For EDITORS

For READERS

All Issues

Vol.15, 2025
Vol.14, 2024
Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 7, Number 2, 2017, Pages 581-599                                                                DOI:10.11948/2017036
On $L_p$-solution of fractional heat equation driven by fractional Brownian motion
Litan Yan,Xianye Yu
Keywords:Fractional Brownian motion, fractional heat equation, the Littlewood-Paley inequality.
Abstract:
      In this paper, we study the fractional stochastic heat equation driven by fractional Brownian motions of the form $$ du(t,x)=\left(-(-\Delta)^{\alpha/2}u(t,x)+f(t,x)\right)dt +\sum\limits^{\infty}_{k=1} g^k(t,x)\delta\beta^k_t $$ with $u(0,x)=u_0$, $t\in[0,T]$ and $x\in\mathbb{R}^d$, where $\beta^k=\{\beta^k_t,t\in[0,T]\},k\geq1$ is a sequence of i.i.d. fractional Brownian motions with the same Hurst index $H>1/2$ and the integral with respect to fractional Brownian motion is Skorohod integral. By adopting the framework given by Krylov, we prove the existence and uniqueness of $L_p$-solution to such equation.
PDF      Download reader