For EDITORS

For READERS

All Issues

Vol.15, 2025
Vol.14, 2024
Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 6, Number 1, 2016, Pages 47-64                                                                DOI:10.11948/2016005
Global dynamics in a multi-group epidemic model for disease with latency spreading and nonlinear transmission rate
Haitao Song,Jinliang Wang,Weihua Jiang
Keywords:Multi-group epidemic model  Exposed distribution  Global stability  Lyapunov functional  Graph-theoretic approach.
Abstract:
      In this paper, we investigate a class of multi-group epidemic models with general exposed distribution and nonlinear incidence rate. Under biologically motivated assumptions, we show that the global dynamics are completely determined by the basic production number $R_0$. The disease-free equilibrium is globally asymptotically stable if $R_0\leq1$, and there exists a unique endemic equilibrium which is globally asymptotically stable if $R_0>1$. The proofs of the main results exploit the persistence theory in dynamical system and a graph-theoretical approach to the method of Lyapunov functionals. A simpler case that assumes an identical natural death rate for all groups and a gamma distribution for exposed distribution is also considered. In addition, two numerical examples are showed to illustrate the results.
PDF      Download reader