For EDITORS

For READERS

All Issues

Vol.15, 2025
Vol.14, 2024
Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 6, Number 2, 2016, Pages 409-428                                                                DOI:10.11948/2016031
Finite difference/$H^1$-Galerkin MFE procedure for a fractional water wave model
Jin-Feng Wang,Min Zhang,Hong Li,Yang Liu
Keywords:Time fractional water wave model, $H^1$-Galerkin MFE method, stability, optimal convergence rate, a priori error estimates
Abstract:
      In this article, an $H^1$-Galerkin mixed finite element (MFE) method for solving the time fractional water wave model is presented. First-order backward Euler difference method and $L1$ formula are applied to approximate integer derivative and Caputo fractional derivative with order $1/2$, respectively, and $H^1$-Galerkin mixed finite element method is used to approximate the spatial direction. The analysis of stability for fully discrete mixed finite element scheme is made and the optimal space-time orders of convergence for two unknown variables in both $H^1$-norm and $L^2$-norm are derived. Further, some computing results for a priori analysis and numerical figures based on four changed parameters in the studied problem are given to illustrate the effectiveness of the current method
PDF      Download reader