution is especially true for coupled system of equations, including semilinear
systems. For example, in the semilinear system (1.2) where m = n = 1, the problem
has only the trivial solution (0, 0) if a(l) ≤ λ0, l = 1, 2, where λ0 > 0 is the smallest
eigenvalue of the eigenvalue problem

∆φ+ λφ = 0 in Ω, φ = 0 on ∂Ω. (1.4)

In the case a(l) > λ0 the problem has two semitrivial solutions in the form (us, 0),
(0, vs), where us > 0 and vs > 0 in Ω. In addition, it has at least one positive
solution if b(1)b(2) > c(1)c(2), and it has no positive solution if b(1)b(2) < c(1)c(2)

(cf. [17, p678]). However, the situation is quite different for the quasilinear system
(1.2) and its corresponding finite difference system when m > 1, n > 1. In fact,
we show that for any positive constants (a(l), b(l), c(l)), l = 1, 2, the corresponding
finite difference system of (1.2) has two semitrivial solutions (u(xi), 0), (0, v(xi)),
where xi denotes a mesh point in Ω̄. If, in addition, 1/m+ 1/n < 1 then the prob-
lem has a positive minimal solution (u(xi), v(xi)) and a positive maximal solution
(u(xi), v(xi)). If, in addition, (u(xi), v(xi)) = (u(xi), v(xi)) then their common val-
ue is the unique positive finite difference solution (see Theorem 5.3). The above
conclusions hold true for every positive constants (a(l), b(l), c(l)), including the case
a(l) ≤ λ0 or b(1)b(2) ≤ c(1)c(2). These results are in sharp contrast to the semilinear
case m = n = 1.

To compute numerical solutions of the above problems, including positive mini-
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mal and maximal solutions we use the method of upper and lower solutions and its
associated monotone iterations for a finite difference system of the coupled system
(1.3). This approach leads to some general results for the system which can be
used not only for the problems in (1.1) and (1.2) but also for many other degener-
ate and non-generate reaction-convection-diffusion system with density-dependent
diffusions. An important feature of this method is that it can be used to compute
positive minimal and maximal solutions without the uniqueness assumption. In
particular, if the solution is unique then the monotone convergence of the minimal
and maximal sequences gives a simple and reliable error estimate of the solution
without any explicit knowledge of the solution.

The plan of the paper is as follows: In section 2, we transform the system (1.3)
into a system of semilinear and algebraic equations which are discretised into a finite
difference system. A monotone iterative scheme is given for computing positive
solutions using the method of upper and lower solutions. Proofs of the monotone
convergence of the sequence of iterations together with two other monotone iterative
schemes are given in Section 3. In Section 4, we show the convergence of the finite
difference solution to the continuous solution as the mesh size tends to zero. The
above results are applied to problem (1.1) and (1.2) in Section 5 where explicit lower
and upper solutions are constructed. Finally, in Section 6 we give some numerical
results for these two problems, including the construction of known continuous
solutions which are used to compare with the computed solutions.

2. Finite Difference Systems

To develop computational schemes for numerical solutions of (1.3) we make a trans-
formation by letting

w(l) = I(l)[u(l)] ≡
∫ u(l)

0

D(l)(s)ds, for u(l) ≥ 0, l = 1, . . . , N. (2.1)

In view of dw(l)/du(l) = D(l)(u(l)) > 0 for u(l) > 0 the inverse function of w(l) =
I(l)[u(l)], denoted by u(l) = q(l)(w(l)), exists and dq(l)/dw(l) = 1/D(l)(u(l)). Since
for each l = 1, . . . , N ,

∇w(l) = D(l)(u(l))∇u(l), ∂w(l)/∂ν = D(l)(u(l))∂u(l)/∂ν,

we may write (1.3) as

−∆w(l) + b(l) · ∇w(l) = f (l)(x,u), l = 1, . . . , N, (x ∈ Ω),

w(l) = η(l), l = 1, . . . , n0 − 1, (x ∈ ∂Ω),

∂w(l)/∂ν = g(l)(x,u), l = n0, . . . , N, (x ∈ ∂Ω),

u(l) = q(l)(w(l)), l = 1, . . . , N, (x ∈ Ω̄),

(2.2)

where η(l) = I(l)[ξ(l)]. Although the above system may be written in a semi-
linear form in terms of w(l) by using u = q(w) = (q(1)(w(1)), . . . , q(N)(w(N)))
we prefer to use its present form as a coupled system of w and u where w =
(w(1), . . . , w(N)). One reason for this is that in the degenerate case D(l)(0) = 0 the
functions f (l)(x,q(w)), g(l)(x,q(w)) are not Lipschitz continuous in w(l) at w(l) = 0
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because dw(l)/du(l) = 1/D(l)(u(l)) which is not defined at u(l) = 0. It is obvious
that problem (2.2) can be discretised into a discrete system in the same fashion
as for semilinear elliptic boundary-value problems. In this paper, we use the finite
difference method for the discrete system although it can also be formulated by the
finite element method with a suitable choice of the basis functions (see Remark 3.1).

Let i = (i1, . . . , ip) be a multiple index with iν = 1, . . . ,Mν , and let xi =
(xi1 , . . . , xip) be a mesh point in Ω̄ ≡ Ω∪∂Ω, where ν = 1, . . . , p and Mν is the total
number of intervals in the xν – direction. Denote by Λ, ∂Λ and Λ̄ the sets of mesh
points in Ω, ∂Ω and Ω̄, respectively. When no confusion arises we write i ∈ Λ′ for
xi ∈ Λ′ where Λ′ stands for Λ, ∂Λ or Λ̄. Let hν be the spatial increment in the xν–

direction, and let u
(l)
i = u(l)(xi), w

(l)
i = w(l)(xi), and ui = (u(1)(xi), . . . , u

(N)(xi)).
Define

D(l)(u
(l)
i ) = D(l)(u(l)(xi)), q(l)(w

(l)
i ) = q(l)(w(l)(xi)),

f
(l)
i (ui) = f (l)(xi,u(xi)), g

(l)
i (ui) = g(l)(xi,u(xi)),

where l = 1, . . . , N . Then by the central difference approximations

∆p[w
(l)
i ] =

p∑
ν=1

∆(ν)w
(l)
i ≡

p∑
ν=1

[w(l)(xi + hνeν)− 2w(l)(xi) + w(l)(xi − hνeν)],

b(l) · δp[w(l)
i ] =

p∑
ν=1

(b(l)ν (xi)/2hν)[w(l)(xi + hνeν)− w(l)(xi − hνeν)] (2.3)

and the boundary approximation

B(l)[w
(l)
i ] = [w(l)(x

(b)
i )− w(l)(x̂i)]/(x

(b)
i − x̂i), (x

(b)
i ∈ ∂Λ, x̂i ∈ Λ), (2.4)

where eν is the unit vector in lRp with the ν-th component one and zero elsewhere
and x̂i is a neighboring point of x(b) in Λ, we approximate the transformed system
(2.2) by the finite difference system

−∆p[w
(l)
i ] + b

(l)
i · δp[w

(l)
i ] = f

(l)
i (ui), l = 1, . . . , N, (i ∈ Λ),

w
(l)
i = η

(l)
i , l = 1, . . . , n0 − 1, (i ∈ ∂Λ),

B(l)[w
(l)
i ] = g

(l)
i (ui), l = n0, . . . , N, (i ∈ ∂Λ),

u
(l)
i = q(l)(w

(l)
i ), l = 1, . . . , N, (i ∈ Λ̄),

(2.5)

(cf. [5, 24]).

To develop monotone iterative schemes for the computation of solutions of
(2.5) we use the method of lower and upper solutions. The definition of these

solutions, denoted by (ûi, ŵi) = ((û
(1)
i , . . . , û

(N)
i ), (ŵ

(1)
i , . . . , ŵ

(N)
i )) and (ũi, w̃i) =

((ũ
(1)
i , . . . , ũ

(N)
i ), (w̃

(1)
i , . . . , w̃

(N)
i )) respectively, are defined in the following.

Definition 2.1. A function (ûi, ŵi) ∈ lRN × lRN is called a lower solution of (2.5)
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if its components (û
(l)
i , ŵ

(l)
i ) satisfy the relation

−∆p[ŵ
(l)
i ] + b

(l)
i · δp[ŵ

(l)
i ] ≤ f (l)i (ûi), l = 1, . . . , N, (i ∈ Λ),

ŵ
(l)
i ≤ η

(l)
i , l = 1, . . . , n0 − 1, (i ∈ ∂Λ),

B(l)[ŵ
(l)
i ] ≤ g(l)i (ûi), l = n0, . . . , N, (i ∈ ∂Λ),

û
(l)
i ≤ q

(l)(ŵ
(l)
i ), l = 1, . . . , N, (i ∈ Λ̄). (2.6)

Similarly, (ũi, w̃i) is called an upper solution of (2.5) if its components satisfy
all the inequalities in (2.6) in reversed order.

The pair (ûi, ŵi), (ũi, w̃i) are said to be ordered if (ûi, ŵi) ≤ (ũi, w̃i). For a
given pair of ordered lower and upper solutions (ûi, ŵi), (ũi, w̃i) we set

S(1) ≡ {ui ∈ lRN ; ûi ≤ ui ≤ ũi},

S(2) ≡ {(ui,wi) ∈ lRN × lRN ; (ûi, ŵi) ≤ (ui,wi) ≤ (ũi, w̃i)}.
(2.7)

In the following discussion we assume that a pair of ordered lower and upper so-
lutions (ûi, ŵi), (ũi, w̃i) exist and (ûi, ŵi) ≥ (0, 0). In addition, we make the
following basic hypothesis for each l = 1, . . . , N :

(H1) (i) D(l)(u(l)) > 0 for u(l) > 0, D(l)(0) ≥ 0, and hν < (|b(l)ν (x)|)−1
for ν = 1, . . . , p.

(ii) f (l)(x, ·), g(l)(x, ·), b̂(l)(x) and ξ(l)(x) are continuous functions of x,
and f (l)(·,u), g(l)(·,u) are C1–functions of u for u ∈ S(1).

(iii) f (l)(·,u) and g(l)(·,u) are quasi-monotone nondecreasing in u for

u ∈ S(1) and there exist nonnegative functions γ(l)(x) and γ(l)(x),
not both identical zero, such that

γ(l)(x)D(l)(u(l)) +
∂f (l)

∂u(l)
(x,u) ≥ 0 for u ∈ S(1), x ∈ Ω,

γ(l)(x′)D(l)(u(l)) +
∂g(l)

∂u(l)
(x′,u) ≥ 0 for u ∈ S(1), x′ ∈ ∂Ω. (2.8)

In the hypothesis (H1) − (i) we allow D(l)(0) = 0 for some or all l. In this
situation the system (2.5) is degenerate on the boundary if ξ(l)(x) = 0 for some or
all x ∈ Ω. Recall that f (l)(u) is quasi-monotone nondecreasing in u for u ∈ S(1) if

∂f (l)

∂u(j)
(·,u) ≥ 0 for all u ∈ S(1) with j 6= l.

It is easy to see from the hypothesis D(l)(u(l)) > 0 for u(l) > 0 that condition
(2.8) holds by any nonnegative functions γ(l)(x), γ(l)(x) if ∂f (l)(·,u)/∂u(l) ≥ 0 and
∂g(l)(·,u)/∂u(l) ≥ 0. It is also satisfied by some positive functions γ(l)(x), γ(l)(x) if
D(l)(0) > 0. Hence this condition is needed only for the degenerate case D(l)(0) = 0.

Define

L(l)[w
(l)
i ] = −∆p[w

(l)
i ] + b

(l)
i · δp[w

(l)
i ] + γ

(l)
i w

(l)
i ,

F
(l)
i (ui) = γ

(l)
i I(l)[u

(l)
i ] + f

(l)
i (ui),

G
(l)
i (ui) = γ

(l)
i I

(l)[u
(l)
i ] + g

(l)
i (ui), l = 1, . . . , N, (2.9)
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where w
(l)
i = I(l)[u

(l)
i ] is given by (2.1). Then we may write problem (2.5) in the

equivalent form

L(l)[w
(l)
i ] = F

(l)
i (ui), l = 1, . . . , N, (i ∈ Λ),

w
(l)
i = η

(l)
i , l = 1, . . . , n0 − 1, (i ∈ ∂Λ),

B(l)[w
(l)
i ] + γ

(l)
i w

(l)
i = G

(l)
i (ui), l = n0, . . . , N, (i ∈ ∂Λ),

u
(l)
i = q(l)(w

(l)
i ), l = 1, . . . , N, (i ∈ Λ̄). (2.10)

It is obvious from (2.8), (2.9) and (d/du(l))I[u
(l)
i ] = D(l)(u

(l)
i ) that

∂F (l)

∂u(l)
(·,ui) = γ

(l)
i D(l)(u

(l)
i ) +

∂f (l)

∂u(l)
(·,ui) ≥ 0,

∂G(l)

∂u
(l)
i

(·,ui) = γ
(l)
i D

(l)(u
(l)
i ) +

∂g(l)

∂u(l)
(·,ui) ≥ 0 for ûi ≤ ui ≤ ũi.

By the quasi-monotone nondecreasing property of f (l)(·,u), g(l)(·,u) in the hypoth-
esis (H1)− (iii) we see that for every l = 1, . . . , N ,

F
(l)
i (ui) ≥ F (l)

i (vi),

G
(l)
i (ui) ≥ G(l)

i (vi) when ûi ≤ vi ≤ ui ≤ ũi.
(2.11)

Using any u
(0)
i as the initial iteration we can construct a sequence {u(k)

i ,w
(k)
i }

from the linear iteration process:

L(l)[(w
(l)
i )(k)] = F

(l)
i (u

(k−1)
i ), l = 1, . . . , N, (i ∈ Λ),

(w
(l)
i )(k) = η

(l)
i , l = 1, . . . , n0 − 1, (i ∈ ∂Λ),

B(l)[(w
(l)
i )(k)] + γ

(l)
i (w

(l)
i )(k) = G

(l)
i (u

(k−1)
i ), l = n0, . . . , N, (i ∈ ∂Λ),

(u
(l)
i )(k) = q(l)((w

(l)
i )(k)), l = 1, . . . , N, (i ∈ Λ̄),

(2.12)

where ((u
(l)
i )(k), (w

(l)
i )(k)), l = 1, . . . , N , are the components of (u

(k)
i ,w

(k)
i ). It is

obvious that the sequence {u(k)
i ,w

(k)
i } is well-defined and can be easily computed.

Specifically, starting from any u
(0)
i we can compute the solution (w

(l)
i )(1) of (2.12) for

k = 1 by solving a linear finite difference system under Dirichlet boundary condition
for l = 1, . . . , n0 − 1 and under Robin boundary condition for l = n0, . . . , N . This
is because for k = 1 the functions at the right-hand side of the first three equations

are known. Knowing the value of (w
(l)
i )(1) we then compute (u

(l)
i )(1) from the

last equation in (2.12). This gives the first iteration ((u
(l)
i )(1), (w

(l)
i )(1)). Using

u
(1)
i ≡ ((u

(1)
i )(1), . . . , (u

(N)
i )(1)) in (2.12) instead of u(0) the same computational

procedure for k = 2 yields the second iteration ((u
(l)
i )(2), (w

(l)
i )(2)). A continuation

of this process leads to the k-th iteration ((u
(l)
i )(k), (w

(l)
i )(k)) for every k. It is clear

that this sequence of iterations depends on the initial iteration u
(0)
i . To obtain the

monotone convergence of this sequence we use either u
(0)
i = ûi or u

(0)
i = ũi and

denote the corresponding sequence by {u(k)
i ,w

(k)
i } and {u(k)

i ,w
(k)
i }, respectively.

The following theorem gives the monotone convergence of these sequences.
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Theorem 2.1. Let (ûi, ŵi), (ũi, w̃i) be a pair of ordered lower and upper solutions
of (2.5), and let hypothesis (H1) be satisfied. Then the following statements hold
true:
(a) The sequence {u(k)

i ,w
(k)
i } converges to a minimal solution (ui,wi) of (2.5), the

sequence {u(k)
i ,w

(k)
i } converges to a maximal solution (ui,wi), and they satisfy the

relation

(ûi, ŵi) ≤ (u
(k)
i ,w

(k)
i ) ≤ (u

(k+1)
i ,w

(k+1)
i ) ≤ (ui,wi) ≤ (ui,wi)

≤ (u
(k+1)
i ,w

(k+1)
i ) ≤ (u

(k)
i ,w

(k)
i ) ≤ (ũi, w̃i), k = 1, 2, . . . .

(b) Every other solution (ui,wi) of (2.5) in S(2), if any, satisfies the relation

(ui,wi) ≤ (ui,wi) ≤ (ui,wi). (2.13)

(c) If either ui = ui or wi = wi then (ui,wi) = (ui,wi)(≡ (u∗i ,w
∗
i )) and (u∗i ,w

∗
i )

is the unique solution of (2.5) in S(2).

Although the above theorem can be proved directly from (2.12) we postpone its
proof to the next section (along with two other monotone iterative schemes) using
vector form of the finite difference system.

Remark 2.1. (a). In view of the relation (2.13), we call (ui,wi) and (ui,wi)
the respective minimal and maximal solutions of (2.5) in S(2). This minimal and
maximal property is with respect to the pair of lower and upper solutions in S(2),
and different pair of lower and upper solutions may yield different minimal and
maximal solutions.
(b). The condition hν < |b(l)ν |−1 in Hypothesis (H1)− (i) can be removed by using

an upwind difference scheme if |b(l)ν | is extremely large.

3. Monotone Sequences

To show the monotone convergence of the sequence given by (2.12) and the se-
quences governed by two other iterative schemes, called Gauss-Seidel and Jacobi
iterations, we formulate the system (2.5) in vector form. Let

M (l) = (M1 − 1)(M2 − 1) · · · (Mp − 1), l = 1, . . . , n0 − 1,

M
(l)

= (M1 + 1)(M2 + 1) · · · (Mp + 1), l = n0, . . . , N,

where Mν , ν = 1, . . . , p, are the number of intervals in xν-direction in Λ, M (l) is

the total number of mesh points in Λ, and M
(l)

is the total number of mesh points
in Λ. For each l = 1, . . . , N , we define vectors

U (l) = (u
(l)
1 , . . . , u

(l)
M ′)

T , W (l) = (w
(l)
1 , . . . , w

(l)
M ′)

T ,

Q(l)(W (l)) = (q(1)(w
(l)
1 ), . . . , q(N)(w

(l)
M ′))

T , η = (η
(l)
1 /h21, . . . , η

(l)
M ′/h

2
M ′)

T ,

U = (U (1), . . . , U (N))T ,

F(l)(U) = (F
(l)
1 (U (1)), . . . , F

(l)
M ′(U

(N)))T ,G(l)(U) = (G
(l)
1 (U (1)), . . . , G

(l)
M ′(U

(N)))T

(3.1)
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and matrices

A(l) = A(l) + Γ(l), Γ(l) = diag(γ
(l)
1 , · · · , γ(l)M ′), l = 1, . . . , n0 − 1,

A(l)
= A

(l)
+ Γ

(l)
, Γ

(l)
= diag(γ

(l)
1 , · · · , γ(l)M ′), l = n0, . . . , N,

(3.2)

where (·)T denotes the transpose of a row vector, M ′ stands for either M (l) or

M
(l)

, and γ
(l)
i and γ

(l)
i are the functions in (2.8). The matrices A(l), A

(l)
are the

respective M (l) by M (l) and M
(l)

by M
(l)

block matrices associated with the finite
difference approximation in (2.3)-(2.4). Then we may write the system (2.10), which
is equivalent to (2.5), in the vector form

A(l)W (l) = F(l)(U) + η(l), l = 1, . . . , n0 − 1,

A(l)
W (l) = F(l)(U) + G(l)(U), l = n0, . . . , N,

U (l) = Q(l)(W (l)), l = 1, . . . , N.

(3.3)

Since our main concern in the proof of monotone convergence of the sequences is the
mathematical structure of the discrete system (2.10), detailed formulation of (3.3)
is omitted (see [18] for some detailed discussion). However, it is to be noted from
(2.3)-(2.4) that for l = 1, . . . , n0 − 1 (Dirichlet boundary condition) the size of the
matrix A(l) is M (l) by M (l), while for l = n0, . . . , N (Robin boundary condition)

the size of A
(l)

is M
(l)

by M
(l)

. Hence the number of components of the vector U

is M∗ = M (1) + · · ·+M (n0−1) +M
(n0)

+ · · ·+M
(N)

.
In relation to the vector form (3.3) we have the following definition of lower and

upper solutions:

Definition 3.1. A Vector (Û,Ŵ) ≡ ((Û (1), · · · , Û (N)), (Ŵ (1), · · · , Ŵ (N))) is called
a lower solution of (3.3) if

A(l)Ŵ (l) ≤ F(l)(Û) + η(l), for l = 1, . . . , n0 − 1,

A(l)
Ŵ (l) ≤ F(l)(Û) + G(l)(Û), for l = n0, . . . , N,

Û ≤ Q(l)(Ŵ (l)), for l = 1, . . . , N.

(3.4)

Similarly, (Ũ,W̃) ≡ ((Ũ (1), · · · , Ũ (N)), (W̃ (1), · · · , W̃ (N))) is called an upper
solution of (3.3) if it satisfies (3.4) in reversed order.

The pair of lower and upper solutions (Û,Ŵ), (Ũ,W̃) are said to be ordered if

(Û,Ŵ) ≤ (Ũ,W̃). For a given pair of ordered lower and upper solutions (Û,Ŵ),
(Ũ,W̃) we set

S(l) ≡ {U (l) ∈ lRm(l)

; Û (l) ≤ U (l) ≤ Ũ (l)}, (l = 1, . . . , N),

S ≡ {(U,W) ∈ lRM∗ ; (Û,Ŵ) ≤ (U,W) ≤ (Ũ,W̃)},

where m(l) = M (l) for l = 1, . . . , n0 − 1 and m(l) = M
(l)

for l = n0, . . . , N .
It can be easily shown that if (ûi, ŵi) is a lower solution of (2.5), where ûi =

(û
(1)
i , · · · , û(N)

i ), ŵi = (ŵ
(1)
i , · · · , ŵ(N)

i ), then its vector representation (Û,Ŵ) with

Û = (Û (1), · · · , Û (N)), Ŵ = (Ŵ (1), · · · , Ŵ (N)) is a lower solution of (3.3). The



552 C. V. Pao & T. He

same is true for an upper solution. Since many of the techniques for the construc-
tion of lower and upper solutions of the differential system (2.2) can be used for
the finite difference system (2.5) it is often convenient to use Definition 2.1 for the
search of explicit lower and upper solutions of specific problems.

To ensure the existence of a positive solution of (3.3) and to obtain a compu-
tational algorithm for its numerical values we assume that a pair of ordered lower
and upper solutions (Û,Ŵ), (Ũ,W̃) exist and impose the following hypothesis for
each l = 1, . . . , N .

(H2) (i) The matrix A(l) = (a
(l)
jk ) is irreducible, and a

(l)
jj > 0, a

(l)
jk ≤ 0 for k 6= j, and

m(l)∑
k=1

a
(l)
jk ≥ 0 for all j = 1, . . . ,m(l). (3.5)

(ii) The functions F(l)(U), G(l)(U) are nondecreasing in U for Û ≤ U ≤ Ũ.

It is well-known that under the Hypothesis (H2) − (i) the inverse matrix (A(l))−1

exists and is a positive matrix if strict inequality in (3.5) holds for at least one j
(cf. [25,29]). This implies that for any nonnegative matrix Γ(l), the inverse (A(l))−1

exists and is positive for l = 1, . . . , n0 − 1 (In fact, A(l) is an M -matrix). The
same is true for l = n0, . . . , N if Γ(l) ≥ 0 and Γ(l) 6= 0. This property ensures that
U ≥ V whenever A(l)U ≥ A(l)V and A(l) is sometimes called a monotone matrix
(cf. [14]). This type of matrices has been widely used in matrix theory and in linear
and semilinear elliptic equations(cf. [14,16,18,19,21]). It is easy to verify from the

approximation (2.3)-(2.4) and the assumption hν < |b(l)ν (x)|−1 that the condition

in (H2)− (i) on a
(l)
ij are satisfied. The same approximation and the connectedness

assumption on Ω implies that A(l) is irreducible. Moreover, condition (2.11) ensures
that the condition in (H2)− (ii) on F(U) and G(U) are satisfied. Hence, under the
hypothesis (H1) all the requirements in (H2) are fulfilled. We first consider some
computational algorithms for numerical solutions.

3.1. Three monotone iterative schemes.

In this subsection we present three monotone iterations called Picard, Gauss-Seidel,
and Jacobi iterations, using either Û or Ũ as the initial iteration.

(A) Picard iteration: For the Picard iteration the sequence is governed by

A(l)(W (l))(k) = F(l)(U(k−1)) + η(l), l = 1, . . . , n0 − 1,

A
(l)

(W (l))(k) = F(l)(U(k−1)) + G(l)(U(k−1)), l = n0, . . . , N,

(U (l))(k) = Q(l)((W (l))(k)), l = 1, . . . , N,

(3.6)

where k = 1, 2, . . .. It is easily seen that the sequence given by (3.6) is simply a
vector representation of the sequence governed by (2.12). Since starting from k = 1

the function U(0) is either Û or Ũ the right-hand side of the first two equations
in (3.6) is known. This implies that the first iteration (W (l))(1) exists and can be
computed by solving a linear algebraic equation for each l = 1, . . . , N . Knowing the
values of (W (l))(1) we can compute the value of (U (l))(1) from the last equation in
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(3.6). Using the value of U(1) ≡ ((U (1))(1), · · · , (U (N))(1)) instead of U(0) we can
compute the solution (W (l))(2) and then (U (l))(2) for each l. Repeating this process
leads to the sequence {U(k),W(k)} for every k = 1, 2, . . .. Denote the sequence by

{U(k),W(k)} if U(0) = Û and by {U(k)
,W

(k)} if U(0) = Ũ, and refer to them
as minimal and maximal sequence, respectively. The following theorem gives the
monotone convergence of these sequences.

Theorem 3.1. Let (Û,Ŵ), (Ũ,W̃) be a pair of ordered lower and upper solutions
of (3.3), and let Hypothesis (H2) be satisfied. Then the following statements hold:

(a). The minimal sequence {U(k),W(k)} converges to a minimal solution (U,W) of

(3.3) in S, and the maximal sequence {U(k)
,W

(k)} converges to a maximal solution
(U,W). Moreover, they satisfy the relation

(Û,Ŵ) ≤ (U(k),W(k)) ≤ (U(k+1),W(k+1)) ≤ (U,W) ≤ (U,W)

≤ (U
(k+1)

,W
(k+1)

) ≤ (U
(k)
,W

(k)
) ≤ (Ũ,W̃), k = 1, 2, . . . . (3.7)

(b). Any solution (U,W) of (3.3) in S satisfies the relation

(U,W) ≤ (U,W) ≤ (U,W). (3.8)

(c). If either U = U or W = W then (U,W) = (U,W)(≡ (U∗,W∗)) and
(U∗,W∗) is the unique solution in S.

Proof. (a) Consider the minimal sequence {U(k),W(k)} where U(k) = ((U (1))(k),

· · · , (U (N))(k)) and W(k) = ((W (1))(k), · · · , (W (N))(k)). By (3.6), (3.4) and U(0) =

Û we have

A(l)((W (l))(1) − (W (l))(0)) = F(l)(U(0)) + η(l) −A(l)(W (l))(0)

= F(l)(Û) + η(l) −A(l)(Ŵ (l))

≥ 0 for l = 1, . . . , n0 − 1,

A
(l)

((W (l))(1) − (W (l))(0)) = F(l)(U(0)) + G(l)(U(0))−A(l)
(W (l))(0)

= F(l)(Û) + G(l)(Û)−A(l)
(Ŵ (l))

≥ 0 for l = n0, . . . , N.

The positivity of (A(l))−1 and (A
(l)

)−1 ensures that (W (l))(1) ≥ (W (l))(0) for every

l = 1, . . . , N . Since (U (l))(1) − (U (l))(0) = Q(l)((W (l))(1))−Q(l)((W (l))(0)) the non-

decreasing property of Q(l) implies that (U (l))(1) ≥ (U (l))(0) for l = 1, . . . , N . This

shows that ((U (l))(1), (W (l))(1)) ≥ ((U (l))(0), (W (l))(0)). A similar argument using

the property of an upper solution gives ((U
(l)

)(1), (W
(l)

)(1)) ≤ ((U
(l)

)(0), (W
(l)

)(0)).
Moreover, by (3.6) and the condition in (H2)− (ii), we have

A(l)((W
(l)

)(1) − (W (l))(1)) = (F(l)(U
(0)

) + η(l))− (F(l)(U(0)) + η(l))

≥ 0, l = 1, . . . , n0 − 1,

A((W
(l)

)(1) − (W (l))(1)) = (F(l)(U
(0)

) + G(l)(U
(0)

))

−(F(l)(U(0)) + G(l)(U(0)))

≥ 0, l = n0, . . . , N.
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This leads to (W
(l)

)(1) ≥ (W (l))(1) for every l = 1, . . . , N . This result and (U
(l)

)(1)−
(U (l))(1) = Q(l)((W

(l)
)(1)) − Q(l)((W (l))(1)) yield (U

(l)
)(1) ≥ (U (l))(1). The above

conclusions show that

((U (l))(0), (W (l))(0)) ≤ ((U (l))(1), (W (l))(1))

≤ ((U
(l)

)(1), (W
(l)

)(1))

≤ ((U
(l)

)(0), (W
(l)

)(0)).

Assume, by induction, that

((U (l))(k−1), (W (l))(k−1)) ≤ ((U (l))(k), (W (l))(k))

≤ ((U
(l)

)(k), (W
(l)

)(k))

≤ ((U
(l)

)(k−1), (W
(l)

)(k−1))

for some k > 1. Then by (3.6) and (H2)− (ii),

A(l)((W (l))(k+1) − (W (l))(k)) = (F(l)(U(k)) + η(l))− (F(l)(U(k−1)) + η(l))

≥ 0, l = 1, . . . , n0 − 1.

A
(l)

((W (l))(k+1) − (W (l))(k)) = (F(l)(U(k)) + G(l)(U(k)))− (F(l)(U(k−1))

+G(l)(U(k−1)))

≥ 0, l = n0, . . . , N.

The positivity of (A(l))−1 and (A
(l)

)−1 implies that (W (l))(k+1) ≥ (W (l))(k) for every

l = 1, . . . , N . This leads to (U (l))(k+1) ≥ (U (l))(k) which shows that ((U (l))(k+1),

(W (l))(k+1)) ≥ ((U (l))(k), (W (l))(k)), l = 1, . . . , N . A similar argument gives

((U
(l)

)(k+1), (W
(l)

)(k+1)) ≤ ((U
(l)

)(k), (W
(l)

)(k)) and ((U (l))(k+1), (W (l))(k+1)) ≤
((U

(l)
)(k+1), (W

(l)
)(k+1)). The monotone property of the minimal and maximal

property in (3.7) follows from the principle of induction. This monotone property
implies that for every l = 1, . . . , N , the limits

limk→∞((U (l))(k), (W (l))(k)) = (U (l),W (l)),

limk→∞((U
(l)

)(k), (W
(l)

)(k)) = (U
(l)
,W

(l)
),

(3.9)

exist and the vectors (U,W), (U,W), where

U = (U (1), · · · , U (N)), W = (W (1), · · · ,W (N)),

U = (U
(1)
, · · · , U (N)

), W = (W
(1)
, · · · ,W (N)

),

satisfy the relation (3.7). Letting k → ∞ in (3.6) shows that both (U,W) and
(U,W) are solutions of (3.3). (The minimal and maximal property of these solu-
tions is a consequence of the result in (b) below). This proves the conclusion in
(a).
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(b). To show the relation (3.8) for any solution (U,W) ∈ S we observe from

(H2)− (ii) and Û ≤ U ≤ Ũ that the components (U (l),W (l)) of (U,W) satisfy the
relation

A(l)(W (l) − (W (l))(1)) = (F(l)(U) + η(l))− (F(l)(Û) + η(l)) ≥ 0,

l = 1, . . . , n0 − 1,

A
(l)

(W (l) − (W (l))(1)) = (F(l)(U) + G(l)(U))− (F(l)(Û) + G(l)(Û)) ≥ 0,

l = n0, . . . , N.

This yieldsW (l) ≥ (W (l))(1). In view of U (l)−(U (l))(1) = Q(l)(W (l))−Q(l)((W (l))(1))

≥ 0 we have (U (l),W (l)) ≥ ((U (l))(1), (W (l))(1)). It follows by an induction argu-

ment that (U (l),W (l)) ≥ ((U (l))(k), (W (l))(k)) for every k = 1, 2, . . .. A similar

argument gives (U (l),W (l)) ≤ ((U
(l)

)(k), (W
(l)

)(k)) for every k. Letting k →∞ and

using (3.9) leads to the relation (U (l),W (l)) ≤ (U (l),W (l)) ≤ (U
(l)
,W

(l)
) for every

l = 1, . . . , N . This proves the relation (3.8), and therefore the minimal and maximal
property of (U,W) and (U,W).
(c). If either U = U or W = W then the relation U = Q(W) and U = Q(W),
where Q(W) = (Q(1)(W (1)), · · · , Q(N)(W (N))), ensures that (U,W) = (U,W).
The uniqueness of the solution (U∗,W∗) in S follows from (3.8). This proves the
theorem.

To treat the system (3.3) by the Gauss-Seidel and Jacobi iterations we write
A(l) in the split form A(l) = D(l) − U (l) − L(l) for each l, where D(l), (−U (l)) and
(−L(l)) are the diagonal, upper-off-diagonal, and lower-off-diagonal sub-matrices of

A(l), respectively. Similarly, we write A
(l)

= D(l) − U (l) − L(l)
. It is obvious from

the Hypothesis (H2) − (i) that the diagonal elements of D(l) and D(l)
are positive

and all the elements of U (l), L(l), U (l)
and L(l)

are nonnegative. Define

G(l) = D(l) + Γ(l) − L(l), J (l) = D(l) + Γ(l) for l = 1, . . . , n0 − 1,

G(l) = D(l)
+ Γ

(l) − L(l) J (l)
= D(l)

+ Γ
(l)

for l = n0, . . . , N.

Then G(l) = A(l)−U (l), G(l) = A(l)−U (l)
and J (l) = G(l)−L(l), J (l)

= G(l)−L(l)
.

Using the above notation we have the following additional iterative schemes:
(B) Gauss-Seidel Iteration.

G(W (l))(k) = U (l)(W (l))(k−1) + F(l)(U(k−1)) + η(l), l = 1, . . . , n0 − 1,

G(W (l))(k) = U (l)
(W (l))(k−1) + F(l)(U(k−1)) + G(l)(U(k−1)), l = n0, . . . , N,

(U (l))(k) = Q(l)((W (l))(k)), l = 1, . . . , N. (3.10)

(C) Jacobi iteration.

J (l)(W (l))(k) = (U (l) + L(l))(W (l))(k−1) + F(l)(U(k−1)) + η(l), l = 1, . . . , n0 − 1,

J (l)
(W (l))(k) = (U (l)

+ L(l)
)(W (l))(k−1) + F(l)(U(k−1)) + G(l)(U(k−1)),

l = n0, . . . , N,

(U (l))(k) = Q(l)((W (l))(k)), l = 1, . . . , N. (3.11)
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where (U(0),W(0)) is either (Û,Ŵ) or (Ũ,W̃), and k = 1, 2, . . .. Since by the

Hypothesis (H2)−(i) the inverses (G(l))−1, (J (l))−1 and (G(l))−1, (J (l)
)−1 exist and

are nonnegative, the sequences governed by (3.10) and (3.11) are well-defined and
can be computed by solving a linear algebraic system with triangular and diagonal
coefficient matrices, respectively. Denote the sequence again by {U(k),W(k)} if

(U(0),W(0)) = (Û,Ŵ) and by {U(k)
,W

(k)} if (U(0),W(0)) = (Û,Ŵ), and refer
to them as minimal and maximal sequences, respectively. The following theorem
gives the monotone convergence of these sequences.

Theorem 3.2. Let the conditions in Theorem 3.1 be satisfied. Then all the con-
clusions in (a), (b) and (c) of Theorem 3.1 hold true for the minimal and maximal

sequences {U(k),W(k)}, {U(k)
,W

(k)} governed either by the Gauss-Seidel iteration
(3.10) or by the Jacobi iteration (3.11).

Proof. Gauss-Seidel iteration We first show the monotone property of the
minimal and maximal sequences governed by (3.10). Let ((U (l))(k), (W (l))(k)), l =

1, . . . , N , be the components of {U(k),W(k)}. By (3.4), (3.10), (U(0),W(0)) =

(Û,Ŵ), A(l) = G(l) − U (l) for l = 1, . . . , n0 − 1 and A(l)
= G(l) − U (l)

for l =
n0, . . . , N , we have

G(l)((W (l))(1) − (W (l))(0)) =[U (l)(W (l))(0) + F(l)(U(0)) + η(l)]− G(l)(W (l))(0)

=(F(l)(Û) + η(l))−A(l)Ŵ (l)

≥0, l = 1, . . . , n0 − 1,

G(l)((W (l))(1) − (W (l))(0)) =[U (l)
(W (l))(0) + F(l)(U(0)) + G(l)(U(0))]− G(l)(W (l))(0)

=F(l)(Û) + G(l)(Û)−A(l)
(Ŵ (l))

≥0, l = n0, . . . , N.

The positivity of (G(l))−1 and (G(l))−1 implies that (W (l))(1) ≥ (W (l))(0) for ev-

ery l = 1, . . . , N . By the relation (U (l))(1)−(U (l))(0) = Q(l)((W (l))(1))−Q(l)((W (l))(0))

≥ 0 we obtain ((U (l))(1), (W (l))(1)) ≥ ((U (l))(0), (W (l))(0)) for l = 1, . . . , N . A

similar argument for the maximal sequence {(U (l)
)(k), (W

(l)
)(k)} gives ((U

(l)
)(0),

(W
(l)

)(0)) ≥ ((U
(l)

)(1), (W
(l)

)(1)) for l = 1, . . . , N . Moreover, by (3.10), U ≥ 0 and
(H2)− (ii),

G(l)((W (l)
)(1) − (W (l))(1)) = U (l)((W

(l)
)(0) − (W (l))(0)) + (F(l)(U

(0)
)

+η(l))− (F(l)(U(0)) + η(l))

≥ 0, l = 1, . . . , n0 − 1,

G(l)((W (l)
)(1) − (W (l))(1)) = U (l)((W

(l)
)(0) − (W (l))(0)) + (F(l)(U

(0)
)

+G(l)(U
(0)

))− (F(l)(U(0)) + G(l)(U(0)))

≥ 0, l = n0, . . . , N.

This yields (W
(l)

)(1) ≥ (W (l))(1) which ensures (U
(l)

)(1) ≥ (U (l))(1) for l = 1, . . . , N .
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The above conclusions show that

((U (l))(0), (W (l))(0)) ≤ ((U (l))(1), (W (l))(1))

≤ ((U
(l)

)(1), (W
(l)

)(1))

≤ ((U
(l)

)(0), (W
(l)

)(0))

for l = 1, . . . , N . Assume, by induction, that

((U (l))(k−1), (W (l))(k−1)) ≤ ((U (l))(k), (W (l))(k))

≤ ((U
(l)

)(k), (W
(l)

)(k))

≤ ((U
(l)

)(k−1), (W
(l)

)(k−1))

for some k > 1. Then

G(l)((W (l))(k+1) − (W (l))(k)) = U (l)((W (l))(k) − (W (l))(k−1)) + (F(l)(U(k))

+η(l))− (F(l)(U(k−1)) + η(l))

≥ 0 for l = 1, . . . , n0 − 1,

G(l)((W (l))(k+1) − (W (l))(k)) = U (l)((W (l))(k) − (W (l))(k−1)) + (F(l)(U(k))

+G(l)(U (k)))− (F(l)(U(k−1)) + G(l)(U(k−1)))

≥ 0 for l = n0, . . . , N.

This leads to (W (l))(k+1) ≥ (W (l))(k) which yields (U (l))(k+1) ≥ (U (l))(k). A similar

argument gives ((U
(l)

)(k+1), (W
(l)

)(k+1)) ≤ ((U
(l)

)(k), (W
(l)

)(k)) and ((U (l))(k+1),

(W (l))(k+1)) ≤ ((U
(l)

)(k+1), (W
(l)

)(k+1)). It follows from the principle of induction
that the above sequences possess the monotone property in (3.7). This implies that

the limits (U (l),W (l)), (U
(l)
,W

(l)
) in (3.9) exist and satisfy relation (3.7). Letting

k →∞ in (3.10) shows that both (U (l),W (l)) and (U
(l)
,W

(l)
) satisfy the equation

G(l)W (l) = U (l)W (l) + F(l)(U) + η(l), l = 1, . . . , n0 − 1,

G(l)W (l) = U (l)
W (l) + F(l)(U) + G(l)(U), l = n0, . . . , N,

U (l) = Q(l)(W (l)), l = 1, . . . , N.

Since G(l) − U (l) = A(l) and G(l) − U (l)
= A(l)

we conclude that both (U,W) and
(U,W) are solutions of (3.3). This proves the result in (a).
(b). Let (U,W) be any solution of (3.3) in S. Then its components (U (l),W (l))
satisfy the relation

G(l)(W (l) − (W (l))(1)) = (U (l)W (l) + F(l)(U) + η(l))− (U (l)(W (l))(0)

+F(l)(U(0)) + η(l))

= U (l)(W (l) − Ŵ (l)) + F(l)(U)− F(l)(Û)

≥ 0, l = 1, . . . , n0 − 1,

G(l)(W (l) − (W (l))(1)) = (U (l)
W (l) + F(l)(U) + G(l)(U))
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−(U (l)
(W (l))(0) + F(l)(U(l))(0) + G(l)(U(l))(0))

= U (l)
(W (l) − Ŵ (l)) + (F(l)(U)− F(l)(Û))

+(G(l)(U)−G(l)(Û))

≥ 0, l = n0, . . . , N.

The positivity of (G(l))−1 and (G(l))−1 ensures that W (l) ≥ (W (l))(1) for every

l = 1, . . . , N . This leads to U (l) ≥ (U (l))(1). A similar argument using the prop-

erty of an upper solution gives (U (l),W (l)) ≤ ((U
(l)

)(1), (W
(l)

)(1)). This proves

((U (l))(1), (W (l))(1)) ≤ (U (l),W (l)) ≤ ((U
(l)

)(1), (W
(l)

)(1)). It follows by an induc-
tion argument that

((U (l))(k), (W (l))(k)) ≤ (U (l),W (l)) ≤ ((U
(l)

)(k), (W
(l)

)(k))

for every k = 1, 2, . . .. Letting k → ∞ shows that (U (l),W (l)) ≤ (U (l),W (l)) ≤
(U (l),W (l)), l = 1, . . . , N . This proves the relation (3.8).
(c). The proof for the result in (c) is the same as for Picard iteration.

Jacobi Iteration For Jacobi iteration, we replace the matrices (G(l),G(l)) by

(J (l),J (l)
) and (U ,U) by (U +L,U +L), respectively, in the proof for Gauss-Seidel

iteration. Then by the positive property of ((J (l))−1, (J (l)
)−1) and the nonnegative

property of ((U + L), (U + L)) the same reasoning leads to the conclusions in (a),
(b) and (c) of Theorem 3.1. Details are omitted.

3.2. Comparison of monotone sequences.

It is seen from Theorem 3.1 and Theorem 3.2 that the three monotone iterations in
(3.6), (3.10) and (3.11) lead to the same minimal and maximal solutions (U,W),
(U,W) of (3.3). Denote the corresponding minimal and maximal sequences by

({U(k)
P ,W

(k)
P }, {U

(k)

P ,W
(k)

P }),

({U(k)
G ,W

(k)
G }, {U

(k)

G ,W
(k)

G }),

({U(k)
J ,W

(k)
J }, {U

(k)

J ,W
(k)

J }),

(3.12)

respectively, where

(U
(0)
P ,W

(0)
P ) = (U

(0)
G ,W

(0)
G ) = (U

(0)
J ,W

(0)
J ) = (Û,Ŵ),

(U
(0)

P ,W
(0)

P ) = (U
(0)

G ,W
(0)

G ) = (U
(0)

J ,W
(0)

J ) = (Ũ,W̃).

Then we have the following comparison results among these sequences:

Theorem 3.3. Let the conditions in Theorem 3.1 be satisfied. Then the three
minimal and maximal sequences in (3.12) possess the following comparison property:

(U
(k)
P ,W

(k)
P ) ≤ (U

(k)
G ,W

(k)
G ) ≤ (U

(k)
J ,W

(k)
J ),

(U
(k)

P ,W
(k)

P ) ≥ (U
(k)

G ,W
(k)

G ) ≥ (U
(k)

J ,W
(k)

J ), k = 1, 2, . . . .
(3.13)
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Proof. We prove the theorem for the minimal sequence in (3.13). The proof

for the maximal sequence is similar. Let (Z(l))(k) = (W
(l)
P )(k) − (W

(l)
G )(k). Since

A(l) = D(l)−U (l)−L(l) + Γ(l) = G(l)−U (l) and A(l)
= G(l)−U (l)

we see from (3.6),

(3.10) and (W (l))
(k)
G ≥ (W

(l)
G )(k−1) that

A(l)(Z(l))(k) = [F(l)(U
(k−1)
P ) + η(l)]− [G(l)(W (l)

G )(k) − U (l)(W
(l)
G )(k)]

= [F(l)(U
(k−1)
P ) + η(l)]− [U (l)((W

(l)
G )(k−1) − (W

(l)
G )(k))

+(F(l)(U
(k−1)
G ) + η(l))]

≥ F(l)(U
(k−1)
P )− F(l)(U

(k−1)
G ) for l = 1, . . . , n0 − 1.

(3.14)

The same reasoning gives

A(l)
(Z(l))(k) ≥ (F(l)(U

(k−1)
P )− F(l)(U

(k−1)
G ))

+(G(l)(U
(k−1)
P )−G(l)(U

(k−1)
G )) for l = n0, . . . , N.

(3.15)

Consider the case k = 1. Since (U
(l)
P )(0) = (U

(l)
G )(0) = Û (l) the inequalities in (3.14),

(3.15) imply that

A(l)(Z(l))(1) ≥ 0 for l = 1, . . . , n0 − 1 and A(l)
(Z(l))(1) ≥ 0 for l = n0, . . . , N.

This gives (Z(l))(1) ≥ 0 for every l = 1, . . . , N , or equivalently, (W
(l)
P )(1) ≥ (W

(l)
G )(1).

It follows from (U
(l)
P )(1) − (U

(l)
G )(1) = Q(l)((W

(l)
P )(1))−Q(l)((W

(l)
G )(1)) ≥ 0 that

((U
(l)
P )(1), (W

(l)
P )(1)) ≥ ((U

(l)
G )(1), (W

(l)
G )(1)) for every l = 1, . . . , N.

Assume by induction that

((U
(l)
P )(k), (W

(l)
P )(k)) ≥ ((U

(l)
G )(k), (W

(l)
G )(k)) (l = 1, . . . , N)

for some k > 1. Then by (3.14), (3.15) and (H2) − (ii) with k replaced by (k + 1)
we obtain

A(l)(Z(l))(k+1) ≥ 0 for l = 1, . . . , n0−1 and A(l)
(Z(l))(k+1) ≥ 0 for l = n0, . . . , N.

This gives (Z(l))(k+1) ≥ 0 which yields (W
(l)
P )(k+1) ≥ (W

(l)
G )(k+1) for every l =

1, . . . , N . The nondecreasing property of Q(l) ensures that (U
(l)
P )(k+1) ≥ (U

(l)
G )(k+1).

The first inequality in (3.13) for the minimal sequence follows from the principle of
induction.

To show the second inequality of (3.13) for the minimal sequences we let (Z(l))(k)

= (W
(l)
G )(k) − (W

(l)
J )(k) for l = 1, . . . , N . Then by (3.6), G(l) = J (l) − L(l) and the

nonnegative property of L(l) we have

G(l)(Z(l))(k) = G(l)(W (l)
G )(k) − [J (l)(W

(l)
J )(k) − L(l)(W

(l)
J )(k)]

= [U (l)(W
(l)
G )(k−1) + (F(l)(U

(k−1)
G ) + η(l))]− [U (l)(W

(l)
J )(k−1)

−L(l)((W
(l)
J )(k) − (W

(l)
J )(k−1)) + (F(l)(U

(k−1)
J ) + η(l))]

≥ U (l)((W
(l)
G )(k−1) − (W

(l)
J )(k−1)) + (F(l)(U

(k−1)
G )− F(l)(U

(k−1)
J ))

for l = 1, . . . , n0 − 1.
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Similarly

G(l)(Z(l))(k) ≥ U (l)
((W

(l)
G )(k−1) − (W

(l)
J )(k−1)) + (F(l)(U

(k−1)
G )− F(l)(U

(k−1)
J ))

+(G(l)(U
(k−1)
G )−G(l)(U

(k−1)
J )) for l = n0, . . . , N.

Using the relation (U
(0)
G ,W

(0)
G ) = (U

(0)
J ,W

(0)
J ) = (Û,Ŵ) for k = 1 in the above

inequalities gives

G(l)(Z(l))(1) ≥ 0 for l = 1, . . . , n0 − 1 and G(l)(Z(l))(1) ≥ 0 for l = n0, . . . , N.

This yields (W
(l)
G )(1) ≥ (W

(l)
J )(1) and therefore (U

(l)
G )(1) ≥ (U

(l)
J )(1) for every l =

1, . . . , N . It follows by an induction argument that

(W
(l)
G )(k) ≥ (W

(l)
J )(k) and (U

(l)
G )(k) ≥ (U

(l)
J )(k) for every k = 1, 2, . . . .

This proves the second inequality of (3.13) for the minimal sequences.

Remark 3.1. (a). Theorem 3.2 implies that with the same initial iteration Û or
Ũ the sequence governed by the Picard iteration converges faster than the Gauss-
Seidel iteration which, in turn, converges faster than the Jacobi iteration. However,
the Jacobi iteration is the simplest to use in practical computation while the Picard
iteration may require additional iterations for each k if the spatial domain Ω is

of two or higher dimension. On the other hand, since G(l) and G(l) are triangular
matrices it is more suitable for practical computation when Ω is of higher dimension.
(b). In Theorem 3.1 and Theorem 3.2 if U = U or W = W then the solution
(U∗,W∗) is unique in S and satisfies the relation (3.7). This implies that an error
estimate for (U∗,W∗) is given by

(U
(k) −U(k),W

(k) −W(k)), k = 1, 2, . . . .

and this error decreases to zero as k → ∞. This result and the monotone conver-
gence of the minimal and maximal sequences to (U∗,W∗) is very useful in practical
computation since it does not require any explicit knowledge of the solution.

4. Convergence of finite difference solutions

Using the method of lower and upper solutions for both continuous and finite differ-
ence problems we can prove the convergence of the finite difference solution (ui,wi)
of (2.5) to the continuous solution (u(xi),w(xi)) of (2.2) at every mesh point xi of

a given partition Λ
∗
. Recall that a smooth function (û(x), ŵ(x)) is called a lower

solution of (2.2) if it satisfies (2.2) with all the equality sign “=” replaced by the
inequality sign “≤”. Similarly, (ũ(x), w̃(x)) is called an upper solution if it satisfies
(2.2) with “=” replace by “≥” (cf [22]). This pair of lower and upper solutions are
said to be ordered if (û(x), ŵ(x)) ≤ (ũ(x), w̃(x)) in Ω. Assume that problem (2.2)
has a pair of ordered lower and upper solutions, and the functions c(x), η(x), f(x,u)
and g(x,u) are smooth functions in their respective domains. Then by using either
(û(x), ŵ(x)) or (ũ(x), w̃(x)) as the initial iteration (u(0),w(0)) we can construct a
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sequence {u(k),w(k)} from the linear iteration process

L∗[(w(l))(k)] = F (l)(x,u(k−1)), l = 1, . . . , N, (x ∈ Ω),

(w(l))(k) = η(l), l = 1, . . . , n0 − 1, (x ∈ ∂Ω),

∂

∂ν
(w(l))(k) + γ(l)(w(l))(k) = G(l)(x,u(k−1)), l = n0, . . . , N, (x ∈ ∂Ω),

(u(l))(k) = q(l)((w(l))(k)), l = 1, . . . , N, (x ∈ Ω) (4.1)

for k = 1, 2, . . ., where ((u(l))(k), (w(l))(k)), l = 1, . . . , N , are the components of
(u(k),w(k)) and

L∗[w(l)] ≡ −∆w(l) + b · ∇w(l) + γ(l)w(l).

It is obvious that the sequence {u(k),w(k)} governed by (4.1) is well-defined and
can be obtained by solving a linear Dirichlet boundary problem for l = 1, . . . , n0−1
and a Robin boundary problem for l = n0, . . . , N . We denote the sequence by
{u(k),w(k)} if (u(0),w(0)) = (û, ŵ) and by {u(k),w(k)} if (u(0),w(0)) = (ũ, w̃),
and refer to them as minimal and maximal sequence, respectively. In the following
theorem we state the monotone convergence of these sequences from [22].

Theorem 4.1. Let (û, ŵ), (ũ, w̃) be a pair of ordered lower and upper solution-
s of (2.2), and let Hypothesis (H1) be satisfied. Then as k → ∞, the sequence
{u(k),w(k)} converges to a minimal solution (u,w) of (2.2), and {u(k),w(k)} con-
verges to a maximal solution (u,w). Moreover,

(û, ŵ) ≤ (u(k),w(k)) ≤ (u(k+1),w(k+1)) ≤ (u,w)

≤ (u,w) ≤ (u(k+1),w(k+1)) ≤ (u(k),w(k))

≤ (ũ, w̃) for every k = 1, 2, . . . .

(4.2)

and if (u,w) = (u,w)(≡ (u∗,w∗)) then (u∗,w∗) is the unique solution of (2.2)
between (û, ŵ) and (ũ, w̃) .

A proof of the above theorem can be found in a recent article [22]. By using
the above monotone convergence theorem and the results in Theorem 2.1 we show
the convergence of the minimal and maximal finite difference solutions to the cor-
responding continuous solutions at every mesh point xi ∈ Λ

∗
, where Λ

∗
is a fixed

partition of Ω. It is assumed that every refinement of Λ
∗

contains Λ
∗
, and there

exist a pair of ordered lower and upper solutions (û(x), ŵ(x)), (ũ(x), w̃(x)) of (2.2)
and (ûi, ŵi), (ũi, w̃i) of (2.5). It is also assumed that given any ε0 > 0 there exists
δ0 > 0 such that for |h| < δ0 and l = 1, . . . , N ,

|û(l)(xi)− û(l)i |+ (ŵ(l)(xi)− ŵ(l)
i | < ε0,

|ũ(l)(xi)− ũ(l)i |+ |w̃(l)(xi)− w̃(l)
i | < ε0,

(4.3)

where (û(l)(xi), ŵ
(l)(xi)) and (ũ(l)(xi), w̃

(l)(xi)) are the respective components of
(û(xi), ŵ(xi)) and (ũ(xi), w̃(xi)) and |h| = h1 + . . .+ hp.

Theorem 4.2. Let Hypothesis (H1) and condition (4.3) be satisfied, and let ((û(x),
ŵ(x)), (ũ(x), w̃(x))) and ((ûi, ŵi), (ũi, w̃i)) be pairs of lower and upper solutions

of (2.2) and (2.5), respectively. Then at every point xi ∈ Λ
∗
, (ui,wi) converges to

(u(xi),w(xi)) and (ui,wi) converges to (u(xi),w(xi)) as |h| → 0.
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Proof. We prove the convergence of the minimal solution (ûi, ŵi) to (û(xi), ŵ(xi)).
For this purpose, it suffices to show that given any ε > 0 there exists δ > 0 such
that

|u(xi)− ui|+ |w(xi)−wi| < ε when |h| < δ, (4.4)

where |z| = |z(1)| + . . . + |z(N)| for any z = (z(1), · · · , z(N)) ∈ lRN . Let {u(k)(xi),
w(k)(xi)} be the minimal sequence governed by (4.1). By Theorem 4.1 and Theorem

2.1 there exists k∗ ≥ 1 such that for all i ∈ Λ
∗
,

|u(k)(xi)− u(xi)|+ |w(k)(xi)−w(xi)| < ε/3,

|u(k)
i − ui|+ |w

(k)
i −wi| < ε/3 when k ≥ k∗.

Since

|u(xi)− ui| ≤ |u(xi)− u(k)(xi)|+ |u(k)(xi)− u
(k)
i |+ |u

(k)
i − ui|,

|w(xi)−wi| ≤ |w(xi)−w(k)(xi)|+ |w(k)(xi)−w
(k)
i |+ |w

(k)
i −wi|

for every k and i, condition (4.4) is satisfied if there exists k ≥ k∗ such that

|u(k)(xi)− u
(k)
i |+ |w

(k)(xi)−w
(k)
i | < ε/3 when |h| < δ. (4.5)

To show this we observe from (4.1) and (2.3)-(2.4) that the minimal sequence
{u(k)(xi),w

(k)(xi)} satisfies the relation

L(l)[(w(l)(xi))
(k)] = F

(l)
i (u(k−1)(xi)) + o(k)(|h|2), l = 1, . . . , N, (xi ∈ Λ∗),

(w(l)(xi))
(k) = η(l)(xi), l = 1, . . . , n0 − 1, (xi ∈ ∂Λ∗),

B[(w(l)(xi))
(k)] = G(l)(u(k−1)(xi)) + o(k)(|h|), l = n0, . . . , N, (xi ∈ ∂Λ∗),

(u(l)(xi))
(k) = q(l)((w(l)(xi))

(k)), l = 1, . . . , N, (xi ∈ Λ
∗
),

(4.6)

where ((u(l)(xi), w
(l)(xi)), l = 1, . . . , N , are the components of (u(xi),w(xi)) and

o(k)(|h|)→ 0 as |h| → 0. Let

(v
(l)
i )(k) = (u(l)(xi))

(k) − (u
(l)
i )(k), (z

(l)
i )(k) = (w(l)(xi))

(k) − (w
(l)
i )(k).

Then a subtraction of (2.12) from (4.6) gives

L(l)[(z
(l)
i )(k)] = F

(l)
i (u(k−1)(xi))− F (l)

i (u
(k−1)
i ) + o(k)(|h|2), l = 1, . . . , N,

(z
(l)
i )(k) = 0, l = 1, . . . , n0 − 1,

B(l)[(z
(l)
i )(k)] + γ

(l)
i (z

(l)
i )(k) = G

(l)
i (u(k−1)(xi))−G(l)

i (u
(k−1)
i ) + o(k)(|h|),

l = n0, . . . , N,

(v
(l)
i )(k) = q(l)((w(l)(xi))

(k))− q(l)((w(l)
i )(k)), l = 1, . . . , N.
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Since by the mean-value theorem,

F
(l)
i (u(k−1)(xi))− F (l)

i (u
(k−1)
i )

=

N∑
j=1

(
∂F

(l)
i (ξ)

∂u(j)
)((u(j)(xi))

(k−1) − (u
(j)
i )(k−1))

≡
N∑
j=1

K
(l)
ij (v

(j)
i )(k−1)

and similarly,

G
(l)
i (u(k−1)(xi))−G(l)

i (u
(k−1)
i ) =

N∑
j=1

K
(l)

ij (v
(j)
i )(k−1),

q(l)((w(l)(xi))
(k))− q(l)((w(l)

i )(k)) = K̂
(l)
i (z

(l)
i )(k),

where

K
(l)
ij =

∂F
(l)
i

∂u(j)
(ξ), K

(l)

ij =
∂G

(l)
i

∂u(j)
(ξ), K̂

(l)
i =

∂q(l)

∂w(l)
(ξ̂)

and ξ, ξ and ξ̂ are some intermediate values between (u(j)(xi))
(k−1) and (u

(j)
i )(k−1)

and between (w(j)(xi))
(k) and (w

(j)
i )(k), respectively, we see that the above system

is equivalent to

L(l)[(z
(l)
i )(k)] =

N∑
j=1

K
(l)
ij (v

(j)
i )(k−1) + o(k)(|h|2), l = 1, . . . , N,

(z
(l)
i )(k) = 0, l = 1, . . . , n0 − 1,

B(l)[(z
(l)
i )(k)] + γi(z

(l))(k) =

N∑
j=1

K
(l)

ij (v(j))(k−1) + o(k)(|h|), l = n0, . . . , N,

(v
(l)
i )(k) = K̂

(l)
i (z

(l)
i )(k), l = 1, . . . , N. (4.7)

Notice from the nondecreasing property of F
(l)
i (u), G

(l)
i (u) and q(l)(wi) that the

values of K
(l)
ij , K

(l)

ij and K̂
(l)
i are nonnegative and are bounded for all (i, j, l).

Let (V (l))(k), (Z(l))(k) be the vector representation of (v
(l)
i )(k) and (z

(l)
i )(k) re-

spectively, and let

V(k) = ((V (1))(k), · · · , (V (N))(k)), Z(k) = ((Z(1))(k), · · · , (Z(N))(k)).

Then in vector form we may write (4.7) as

A(l)(Z(l))(k) =

N∑
j=1

K
(l)
j (V (j))(k−1) + o(k)(|h|2), l = 1, . . . , n0 − 1,

A(l)
(Z(l))(k) =

N∑
j=1

K
(l)
j (V (j))(k−1) +

N∑
j=1

K
(l)

j (V (j))(k−1) + o(|h|),

l = n0, . . . , N,

(V (l))(k) = K̂(l)(Z(l))(k), l = 1, . . . , N, (4.8)
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where K
(l)
j = diag(K

(l)
1,j , · · · ,K

(l)

m(l),j
), K

(l)

j = diag(K
(l)

1,j , · · · ,K
(l)

m(l),j) and K̂(l) =

diag(K̂
(l)
1 , · · · , K̂(l)

m(l)), are diagonal matrices. Let K, K and K̂ be some upper

bounds of K
(l)
j , K

(l)

j and K̂(l), respectively. Then by the positive property of

(A(l))−1 and (A(l)
)−1 we have the estimates

|(Z(l))(k)| ≤ (A(l))−1[K
∑N
j=1 |(V (j))(k−1)|+ |o(k)(|h|2)|],

|(Z(l))(k)| ≤ (A(l)
)−1[(K +K)

∑N
j=1 |(V (j))(k−1)|+ |o(k)(|h|)|],

|(V (l))(k)| ≤ K̂|(Z(l))(k)|.

Define

|Z(k)| =
N∑
l=1

|(Z(l))(k)|, |V(k)| =
N∑
l=1

|(V (l))(k)|.

Then the above inequalities become

|(Z(l))(k)| ≤ (A(l))−1[K|V(k−1)|+ |o(k)(|h|2)|],

|(Z(l))(k)| ≤ (A)−1[(K +K)|V(k−1)|+ |o(k)(|h|)|],

|(V (l))(k)| ≤ K̂|(Z(l))(k)|.

(4.9)

It is well-known that given any ε1 > 0 there exists a matrix norm and a vector norm
such that

||(A(l))−1|| ≤ (γ(l) + µ(l) − ε1)−1 ≡ ρ(l), ||A(l)Y || ≤ ρ(l)||Y ||,

||(A(l)
)−1|| ≤ (γ(l) + µ(l) − ε1)−1 ≡ ρ(l), ||A(l)

Y || ≤ ρ(l)||Y ||
(4.10)

for every Y ∈ lRM(l)

and Y ∈ lRM
(l)

, where µ(l) ≥ 0 and µ(l) ≥ 0 are the respective

principle eigenvalues of A(l) and A(l)
(cf. [25, 29]). We choose ε1 sufficiently small

(and choose γ(l) > ε1 if µ(l) = 0) so that ρ(l) > 0 for each l = 1, . . . , N . A similar
choice gives ρ(l) > 0. Let ρ0 ≥ max{ρ(l), ρ(l)} for all l. Then by (4.9) and (4.10),

||(Z(l))(k)|| ≤ ρ0[K||V(k−1)||+ o(k)(|h|2)], l = 1, . . . , n0 − 1,

||(Z(l))(k)|| ≤ ρ0[(K +K)||V(k−1)||+ o(k)(|h|)], l = n0, . . . , N,

||(V (l))(k)|| ≤ K̂||(Z(l))(k)||, l = 1, . . . , N,

(4.11)

where o(k)(|h|)→ 0 as |h| → 0 and

||V(k)|| =
N∑
l=1

||(V (l))(k)||, ||Z(k)|| =
N∑
l=1

||(Z(l))(k)||.

Addition of the first two inequalities in (4.11) and also the last inequality in (4.11)
over l yield

||Z(k)|| ≤ ρ0(2K +K)||V(k−1)||+ o(|h|),

||V(k)|| ≤ K̂||Z(k)||,
(4.12)



Numerical methods for coupled systems 565

where o(|h|) = maximal {o(k)(|h|), k ≤ k∗}. Let

r(k) = ||V(k)||, s(k) = ||Z(k)||, c = maximal {ρ0(2K +K), K̂}.

Then (4.12) is satisfied if

s(k) ≤ cr(k−1) + o(|h|) and r(k) ≤ cs(k). (4.13)

Consider k = 1. Since r(0) = ||V(0)|| = ||U(0)(x) −U(0)|| and U(0)(x) = (û(x1),

· · · , û(xM )), U(0) = (û1, · · · , ûM ), where M is the total number of components of

U(0), we see from (4.13) that for any ε
′

0 > 0 there exists δ′0 such that r(0) < ε′0 and
o(|h|) < ε′ when |h| < δ′0. This implies that

s(1) ≤ (c+ 1)ε′0, r(1) ≤ cs(1) ≤ (c2 + c)ε′0 when |h| < δ′0.

Using the relation (4.13), an induction argument gives

s(k) ≤ (c(k) + c(k−1) + · · ·+ 1)ε′0, r(k) ≤ (c(k+1) + c(k) + · · ·+ c)ε′0,

when |h| < δ′0. Let k ≥ k∗ be fixed. Then by choosing ε′0 sufficiently small there
exists δ > 0 such that s(k) + r(k) < ε/3 when |h| < δ. This is equivalent to

||V(k)||+ ||Z(k)|| < ε/3 when |h| < δ,

which ensures that the relation in (4.5) holds. This proves the convergence of the
minimal solution. The proof for the maximal solution is similar and is omitted.

If the minimal solution (u(x),w(x)) coincide with the maximal solution (u(x),
w(x)), then Theorem 4.1 implies that both (ui,wi) and (ui,wi) converge to their
common value (u∗(xi),w

∗(xi)). This observation leads to the following.

Corollary 4.1. Let the conditions in Theorem 4.1 hold. If, in addition, either
u(x) = u(x) or w(x) = w(x) then (u(x),w(x)) = (u(x),w(x)) ≡ (u∗(x),w∗(x))

and (ui,wi)(or (ui,wi)) converges to (u∗(xi),w
∗(xi)) in Λ

∗
as |h| → 0.

5. Applications

In this section, we given some applications of the existence theorem and the mono-
tone iterative schemes to the model problems (1.1) and (1.2). These model problems
have their own merits in the field of heat transfer and population growth. To avoid

the evaluation of the integral term I[(u
(l)
i )(k−1)] in the iteration process (2.12) we

replace it by (w
(l)
i )(k−1) to obtain an equivalent iteration process in the form

L[(w
(l)
i )(k)] = γ

(l)
i (w

(l)
i )(k−1) + f

(l)
i (u(k−1)), l = 1, . . . , N,

(w
(l)
i )(k) = η

(l)
i , l = 1, . . . , n0 − 1,

Bi[(w
(l)
i )(k)] = γ(l)(w

(l)
i )(k−1) + g

(l)
i (u(k−1)), l = n0, . . . , N,

(u
(l)
i )(k) = q(l)[(w

(l)
i )(k)], l = 1, . . . , N, (5.1)

where k = 1, 2, . . ., (w
(l)
i )(0) = I[(u

(l)
i )(0)] and (u

(l)
i )(0) is either û

(l)
i or ũ

(l)
i . The

above iteration process simplifies the computation of the functions F
(l)
i (u(k−1)) and
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G
(l)
i (u(k−1)) for each iteration k. The value of (u

(l)
i )(k) in the last equation of (5.1)

can be obtained by solving the equation I[(u
(l)
i )(k)] = (w

(l)
i )(k) if the inverse function

q(l)[wi] cannot be explicitly given. In the application of the iteration process (5.1)

for a particular problem where D(l)(u(l)), f
(l)
i (u) and g

(l)
i (u) are given we need to

construct a pair of ordered lower and upper solutions and the determination of the

functions γ
(l)
i and γ

(l)
i from (2.8). We do this for both problem (1.1) and problem

(1.2).

(A). The heat-transfer problem.
For the heat-transfer problem (1.1) we impose the following hypothesis:

(H3) D(u) = kc + kru
3, c(x) > 0, p(x) > 0 in Ω, σ(x) ≥ 0 on ∂Ω,

and kc, kr, α and a0 are positive constants with α ≥ 1

It is clear that problem (1.1) is a special case of (1.3) with N = n0 = 1, u(1) = u,
b(1) = 0 and

D(1)(u(1)) = kc + kru
3,

f (1)(x, u(1)) = p(x)− c(x)uα,

g(1)(x, u(1)) = σ(x)(a40 − u4).

(5.2)

This implies that wi = I[ui] = kcui + (kr/4)u4i , and the finite difference system for
problem (1.1) becomes

−∆wi = pi − ciuαi , (i ∈ Λ),

∂wi/∂ν = σi(a
4
0 − u4i ), (i ∈ ∂Λ),

ui = q(wi), (i ∈ Λ),

(5.3)

where ui is determined from the equation kcui + (kr/4)u4i = wi. By (5.1) the
iteration process for problem (5.3) is given by

−∆[w
(k)
i ] + γ

(1)
i w

(k)
i = γ

(1)
i w

(k−1)
i + pi − ci(uαi )(k−1), (i ∈ Λ),

Bi[w
(k)
i ] + γ

(1)
i w

(k)
i = γ

(1)
i w

(k−1)
i + σ(a40 − (u4i )

(k−1)), (i ∈ ∂Λ),

u
(k)
i = q(w

(k)
i ), (i ∈ Λ),

(5.4)

where w
(0)
i = I[u

(0)
i ] and γ

(1)
i , γ

(1)
i are any nonnegative functions (with γ 6= 0)

satisfying (2.8) with respect to the functions in (5.2). Since

∂f (1)/∂u(1) = −αc(x)uα−1, ∂g(1)/∂u(1) = −4σ(x)u3,

all the conditions in (H1) are satisfied if γ
(1)
i and γ

(1)
i are chosen to satisfy the

condition

γ
(1)
i (kc + kru

3
i )− αciuα−1i ≥ 0, γ

(1)
i (kc + kru

3
i )− 4σiu

3
i ≥ 0 for ûi ≤ ui ≤ ũi, (i ∈ Λ),

(5.5)

where ûi and ũi are the respective components of a pair of ordered lower and upper
solutions (ûi, ŵi), (ũi, w̃i) of (5.3). It is easy to verify from Definition 2.1 (for
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N = n0 = 1) that (ûi, ŵi) = (0, 0) is a lower solution. To find an upper solution we
let

P = maximal {(p(x)/c(x))1/α;x ∈ Ω}, I[ρ] = kcρ+ (kr/4)ρ4 (5.6)

and choose any constant ρ ≥ maximal {P , a0}. Then it is easy to verify that the
constant (ũi, w̃i) = (ρ, I[ρ]) is an upper solution. This shows that the pair

(ûi, ŵi) = (0, 0), (ũi, w̃i) = (ρ, I[ρ]) (5.7)

are ordered lower and upper solutions of (5.3). With this construction, condition
(5.5) is satisfied if

γ
(1)
i ≥ (αci/kc)ρ

α−1, γ
(1)
i ≥ (4σiρ

3)/(kc + krρ
3). (5.8)

By Theorem 2.1 (or Theorem 3.1) the finite difference problem (5.3) has a minimal
solution (ui, wi) and a maximal solution (ui, wi) such that

(0, 0) ≤ (ui, wi) ≤ (ui, wi) ≤ (ρ, I[ρ]).

The positive property of pi ensures that (ui, wi) > (0, 0) in Λ (cf. [21]). Moreover,
by the relation ∂f (1)/∂u = −αc(x)uα−1 ≤ 0 and ∂g(1)/∂u = −4σ(x)u3 ≤ 0 for
0 ≤ u ≤ ρ we conclude from Theorem 3.3 of [16] that (ui, wi) = (ui, wi) ≡ (u∗i , w

∗
i )

and (u∗i , w
∗
i ) is the unique solution between (0, 0) and (ρ, I[ρ]). Since ρ can be

chosen arbitrarily large we conclude that (u∗i , w
∗
i ) is the unique positive solution

of (5.3). This implies that the minimal sequence {u(k)i , w
(k)
i } and the maximal

sequence {u(k)i , w
(k)
i } converge monotonically to (u∗i , w

∗
i ) and satisfy the relation

(0, 0) ≤ (u
(k)
i , w

(k)
i ) ≤ (u

(k+1)
i , w

(k+1)
i ) ≤ (u∗i , w

∗
i ) ≤ (u

(k+1)
i , w

(k+1)
i )

≤ (u
(k)
i , w

(k)
i ) ≤ (ρ, I[ρ])

(5.9)

for every k = 1, 2, . . .. It is easy to see that the constant pair in (5.7) are also
ordered lower and upper solutions of the corresponding continuous problem (5.3).
This ensures that condition (4.3) is trivially satisfied. Hence by Theorem 4.1 and
Theorem 4.2, the continuous problem has a unique positive solution (u∗(x), w∗(x)),
and as |h| → 0, the finite difference solution (u∗i , w

∗
i ) converges to the continuous

solution (u∗(xi), w
∗(xi)) at every mesh point xi in Λ

∗
. To summarize the above

conclusions, we have the following results for the heat-transfer problem (1.1).

Theorem 5.1. Let Hypothesis (H3) be satisfied, and let ρ ≥ max{P , a0} where P
is given by (5.6). Then the following statements hold:

(a) Problem (5.3) has a unique positive solution (u∗i , w
∗
i );

(b) The minimal sequence {u(k)i , w
(k)
i } and the maximal sequence {u(k)i , w

(k)
i } gov-

erned by (5.4) with (u(0), w(0)) = (0, 0) and (u
(0)
i , w

(0)
i ) = (ρ, I[ρ]) converge to

(u∗i , w
∗
i ) and satisfy the relation (5.9), where I[ρ] is given by (5.6);

(c) The continuous problem (1.1) has a unique positive solution u∗(x), and as
|h| → 0, the finite difference solution (u∗i , w

∗
i ) converges to (u∗(xi), w

∗(xi)) at

every mesh point xi ∈ Λ
∗
, where w∗(xi) = I[u∗(xi)].
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(B). The Lotka-Volterra cooperation system.
We next consider an extended finite difference system of the cooperation model

(1.2) which is given by

−∆p[u
m
i ] = ui(a

(1) − b(1)ui + c(1)vi) + q
(1)
i in Λ, ui = 0 on ∂Λ,

−∆p[v
n
i ] = vi(a

(2) − b(2)vi + c(2)ui) + q
(2)
i in Λ, vi = 0 on ∂Λ,

(5.10)

where q
(1)
i ≥ 0, q

(2)
i ≥ 0 are some nonnegative functions in Λ. The consideration of

the above source functions is for the purpose of constructing a known continuous
solution. It is clear that the above problem is a special case of (1.3) with N = 2,
n0 = 3, b(1) = 0, (u(1), u(2)) = (u, v), and

D(1)(u(1)) = mum−1, D(2)(u(2)) = nvn−1, ξ(1) = ξ(2) = 0,

f (1)(x, u(1), u(2)) = u(a(1) − b(1)u+ c(1)v) + q(1)(x),

f (2)(x, u(1), u(2)) = v(a(2) − b(2)v + c(2)u) + q(2)(x).

(5.11)

Since wi ≡ I(1)[u
(1)
i ] = umi , zi ≡ I(2)[u

(2)
i ] = vni , the transformed system of (5.10)

becomes

−∆p[wi] = ui(a
(1) − b(1)ui + c(1)vi) + q

(1)
i , (i ∈ Λ),

−∆p[zi] = vi(a
(2) − b(2)vi + c(2)ui) + q

(2)
i , (i ∈ Λ),

wi = zi = 0, (i ∈ ∂Λ),

ui = w
1/m
i , vi = z

1/n
i , (i ∈ Λ).

(5.12)

Recall from Definition 2.1 that lower and upper solutions of (5.12), denoted by
(ûi, ŵi) ≡ ((ûi, v̂i), (ŵi, ẑi)) and (ũi, ṽi) ≡ ((ũi, ṽi), (w̃i, z̃i)), are required to satisfy
(5.12) with all the equality sign “=” replaced by the respective inequality sign “≤”
and “≥”. Let such a pair be given. Then from the relation

∂f(1)

∂v (u, v) = c1u ≥ 0, ∂f(2)

∂u (u, v) = c(2)v ≥ 0 for (u, v) ≥ (0, 0),

∂f(1)

∂u (u, v) = a(1) − 2b(1)u+ c(1)v, ∂f(2)

∂v (u, v) = a(2) − 2b(2)v + c(2)u,
(5.13)

we see that all the conditions in Hypothesis (H1) are satisfied by any γ
(1)
i , γ

(2)
i that

satisfy the relation

γ
(1)
i (mum−1i ) ≥ 2b(1)ui − a(1) − c(1)vi,

γ
(2)
i (nvn−1i ) ≥ 2b(2)vi − a(2) − c(2)ui for ûi ≤ ui ≤ ũi, v̂i ≤ vi ≤ ṽi.

(5.14)

Using the functions γ(1), γ(2) determined from (5.14) we compute the minimal and
maximal sequences {û(k), ŵ(k)}, {ũ(k), w̃(k)} from the iteration process

−∆p[w
(k)
i ] + γ

(1)
i w

(k)
i = γ

(1)
i w

(k−1)
i + u

(k−1)
i (a(1) − b(1)u(k−1)i + c(1)v

(k−1)
i ) + q

(1)
i ,

−∆p[z
(k)
i ] + γ

(2)
i z

(k)
i = γ

(2)
i z

(k−1)
i + v

(k−1)
i (a(2) − b(2)v(k−1)i

+ c(2)u
(k−1)
i ) + q

(2)
i , (i ∈ Λ),

w
(k)
i = z

(k)
i = 0, (i ∈ ∂Λ),

u
(k)
i = (w

(k)
i )1/m, v

(k)
i = (z

(k)
i )1/n, (i ∈ Λ). (5.15)
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Hence to show the existence and the computation of a positive solution of (5.12) we
need to find a pair of positive lower and upper solutions (ûi, ŵi), (ũi, w̃i). In fact,
it suffices to find ûi ≡ (ûi, v̂i) and ũ ≡ (ũi, ṽi) since ŵi = (I(1)[ûi], I

(2)[v̂i]) and
w̃i = (I(1)[ũi], I

(2)[ṽi]). Before doing this we show the existence of two semitrivial

solutions of the system (5.10) for the case q
(1)
i = q

(2)
i = 0.

Lemma 5.1. Let m > 1, n > 1 and q
(1)
i = q

(2)
i = 0. Then for any positive

constants a(l), b(l) and c(l), l = 1, 2, problem (5.10) has two semitrivial solutions
(u∗i , 0), (0, v∗i ), where u∗i > 0 and v∗i > 0 in Λ.

Proof. To show the existence of the semitrivial solution (u∗i , 0) we apply Theorem
2.1 to the scalar problem

−∆p[wi] = ui(a
(1) − b(1)ui) in Λ, wi = 0 on ∂Λ,

ui = w
1/m
i , (i ∈ Λ).

(5.16)

It is obvious that for any constant ρ ≥ a(1)/b(1), (ũi, w̃i) = (ρ, ρm) is an upper
solution. To find a positive lower solution we let λ∗ and φi be the smallest eigenvalue
and its corresponding (normalized) positive eigenfunction of the eigenvalue problem

∆p[φi] + λ∗φi = 0 in Λ, φi = 0 on ∂Λ, (5.17)

where λ∗ > 0. In terms of the matrix A(1), λ∗ is the smallest eigenvalue of A(1)

and Φ ≡ (φ1, · · · , φM )T is the positive eigenvector. It is clear that for any small
constant δ > 0, (ûi, ŵi) = ((δφi)

1/m, δφi) is a lower solution of (5.16) if

−∆p[δφi] ≤ (δφi)
1/m(a(1) − b(1)(δφi)1/m).

In view of (5.17) the above inequality is equivalent to

λ∗(δφ)1−1/m ≤ a(1) − b(1)(δφi)1/m.

Since m > 1 and φi > 0 there exists a small constant δ∗ > 0 such that the above
inequality holds for every δ ≤ δ∗. This shows that the pair (ûi, ŵi) = ((δφi)

1/m, δφi)
and (ρ, ρm) are ordered lower and upper solutions of (5.16). By Theorem 2.1(or
Theorem 3.1), this problem has a positive solution (u∗i , w

∗
i ) which ensures that

(u∗i , 0) is a semitrivial solution of (5.10) (for q
(1)
i = 0). The proof for the semitrivial

solution (0, v∗i ) is similar.
To show the existence of a positive solution to (5.12) we construct a pair of

positive lower and upper solutions. The following lemma gives a positive lower
solution.

Lemma 5.2. Given any m > 1, n > 1, there exists δ∗ > 0 such that for every
δ ≤ δ∗ the function (ûi, ŵi), where

ûi ≡ (ûi, v̂i) = ((δφi)
1/m, (δφi)

1/n), ŵi ≡ (ŵi, ẑi) = (δφi, δφi), (5.18)

is a positive lower solution of (5.12).

Proof. Since φi = 0 on ∂Λ, the function ((ûi, v̂i), (ŵi, ẑi)) in (5.18) is a lower
solution of (5.12) if

−∆p[δφi] ≤ (δφi)
1/m[a(1) − b(1)(δφi)1/m + c(1)(δφi)

1/n] + q
(1)
i ,

−∆p[δφi] ≤ (δφi)
1/n[a(2) − b(2)(δφi)1/n + c(2)(δφi)

1/m] + q
(2)
i .
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By (5.17) and q
(l)
i ≥ 0 for l = 1, 2, the above inequalities are satisfied if

λ∗(δφi)
1−1/m ≤ a(1) − b(1)(δφi)1/m + c(1)(δφi)

1/n,

λ∗(δφi)
1−1/n ≤ a(2) − b(2)(δφi)1/n + c(2)(δφi)

1/m.
(5.19)

In view of m > 1, n > 1, and 0 ≤ φ ≤ 1 there exists a small constant δ∗ > 0 such
that the above relation holds for every δ ≤ δ∗. This proves the lemma.

We next give some sufficient conditions for the construction of a positive upper
solution (ũi, w̃i) = ((ũi, ṽi), (w̃i, z̃i)). This function is given in the form

(ũi, ṽi) = ((ρψi)
1/m, (ρψi)

1/n), (w̃i, z̃i) = (ρψi, ρψi) (5.20)

for a sufficiently large constant ρ, where ψi is either the positive eigenfunction of
(5.17) in a slightly large domain Λ̃ containing Λ or ψi = 1 in Λ. In fact, we choose
ψi = 1 and ρ(l) = ρ(l) for l = 1, 2, only if b(1)b(2) > c(1)c(2), where ρ(1) and ρ(2) are
given by

ρ(1) = (a(1)b(2) + a(2)b(1))/(b(1)b(2) − c(1)c(2)),

ρ(2) = (a(1)c(2) + a(2)c(1))/(b(1)b(2) − c(1)c(2))
(5.21)

and a(l), l = 1, 2, are any constants satisfying a(l) ≥ a(l) + q
(l)
i . Specifically we have

the following results.

Lemma 5.3. Let m > 1, n > 1, and let one of the following conditions holds:

(a) 1/m+ 1/n < 1; (b) m = n and b(l) ≥ c(l), l = 1, 2;

(c) m = n = 2 and c(l) − b(l) < λ∗; (d) b(1)b(2) > c(1)c(2).
(5.22)

Then there exists a constant ρ∗ such that the function ((ũi, ṽi), (w̃i, z̃i)) in (5.20)
is a positive upper solution of (5.12) for every ρ ≥ ρ∗ if one of the condition-
s in (a), (b) and (c) holds. In case condition (d) is satisfied then the constant
((ρ(1), ρ(2)), ((ρ(1))m, (ρ(2))n)) is an upper solution, where ρ(l) = max{1, ρ(l)} and
ρ(l), l = 1, 2, are given by (5.21).

Proof. Since ψi > 0 in Λ̃ and Λ̃ contains Λ we see from (5.20) that (w̃i, z̃i) > (0, 0)
on ∂Λ. Hence the function in (5.20) is an upper solution of (5.12) if

−∆p[ρψi] ≥ (ρψi)
1/m[a(1) − b(1)(ρψi)1/m + c(1)(ρψi)

1/n] + q
(1)
i ,

−∆p[ρψi] ≥ (ρψi)
1/n[a(2) − b(2)(ρψi)1/n + c(2)(ρψi)

1/m] + q
(2)
i .

By (5.17) with φi replaced by ψi the above relation is equivalent to

λ̃ ≥ (ρψi)
1/m−1[a(1) − b(1)(ρψi)1/m + c(1)(ρψi)

1/n] + q
(1)
i /(ρψi),

λ̃ ≥ (ρψi)
1/n−1[a(2) − b(2)(ρψi)1/n + c(2)(ρψi)

1/m] + q
(2)
i /(ρψi),

(5.23)

where λ̃ > 0 is the smallest eigenvalue of (5.17) corresponding to ψi. Since (ρψi)
1/m−1

→ 0 as ρ → ∞ there exists a large constant ρ∗ such that for every ρ ≥ ρ∗ the in-
equalities in (5.23) hold if

limρ→∞[c(1)(ρψi)
1/m+1/n−1 − b(1)(ρψi)2/m−1] < λ̃,

limρ→∞[c(2)(ρψi)
1/m+1/n−1 − b(2)(ρψi)2/n−1] < λ̃.

(5.24)
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It is obvious that the above requirement is fulfilled by every b(l), c(l), (l = 1, 2) if
1/m + 1/n < 1. It is also fulfilled if m = n and c(l) ≤ b(l). This proves the lemma
if condition (a) or condition (b) in (5.22) is satisfied. In the case m = n = 2 the
requirement in (5.24) becomes c(l) − b(l) < λ̃ for l = 1, 2. Since λ̃ can be made
arbitrarily close to λ∗ by choosing Λ̃ sufficiently close to Λ, this requirement is
fulfilled if condition (c) in (5.22) is satisfied. Finally if b(1)b(2) > c(1)c(2) we seek a
constant upper solution (ũi, w̃i) in the form

ũi ≡ (ũi, ṽi) = (ρ(1), ρ(2)), w̃i ≡ (w̃i, z̃i) = ((ρ(1))m, (ρ(2))n). (5.25)

Clearly the above constant is an upper solution if

0 ≥ ρ(1)(a(1) − b(1)ρ(1) + c(1)ρ(2)) + q
(1)
i , 0 ≥ ρ(2)(a(2) − b(2)ρ(2) + c(2)ρ(1)) + q

(2)
i

This relation is clearly satisfied if for each l = 1, 2, and any a(l) ≥ a(l) +q
(l)
i , ρ(l) ≥ 1

and satisfies the relation

b(1)ρ(1) − c(1)ρ(2) = a(1), b(2)ρ(2) − c(2)ρ(1) = a(2).

Solving the above equations for ρ(1), ρ(2) gives ρ(1) = ρ(1), ρ(2) = ρ(2), where ρ(1)

and ρ(2) are given by (5.21). This completes the proof of the lemma.

Using the lower and upper solution in (5.18), (5.20) we choose the functions
γ(l), l = 1, 2, that satisfy condition (5.14). Indeed since a(1) > 0 and a(2) > 0, this

condition is trivially satisfied by any γ
(l)
i > 0 when ui = vi = 0. By continuity, we

see that given any γ
(l)
i , say γ

(l)
i ≥ β0 for some β0 > 0, there exists α0 > 0 such

that (5.14) holds for 0 < ui ≤ α0 and 0 < vi ≤ α0. In the range α0 ≤ ui ≤ ρ(1),
α0 ≤ vi ≤ ρ(2) for any (ρ(1), ρ(2)) ≥ (ũi, ṽi) we choose γ(l) ≥ β(l), l = 1, 2, where

β(1) = (2b(1)ρ(1) − a(1) − c(1)α0)/(mαm−10 ),

β(2) = (2b(2)ρ(2) − a(2) − c(2)α0)/(nαn−10 ).
(5.26)

It follows by the choice of γ
(l)
i ≥ maximal {β0, β(l)} that the condition (2.8) in

(H2) − (ii) holds. Hence by Theorem 2.1 (or Theorem 3.1), problem (5.12) has a
minimal solution (ui,wi) ≡ ((ui, vi), (wi, zi)) and a maximal solution (ui,wi) ≡
((ui, vi), (wi, zi)). In particular, (ui, vi) and (ui, vi) are the respective minimal and
maximal solutions of (5.10) and satisfy the relation

((δφi)
1/m, (δφi)

1/n) ≤ (ui, vi) ≤ (ui, vi) ≤ ((ρψi)
1/m, (ρψi)

1/n). (5.27)

In the case b(1)b(2) > c(1)c(2), the function (ρψi, ρψi) in (5.25) should be replaced
by (ρ(1), ρ(2)) where ρ(l) = maximal {1, ρ(l)}, l = 1, 2. Moreover, Theorem 2.1 also
implies that (ui, vi) and (ui, vi) can be computed from the iteration process (5.15)
with the initial iteration given by (5.18) and (5.20), respectively.

In addition to the computation of minimal and maximal solutions of (5.12) we
can also show the convergence of these solutions to the corresponding minimal and
maximal solutions of the continuous problem (1.2). To see this we let (λ0, φ0(x))
be the principal eigen-pair of (1.4). Upon replacing (λ∗, φi) by (λ0, φ0) (and (λ̃, ψi)
by (λ̃0, ψ̃0)) the pair in (5.18) and (5.20) are lower and upper solutions of problem
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(1.2). This implies that problem (1.2) has a minimal solution (u(x), v(x)) and a
maximal solution (u(x), v(x)) that satisfy the relation

((δφ0(x))1/m, (δφ0(x))1/n) ≤ (u(x), v(x)) ≤ (u(x), v(x))

≤ ((ρψ̃0(x))1/m, (ρψ̃0(x))1/n).

(cf. [22]). Since the difference between φi and φ0(x) ( or ψi and ψ̃i(x)) can be
made arbitrarily small by taking |h| small we see that condition (4.3) holds between
these two pairs of lower and upper solutions. By Theorem 4.2 the minimal and
maximal solutions (ui,wi), (ui,wi) of (5.12) converge to their respective minimal
and maximal solutions (u(xi),w(xi)), (u(xi),w(xi)) of the transformed system of

(5.10) at every mesh point xi in Λ
∗
, where u(xi) = (u(xi), v(xi)) and u(xi) =

(u(xi), v(xi)). To summarize the above conclusions we have the following results
for the cooperating model problem (5.10).

Theorem 5.2. Let m > 1, n > 1, and let one of the conditions in (5.22) be
satisfied. Then the following statements hold:

(a) Problem (5.10) has the trivial solution (0, 0) and two semitrivial solutions (ui, 0)

and (0, vi) if q
(1)
i = q

(2)
i = 0;

(b) For any q
(1)
i ≥ 0, q

(2)
i ≥ 0, problem (5.10) has a positive minimal solution

(ui, vi) and a positive maximal solution (ui, vi) that satisfy the relation (5.27).
Moreover, if (ui, vi) = (ui, vi)(≡ (u∗i , v

∗
i )) then (u∗i , v

∗
i ) is the unique positive

solution of (5.10);

(c) The minimal solution (ui, vi) can be computed from (5.15) with (u
(0)
i , v

(0)
i ) =

((δφ)1/m, (δφi)
1/n) and γ

(l)
i ≥ max{β0, β(l)}, l = 1, 2, where β(l) is given by

(5.26);

(d) The maximal solution (ui, vi) can be computed from (5.15) with (u
(0)
i , v

(0)
i ) =

((ρψi)
1/m, (ρψi)

1/n) if one of the conditions (a), (b) and (c) in (5.22) holds, and

with (u
(0)
i , v

(0)
i ) = (ρ(1), ρ(2)) if condition (d) holds, where ρ(l) = max{1, ρ(l)},

l = 1, 2;

(e) As |h| → 0, the minimal and maximal solutions (ui, vi), (ui, vi) converge to
their respective minimal and maximal solutions (u(xi), v(xi)) and (u(xi), v(xi))

of the extended problem (1.2) at every mesh point xi ∈ Λ
∗
.

6. Numerical results

Based on the conclusions in Theorem 5.1 and Theorem 5.2 we compute numerical
values of the positive solutions for both problems (1.1) and (1.2).

(A). The heat-transfer problem Consider problem (1.1) in a disk region of
radius R = 1 for the case α = 1 and c0(x) = c0, where the solution depends only
on the radial direction. The physical problem may be considered as a fuel rod of a
fuel assembly in a nuclear reactor where the temperature in the rod due to fission
depends on the radial direction only (cf. [3, 17]). To demonstrate the accuracy
and reliability of the monotone iterative schemes we construct a particular source
function p(r) so that the solution u∗(r) of the continuous problem is explicitly
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known. The values of this continuous solution will be used to compare with the
computed finite difference solution u∗i at every mesh point ri in a given partition

Λ
∗
. In the disk region the continuous problem (1.1) (for the case α = 1) becomes

− 1
r
d
dr (r(kc + kru

3)dudr ) + c0u = p(r) (0 < r < 1),

du
dr (0) = 0, (kc + kru

3(1))dudr (1) = σ1(a40 − u4(1)),
(6.1)

where σ(0) = 0, σ1 = σ(1) and c(r) ≡ c0 > 0.
By letting w = kcu+ (kr/4)u4 the transformed system of (6.1) is given by

1
r ·

d
dr (r dwdr ) = f(r, u), (0 < r < 1),

dw
dr (0) = 0, dw

dr (1) = g(u(1)),

where f(r, u) = p(r) − c0u, g(u) = σ1(a40 − u4). It is easy to see by the cen-
tral difference approximation (2.3) that the finite difference system of the above
boundary-value problem is given by

4w0 − 4w1 = h2f0(u0),

−(1− 1
2i )wi−1 + 2wi + (1 + 1

2i )wi+1 = h2fi(ui), i = 1, . . . , N − 1,

−2wN−1 + 2wN = h2fN (uN ) + h(2 + 1
2N )g(uN ).

In vector form, this system may be written as

AW = F (U) +G(U), U = Q(W ),

where

A =



4 −4 0 · · · 0 0 0

0 · · · · · · · 0

0 · −(1− 1
2i ) 2 (1 + 1

2i ) · 0

0 · · · · · · · 0

0 0 · · · · 0 −2 2


F (U) = (f0(u0), · · · , fN (uN ))T , G(U) = (0, · · · , 0, g(uN ))T ,

Q(W ) = (q(w0), · · · , q(wN ))T

and q(wi) = ui which is determined from the equation wi = kcui + (kr/4)u4, for
i = 1, . . . , N .

To construct a continuous solution of (6.1) for any physical parameters kc, kr,
c0, σ1 and a0 we choose

p(r) = 4[kc + kr(a− r2)2(a− 4r2)] + c0(a− r2), (6.2)

where a > 1 is a constant satisfying the relation

σ1(a− 1)4 − 2kr(a− 1)3 = σ1a
4
0 + 2kc. (6.3)
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It is easy to verify that for any choice of p(r) and a > 1 in (6.2) and (6.3), the
solution of (6.1) is given by

u∗(r) = (a− r2), (0 ≤ r ≤ 1).

In particular, if we choose a ≥ 4 then p(r) ≥ 0 and is bounded by 4(kc+kra
3)+ c0a

for r ∈ [0, 1]. This implies that the constant P in (5.6) becomes

P = a+ (4/c0)(kc + kra
3). (6.4)

Using the above value of P and any ρ ≥ maximal {P , a0} in (5.8) for γ(1) and γ(2)

we compute the minimal and maximal sequences {u(k)i , w
(k)
i }, {u

(k)
i , w

(k)
i } from the

iteration process (5.1) (or any one of the iteration process in (3.6), (3.10) and (3.11)).

The initial iterations for these sequences are (u
(0)
i , w

(0)
i ) = (0, 0) and (u

(0)
i , w

(0)
i ) =

(ρ, I[ρ]) where I[ρ] = kcρ+ (kr/4)ρ4. The only requirement in the iteration process
is that the constant a be chosen to satisfy a ≥ 4 and the relation (6.3). In particular,
if we choose a = 4 then u∗ = (4− r2) and the requirement (6.3) becomes

27(3σ1 − 2kr) = σ1a
4
0 + 2kc. (6.5)

The physical constants in the above relation can be arbitrarily chosen. For example,
by choosing

kc = 1, kr = 1/64, c0 = 8, σ1 = 1, a40 = 34 − (33/32 + 2) = 78.15625,

we see that condition (6.5) holds. Moreover, by (6.2) and (6.4) (with α = 1)

p(r) = 4 + (1/4)(1− r2)(4− r2)2 + 8(4− r2) and ρ = P = 5

and by (5.6), (5.8) we may choose

I[5] = 5 + (5/4)4 = 7.4414, γ(1) = 8, γ(1) = 250.

This leads to (ũi, w̃i) = (5, 7.4414). Using the above values of the parameters and

the initial iterations (u
(0)
i , w

(0)
i ) = (0, 0), and (u

(0)
i , w

(0)
i ) = (5, 7.4414) we compute

the sequences {u(k)i , w
(k)
i }, {u

(k)
i , w

(k)
i } for various values of h from (5.1). Since

for the heat-transfer problem the solution (u∗i , w
∗
i ) is unique we use the stopping

criterion
|u(k)i − u

(k)
i |+ |w

(k)
i − w

(k)
i | < ε

for various values of ε > 0. Numerical values of u
(k)
i and u

(k)
i of the above sequences

together with the continuous solution u∗(ri) for the case h = 0.01 and ε = 0.0001
are given in Table 1. It is seen from this table that the monotone property of the
minimal and maximal sequences are observed at every mesh point ri, and after about

16 number of iterations, the values of u
(k)
i and u

(k)
i are very close and differ from

the true solution u∗(ri) by less than 2 percent. Interest readers may choose different
values of the physical parameters in (6.5) to compute the numerical solution u∗i and
compare it with the continuous solution u∗(ri) = a − r2i . One may also choose a
different source function p(r) and a different continuous solution u∗(r) of (6.1).

Remark 6.1. (a) When α = 4 the function f (1) in (5.2) becomes f (1)(x, u(1)) =
c(x)(b40(x)−u4) with b40(x) = p(x)/c(x). This implies that the Newton’s fourth-
power radiation law applies also to the interior of the rod;
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Table 1. Numerical Results of Example 1

Iteration N x=0.1 x=0.2 x=0.4 x=0.6 x=0.8 x=1.0
ũ 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000

0 u∗ 4.000000 3.960000 3.840000 3.640000 3.360000 3.000000
û 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
u 4.744023 4.712858 4.641680 4.523687 4.354267 4.124031

1 u∗ 4.000000 3.960000 3.840000 3.640000 3.360000 3.000000
u 3.174488 3.160456 2.936469 2.488861 1.690137 0.347743
u 4.470324 4.428027 4.327544 4.165898 3.948667 3.690371

2 u∗ 4.000000 3.960000 3.840000 3.640000 3.360000 3.000000
u 3.433045 3.362950 3.128945 2.688336 1.934653 0.692275
u 4.166897 4.124722 4.012457 3.831310 3.587396 3.292526

4 u∗ 4.000000 3.960000 3.840000 3.640000 3.360000 3.000000
u 3.594452 3.527810 3.322344 2.949272 2.338642 1.356907
u 4.036968 3.995057 3.875503 3.679042 3.406969 3.061968

8 u∗ 4.000000 3.960000 3.840000 3.640000 3.360000 3.000000
u 3.823022 3.771908 3.618385 3.354129 2.957748 2.385870
u 4.012747 3.970288 3.848051 3.646283 3.364777 3.003324

16 u∗ 4.000000 3.960000 3.840000 3.640000 3.360000 3.000000
u 3.996364 3.953420 3.829117 3.623289 3.334566 2.960473
u 4.011516 3.969024 3.846637 3.644576 3.362549 3.000186

32 u∗ 4.000000 3.960000 3.840000 3.640000 3.360000 3.000000
u 4.011471 3.968977 3.846585 3.644512 3.362466 3.000068

(b) If kr = 0, (that is, if the heat transfer is due only to conduction) then D(u) = kc
and problem (1.1) is semilinear. In this case the iteration process (5.4) is directly

applicable with w
(k)
i = kcu

(k)
i , and all the conclusions in Theorem 5.1 hold true

for the semilinear problem (1.1).

(B). The cooperation system.
We next compute the positive minimal and maximal solutions of the cooperation

system (1.2). Before doing this we consider the extended problem (5.12) in a one-
dimensional domain Ω = (0, 1) by constructing a known continuous solution in the
form

(u(x), v(x)) = ((σ(1)x(1− x))1/m, (σ(2)x(1− x))1/n),

(w(x), z(x)) = (σ(1)x(1− x), σ(2)x(1− x)),
(6.6)

where σ(l), l = 1, 2, are some positive constants to be chosen. Since wxx = −2σ(1),
zxx = −2σ(2) and (w(0), z(0)) = (w(1), z(1)) = (0, 0) we see that the function in
(6.6) is a solution of (5.12) if

q(1)(x) = 2σ(1) − (σ(1)x(1− x))1/m[a(1) − b(1)(σ(1)x(1− x))1/m

+c(1)(σ(2)x(1− x))1/n],

q(2)(x) = 2σ(2) − (σ(2)x(1− x))1/n[a(2) − b(2)(σ(2)x(1− x))1/n

+c(2)(σ(1)x(1− x))1/m].

(6.7)

To ensure the nonnegative property of q(1)(x) and q(2)(x) we choose σ(l) ≥ 1 such
that

a(1)

(σ(1))α
+

c(1)

(σ(2))β
≤ 2 and

a(2)

(σ(2))γ
+

c(2)

(σ(1))β
≤ 2, (6.8)
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where α = 1−1/m, β = 1−(1/m+1/n) and γ = 1−1/n. In the case 1/m+1/n < 1,
we also choose σ ≡ minimal (σ(1), σ(2)) to satisfy

σ ≥ [(a(l) + c(l))/2]1/β for l = 1, 2. (6.9)

It is easy to verify that under the conditions (6.8) and (6.9) the functions q(1)(x)
and q(2)(x) in (6.7) are positive. In particular, by choosing

a(1) = a(2) = b(1) = c(1) = c(2) = σ(1) = 1, b(2) = σ(2) = 2, (6.10)

we see that (6.8) and (6.9) hold, and by (6.6) and (6.7),

(u(x), v(x)) = ((x(1− x))1/m, (2x(1− x))1/n),

q(1)(x) = 2− (x(1− x))1/m[1− (x(1− x))1/m + (2x(1− x))1/n],

q(2)(x) = 4− (2x(1− x))1/n[1− 2(2x(1− x))1/n + (x(1− x))1/m].

To find more explicit lower and upper solutions for numerical computations we
observe that the principal eigen-pair of (5.17) are given by

λ∗ =
4

h2
sin2(

πh

2
), φi = sin(iπh).

(cf. [24]). By lemma 5.2, a lower solution is given by

(û, v̂) = ((δ sin(iπh))1/m, (δ sin(iπh))1/n),

(ŵ, ẑ) = (δ sin(iπh), δ sin(iπh)),
(6.11)

where δ > 0 is required to satisfy (5.19). In view of 0 ≤ φi ≤ 1 it suffices to choose

δ ≤ [
a(1)

λ∗ + b(1)
]m = [

1

λ∗ + 1
]m and δ ≤ [

a(2)

λ∗ + b(2)
]n = [

1

λ∗ + 2
]n, (6.12)

where m = minimal {1/m, 1 − 1/m}, n = minimal {1/n, 1 − 1/n}. For an upper
solution we use the fact b(1)b(2) > c(1)c(2) (from (6.10)) to find a constant upper
solution from Lemma 5.3. It is easy to verify from (6.10) and (5.21) (with a(1) = 3,
a(2) = 5) that ρ(1) = 11, ρ(2) = 8 and the constant upper solution is

(ũi, ṽi) = (11, 8), (w̃i, z̃i) = (11m, 8n). (6.13)

With this pair of explicit lower and upper solutions we choose γ(1) and γ(2) from
(5.14) to obtain the relation

γ
(1)
i (mum−1i ) ≥ 2ui − 1− vi, γ(2)(nvn−1i ) ≥ 4vi − 1− ui

for 0 ≤ ui ≤ 11 and 0 ≤ vi ≤ 8. It is obvious that the above inequalities are trivially
satisfied for 0 ≤ ui ≤ 1/2 and 0 ≤ vi ≤ 1/4. This leads to the choice of

γ
(1)
i ≥ 2

m
maximal {u2−mi ;

1

2
≤ ui ≤ 11},

γ
(2)
i ≥ 4

n
maximal {v2−ni ;

1

4
≤ vi ≤ 8}. (6.14)
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Using a suitable choice of δ(l) from (6.12) and γ(l) from (6.14), (l = 1, 2), and the
functions (û, v̂) and (ũ, ṽ) in (6.11) and (6.13) as the initial iterations we compute
the minimal and maximal sequences from (5.15) for various values of m and n. The
stopping criterion for the monotone sequences is given by

|(u(k+1)
i − u(k)i )/u

(k)
i |+ |(v

(k+1)
i − v(k)i )/v

(k)
i | < ε (6.15)

for various ε > 0, where {u(k)i , v
(k)
i } stands for either the minimal sequence or the

maximal sequence. Numerical values for the case (m,n) = (1.5, 2.0) and (h, ε) =
(10−2, 10−6) are given in Table 2 and Table 3. It is seen from these tables that the
monotone property of both minimal and maximal sequences are observed and the
differences between the computed solutions and the true continuous solution are
less than 1 percent.

Table 2. Numerical Results of Example 2, u and u

Iteration N x=0.1 x=0.2 x=0.4 x=0.6 x=0.8 x=1.0
ũ 11.00000 11.00000 11.00000 11.00000 11.00000 11.00000

0 u∗ 0.000000 0.294723 0.386196 0.386196 0.294723 0.000000
û 0.000000 0.122075 0.168249 0.168249 0.122075 0.000000
u 0.000000 3.992098 5.127119 5.127119 3.992098 0.000000

1 u∗ 0.000000 0.294723 0.386196 0.386196 0.294723 0.000000
u 0.000000 0.231269 0.297754 0.297754 0.231269 0.000000
u 0.000000 1.717012 2.313905 2.313905 1.717012 0.000000

2 u∗ 0.000000 0.294723 0.386196 0.386196 0.294723 0.000000
u 0.000000 0.270939 0.352243 0.352243 0.270939 0.000000
u 0.000000 0.523087 0.701919 0.701919 0.523087 0.000000

4 u∗ 0.000000 0.294723 0.386196 0.386196 0.294723 0.000000
u 0.000000 0.292341 0.382194 0.382194 0.292341 0.000000
u 0.000000 0.301438 0.394927 0.394927 0.301438 0.000000

8 u∗ 0.000000 0.294723 0.386196 0.386196 0.294723 0.000000
u 0.000000 0.296046 0.387382 0.387382 0.296046 0.000000
u 0.000000 0.296252 0.387670 0.387670 0.296252 0.000000

12 u∗ 0.000000 0.294723 0.386196 0.386196 0.294723 0.000000
u 0.000000 0.296130 0.387499 0.387499 0.296130 0.000000
u 0.000000 0.296135 0.387506 0.387506 0.296135 0.000000

16 u∗ 0.000000 0.294723 0.386196 0.386196 0.294723 0.000000
u 0.000000 0.296132 0.387502 0.387502 0.296132 0.000000

To compute the positive minimal and maximal solutions of (5.12) for the original

problem where q
(1)
i = q

(2)
i = 0 we consider the system in a rectangular domain

Ω2 ≡ {(x, y); 0 < x < L1, 0 < y < L2}. Let Ω′2 ≡ {(x, y);−h1 < x < L1 +h1,−h2 <
y < L2 + h2} so that Ω2 is contained in Ω′2. Since the principal eigen-pair of (5.17)
for Λ = Λ2 and Λ = Λ′2 are given, respectively, by

λ∗2 = 4
h2
1

sin2(πh1

2L1
) + 4

h2
2

sin2(πh2

2L2
), φjk = sin( jπM1

) sin( kπM2
),

λ̃2 = 4
h2
1

sin2( πh1

2(L1+2h1)
) + 4

h2
2

sin2( πh2

2(L2+2h2)
), φ̃jk = sin( jπ

M1
) sin( kπ

M2
),

(6.16)

where M1 = L1/h1, M2 = L2/h2, M1 = (L1 + 2h1)/h1 and M2 = (L2 + 2h2)/h2,
we see that the pair of lower and upper solutions in (5.18) and (5.20) become

(ûi, v̂i) = ((δ sin( jπM1
) sin( kπM2

))1/m, (δ sin( jπM1
) sin( kπM2

))1/n), ((j, k) ∈ Λ2),

(ũi, ṽi) = ((ρ sin( jπ
M1

) sin( kπ
M2

))1/m, (ρ sin( jπ
M1

) sin( kπ
M2

))1/n), ((j, k) ∈ Λ
′
2)

(6.17)
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Table 3. Numerical Results of Example 2, v and v

Iteration N x=0.1 x=0.2 x=0.4 x=0.6 x=0.8 x=1.0
ṽ 8.000000 8.000000 8.000000 8.000000 8.000000 8.000000

0 v∗ 0.000000 0.565685 0.692820 0.692820 0.565685 0.000000
v̂ 0.000000 0.206524 0.262702 0.262702 0.206524 0.000000
v 0.000000 2.597357 3.157492 3.157492 2.597357 0.000000

1 v∗ 0.000000 0.565685 0.692820 0.692820 0.565685 0.000000
v 0.000000 0.532995 0.650286 0.650286 0.532995 0.000000
v 0.000000 1.145613 1.436870 1.436870 1.145613 0.000000

2 v∗ 0.000000 0.565685 0.692820 0.692820 0.565685 0.000000
v 0.000000 0.561690 0.686744 0.686744 0.561690 0.000000
v 0.000000 0.611150 0.751687 0.751687 0.611150 0.000000

4 v∗ 0.000000 0.565685 0.692820 0.692820 0.565685 0.000000
v 0.000000 0.566821 0.693432 0.693432 0.566821 0.000000
v 0.000000 0.568173 0.695218 0.695218 0.568173 0.000000

8 v∗ 0.000000 0.565685 0.692820 0.692820 0.565685 0.000000
v 0.000000 0.567379 0.694170 0.694170 0.567379 0.000000
v 0.000000 0.567410 0.694210 0.694210 0.567410 0.000000

12 v∗ 0.000000 0.565685 0.692820 0.692820 0.565685 0.000000
v 0.000000 0.567392 0.694186 0.694186 0.567392 0.000000
v 0.000000 0.567392 0.694187 0.694187 0.567392 0.000000

16 v∗ 0.000000 0.565685 0.692820 0.692820 0.565685 0.000000
v 0.000000 0.567392 0.694186 0.694186 0.567392 0.000000

In the case of b1b2 > c1c2, the upper solution in (6.17) should be replaced by
(ũi, ṽi) = (ρ(1), ρ(2)) where ρ(1) and ρ(2) are the constants given by (5.21) with
a(1) = a(1), a(2) = a(2). If we choose the same constants ai, bi and ci as that in
(6.10) then (ũi, ṽi) = (3, 2), and (ûi, v̂i) is given by (6.17). The constant δ in (6.17)

is given by (6.12) with λ∗ replaced by λ∗2 while γ
(1)
i and γ

(2)
i are given by (6.14)

with the constant (11, 8) replaced by (3, 2).
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Figure 1. Numerical Solution u of Example 3
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Figure 2. Numerical Solution v of Example 3

Using the lower solution (ûi, v̂i) in (6.17) and the upper solution (ũi, ṽi) = (3, 2)
as the initial iterations in (5.15) we compute the minimal and maximal sequences

{u(k)i , v
(k)
i } and {u(k)i , v

(k)
i }. The stopping criterion is again given by (6.15). Nu-

merical values of these sequences for the case h1 = h2 = h and

(L1, L2) = (1, 2), (m,n) = (1.5, 2.0), (h, ε) = (10−2, 10−6)
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Table 4. Numerical Results of Example 3, u and u

Iteration N (x, y) (0.2, 0.5) (0.2, 1.0) (0.4, 0.5) (0.4, 1.0) (0.5, 0.5) (0.5, 1.0)
0 ũ 3.000000 3.000000 3.000000 3.000000 3.000000 3.000000

û 0.002294 0.002890 0.003161 0.003983 0.003269 0.004118
1 u 0.349739 0.402627 0.472531 0.545619 0.487250 0.562849

u 0.003441 0.004108 0.004646 0.005554 0.004791 0.005728
2 u 0.154955 0.183628 0.211088 0.250432 0.217919 0.258576

u 0.003898 0.004626 0.005264 0.006257 0.005429 0.006453
4 u 0.043264 0.051892 0.058871 0.070679 0.060771 0.072969

u 0.004601 0.005444 0.006217 0.007368 0.006412 0.007600
8 u 0.011028 0.013123 0.014942 0.017803 0.015416 0.018370

u 0.005319 0.006295 0.007192 0.008523 0.007418 0.008793
16 u 0.005998 0.007103 0.008112 0.009621 0.008367 0.009925

u 0.005626 0.006660 0.007608 0.009019 0.007847 0.009304
24 u 0.005683 0.006728 0.007685 0.009112 0.007927 0.009400

u 0.005653 0.006692 0.007644 0.009063 0.007884 0.009349
32 u 0.005657 0.006698 0.007651 0.009070 0.007891 0.009357

u 0.005655 0.006694 0.007647 0.009066 0.007887 0.009353

Table 5. Numerical Results of Example 3, v and v

Iteration N (x, y) (0.2, 0.5) (0.2, 1.0) (0.4, 0.5) (0.4, 1.0) (0.5, 0.5) (0.5, 1.0)
0 ṽ 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000

v̂ 0.010481 0.012464 0.013332 0.015854 0.013671 0.016257
1 v 0.354478 0.392931 0.443057 0.492244 0.453214 0.503687

v 0.037434 0.041656 0.046335 0.051674 0.047344 0.052814
2 v 0.188231 0.211981 0.235952 0.266251 0.241486 0.272567

v 0.046501 0.051533 0.057560 0.063940 0.058813 0.065353
4 v 0.090716 0.101494 0.112852 0.126540 0.115386 0.129418

v 0.055265 0.061176 0.068433 0.075938 0.069926 0.077619
8 v 0.062257 0.069026 0.077149 0.085743 0.078840 0.087650

v 0.058831 0.065140 0.072866 0.080875 0.074458 0.082668
16 v 0.059269 0.065633 0.073411 0.081492 0.075016 0.083299

v 0.059186 0.065538 0.073307 0.081372 0.074910 0.083176
24 v 0.059198 0.065552 0.073322 0.081389 0.074925 0.083194

v 0.059193 0.065546 0.073316 0.081381 0.074918 0.083186
32 v 0.059193 0.065547 0.073317 0.081382 0.074919 0.083187

v 0.059193 0.065546 0.073316 0.081382 0.074918 0.083187

are given in Table 4 and Table 5, and are sketched in Figure 1 and Figure 2. It
is seen from these tables that the monotone property of the minimal and maximal
sequences and the comparison relation in Theorem 2.1 (or in (3.7)) are observed
at every point in the domain Λ2. It turns out that in this example the minimal
solution (ui, vi) coincide with the maximal solution (ui, vi) and the problem has a
unique solution between the pair of lower and upper solutions in (6.17). Interested
readers may choose different values of (m,n) to compute the maximal and minimal
solutions of the problem.
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