For EDITORS

For READERS

All Issues

Vol.15, 2025
Vol.14, 2024
Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 6, Number 1, 2016, Pages 65-75                                                                DOI:10.11948/2016006
Counting spanning trees in prism and anti-prism graphs
Weigang Sun,Shuai Wang,Jingyuan Zhang
Keywords:Electrically equivalent transformation  spanning trees  prism graph  anti-prism graph.
Abstract:
      In this paper, we calculate the number of spanning trees in prism and antiprism graphs corresponding to the skeleton of a prism and an antiprism. By the electrically equivalent transformations and rules of weighted generating function, we obtain a relationship for the weighted number of spanning trees at the successive two generations. Using the knowledge of difference equations, we derive the analytical expressions for enumeration of spanning trees. In addition, we again calculate the number of spanning trees in Apollonian networks, which shows that this method is simple and effective. Finally we compare the entropy of our networks with other studied networks and find that the entropy of the antiprism graph is larger.
PDF      Download reader