For EDITORS

For READERS

All Issues

Vol.15, 2025
Vol.14, 2024
Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 6, Number 1, 2016, Pages 131-144                                                                DOI:10.11948/2016011
Applications of fractional complex transform and $\left( \frac{G^{\prime }}{G}\right) $-expansion method for time-fractional differential equations
Ahmet Bekir,Ozkan Guner,Omer Unsal,Mohammad Mirzazadeh
Keywords:The $\left( \frac{G^{\prime }}{G}\right) $-expansion method  exact solutions, fractional differential equation  modifiedRiemann--Liouville derivative.
Abstract:
      In this paper, the fractional complex transform and the $\left( \frac{G^{\prime }}{G}\right) $-expansion method are employed to solve the time-fractional modfied Korteweg-de Vries equation (fmKdV),Sharma-Tasso-Olver, Fitzhugh-Nagumo equations, where $G$ satisfies a second order linear ordinary differential equation. Exact solutions are expressed in terms of hyperbolic, trigonometric and rational functions. These solutions may be useful and desirable to explain some nonlinear physical phenomena in genuinely nonlinear fractional calculus.
PDF      Download reader