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ON LP -SOLUTION OF FRACTIONAL HEAT
EQUATION DRIVEN BY FRACTIONAL

BROWNIAN MOTION∗

Litan Yan1,2,† and Xianye Yu1

Abstract In this paper, we study the fractional stochastic heat equation
driven by fractional Brownian motions of the form

du(t, x) =
(
−(−∆)α/2u(t, x) + f(t, x)

)
dt+

∞∑
k=1

gk(t, x)δβkt

with u(0, x) = u0, t ∈ [0, T ] and x ∈ Rd, where βk = {βkt , t ∈ [0, T ]}, k ≥ 1 is a
sequence of i.i.d. fractional Brownian motions with the same Hurst index H >
1/2 and the integral with respect to fractional Brownian motion is Skorohod
integral. By adopting the framework given by Krylov, we prove the existence
and uniqueness of Lp-solution to such equation.

Keywords Fractional Brownian motion, fractional heat equation, the Littlewood-
Paley inequality.
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1. Introduction

It is known that stochastic partial differential equations (SPDEs) play an impor-
tant role in describing a real world with random perturbations. Its theory has
been developed very fast, and it is widely used in many scientific fields such as
nonlinear filtering, the dynamics of population, describing a free field in relativistic
and diffraction in random-heterogeneous media in statistical physics. To study the
SPDEs, one can choose either Walsh’s method [32] using martingale measures or
the abstract Hilbert space approach of Da Prato and Zabczyk [8]. Both Walsh’s
theory and Da Prato and Zabczyk’s approach are rather complete and satisfactory
in solving of the Cauchy problems for SPDEs.

Recently, Krylov in [19, 22] established a comprehensive Lp theory of second
order quasi-linear parabolic SPDEs of the form

du(t, x) = (Lu(t, x) + cu(t, x) + f(t, x)) dt

+
∑
k

(∑
i

σik
∂

∂xi
u(t, x) + νku+ gk(t, x)

)
dW k

t ,
(1.1)
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with u(0, x) = u0(x), where L =
∑
ai,j

∂2

∂xi∂xj +
∑
bi

∂
∂xi , {W

k, k ≥ 1} is a se-
quence of independent Brownian motions and the integral with respect to Brown-
ian motion is Itô’s integral. This theory is sharp and cannot be improved under
his assumptions, and which may be applied to a large class of important equations,
including equations of nonlinear filtering, stochastic heat equation with nonlinear
noise term, etc. This theory has attracted attentions of many authors and various
Lp-results of SPDEs around Krylov’s Lp-theory were developed rapidly. Mikule-
vicius and Rozovskii [24] extended Krylov’s Lp-solvability theory to the Cauchy
problem for systems of parabolic SPDEs and established some additional integra-
bility and regularity properties. In [17], Kim studied the Lp-theory of stochastic
partial differential equations on weighted Sobolev spaces within C1 and Lipschitz
domain, respectively. Zhang [33] introduced a more general Lp-theory of semi-linear
SPDEs on general measure spaces with an unbounded linear negative operator on
Lp(E,B, µ). Mikulevicius and Pragarauskas [25] gave some estimates of fractional
Sobolev and Besov norms of singular integrals arising in the model problem for the
Zakai equation with discontinuous observation. Chen and Kim [7] presented the
Lp-theory of non-divergence form SPDEs driven by Lévy processes. K. Kim and
P. Kim [16] extended the above results on equation (1.1) to a class of stochastic
equations with the random fractional Laplacian driven by Lévy processes. Some
more works for the Lp-theory of SPDEs (1.1) and related questions can be fund in
I. Kim and K. Kim [15], K. Kim [18], Krylov [19] and the references therein.

On the other hand, in recent years there has been considerable interest in study-
ing fractional Brownian motion due to its compact properties and applications in
various scientific areas including telecommunications, turbulence, image processing
and finance. Moreover, there also has been some recent interest in studying SPDEs
driven by fractional Brownian motion. Grecksch and Ann [12] studied the semi-
linear stochastic parabolic equation with an infinite dimensional fractional Brown-
ian motion input. In Nualart and Ouknine [29], the authors proved the existence
and uniqueness of a solution for a quasilinear parabolic equation in one dimension
driven by fractional white noise. Balan and Tudor [3] considered the stochastic
heat equation with multiplicative fractional-colored noise. Balan [2] studied a class
of stochastic wave equation driven by multiplicative fractional noise by a Malli-
avin calculus approach. Duncan et al. [9] investigated the solutions of a family of
semi-linear stochastic equations with a fractional Brownian motion in a Hilbert s-
pace. For more material, we refer to Duncan et al. [10], Garrido-Atienza et al. [11],
Hu-Nualart [14], Maslowski-Nualart [23], Tindel et al. [31] and references therein.

Motivated by the above results, in this paper, we consider an Lp-theory of the
fractional stochastic heat equation driven by fractional Brownian motions of the
form du(t, x) =

(
−(−∆)α/2u(t, x) + f(t, x)

)
dt+

∞∑
k=1

gk(t, x)δβkt ,

u(0, x) = u0(x),
(1.2)

with t ∈ [0, T ], x ∈ Rd and α ∈ (0, 2], where βk = {βkt , t ∈ [0, T ]}, k ≥ 1 is a
sequence of i.i.d. fractional Brownian motions with the same Hurst index H > 1/2
and the integral with respect to fractional Brownian motion is Skorohod integral.
When H = 1

2 and the stochastic integral is Itô integral, the equation is considered
in Chang-Lee [6], and moreover, when α = 2 Balan [1] considered the Lp-theory
of equation (1.2). This paper can be viewed as an extension of the results in
Balan [1] and its structure is organized as follows. Section 2 contains some necessary
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preliminaries on the Skorohod integral with respect to fractional Brownian motion
and definitions of stochastic function spaces, and the fractional Laplacian operator
is also introduced in this section. In Section 3, by using the method introduced
by Krylov in [19], we obtain a version of Littlewood-Paley inequality. Finally, in
Section 4, we prove the uniqueness and existence of equation (1.2) in the framework
of Lp-theory developed by Krylov.

2. Preliminaries

In this section, we firstly recall some basic results of fractional Brownian motion
(in short, fBm). For more aspects on the material we refer to Biagini et al. [4],
Hu [13], Mishura [26], Nourdin [27], Nualart [28] and references therein. In order to
state the main results, we explain also the stochastic function spaces and introduce
some properties of fractional Laplacian operator in this section. We make the
convention that the positive constant C, unless special explanation, depend only on
the subscripts and its value may be different in different appearance. When C has
subscripts, it will indicate the only dependence on parameters.

2.1. Fractional Brownian motion

Let (Ω,F , (Ft), P ) be a complete probability space with the filtration {Ft} satis-
fying the usual condition. The Gaussian process β = {β(t), 0 ≤ t ≤ T} defined on
(Ω,F , (Ft), P ), with continuous sample paths, is called a fBm with Hurst index
H ∈ (0, 1) if β(0) = 0, Eβ(t) = 0 and

E [β(t)β(s)] =
1

2

[
t2H + s2H − |t− s|2H

]
for all t, s ≥ 0. FBm β admits the Wiener integral representation of the form

β(t) =

∫ t

0

KH(t, s)dW (s), 0 ≤ t ≤ T,

where {W (t), 0 ≤ t ≤ T} is a standard Brownian motion and the kernel KH(t, s)
satisfies

∂KH

∂t
(t, s) = κH

(
H − 1

2

)(s
t

) 1
2−H

(t− s)H− 3
2

with a normalizing constant κH > 0 such that E(β2
1) = 1. Let H be the completion

of the linear space E generated by the indicator functions 1[0,t], t ∈ [0, T ] with
respect to the inner product

〈1[0,s], 1[0,t]〉H =
1

2

[
t2H + s2H − |t− s|2H

]
.

The application ϕ ∈ E → β(ϕ) is an isometry from E to the Gaussian space gener-
ated by β and it can be extended to H. Denote by Sβ the set of smooth functionals
of the form

F = f(β(ϕ1), β(ϕ2), . . . , β(ϕn)),

where f ∈ C∞b (Rn) (f and all its derivatives are bounded) and ϕi ∈ H. The
derivative operator Dβ (the Malliavin derivative) of a functional F of the form
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above is defined as

DβF =

n∑
j=1

∂f

∂xj
(β(ϕ1), β(ϕ2), . . . , β(ϕn))ϕj .

The derivative operator Dβ is then a closable operator from L2(Ω) into L2(Ω;H).
We denote by D1,2

β the closure of Sβ with respect to the norm

‖F‖D1,2
β

:=
√
E|F |2 + E‖DβF‖2H.

The divergence integral δβ is the adjoint of derivative operator Dβ . That is, we
say that a random variable u in L2(Ω;H) belongs to the domain of the divergence
operator δβ , denoted by Dom(δβ), if

E
∣∣〈DβF, u〉H

∣∣ ≤ C‖F‖L2(Ω), ∀F ∈ D1,2
β .

In this case δβ(u) is defined by the duality relationship

E
[
Fδβ(u)

]
= E〈DβF, u〉H (2.1)

for any u ∈ D1,2
β . We have D1,2

β ⊂ Dom(δβ). We will use the notation

δβ(u) =

∫ T

0

usδβs

to express the Skorohod integral of a process u, and the indefinite Skorohod integral
is defined as

∫ t
0
usδβs = δβ(u1[0,t]).

Let K be a Hilbert space with norm ‖ · ‖K . Consider the family Sβ(K) of
K-valued smooth random variables of the form

F =

n∑
j=1

Fjvj , Fj ∈ Sβ , vj ∈ K.

Clearly, Sβ(K) ⊂ Lp(Ω;K). Similarly, the Malliavin calculus can be defined as

DβF :=

n∑
j=1

(DβFj)⊗ vj

and we have DβF ∈ Lp(Ω;H⊗K) for p ≥ 1. We endow Sβ(K) with the norm

‖F‖pD1,p
β (K)

:= E‖F‖pK + E‖DβF‖pH⊗K ,

and let D1,p
β (K) be the completion of Sβ(K) to this norm.

We now introduce some Banach spaces and Hilbert spaces associated with the
Malliavin calculus. Let V be an arbitrary Banach space and let EV be the class of all
elementary processes taking values in V . Define the spaces of strongly measurable
functions by

|HV | := {f : [0, T ]→ V | ‖f‖|HV | <∞}

and
|H| ⊗ |HV | := {f : [0, T ]2 → V | ‖f‖|H|⊗|HV | <∞},
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where

‖f‖2|HV | = αH

∫ T

0

∫ T

0

‖f(t)‖V ‖f(s)‖V |t− s|2H−2dsdt, αH = H(2H − 1)

and

‖f‖2|H|⊗|HV | = α2
H

∫
[0,T ]4

|f(t, θ)|V |f(s, η)|V |t− s|2H−2|θ − η|2H−2dθdηdsdt.

Note that the space EV is dense in |HV | with respect to the norm ‖ · ‖|HV |. It is
well-known that there exists a constant bH such that (see Nualart [28])

‖f‖|HV | ≤ bH‖f‖L1/H([0,T ];V ).

If V is a Hilbert space, we let HV be the completion of EV with respect to the inner
product

〈φ, ϕ〉HV = αH

∫ T

0

∫ T

0

〈φ(t), ϕ(s)〉V |t− s|2H−2dsdt

and HV ⊗HV be the completion of EV ⊗ EV with respect to the inner product

〈φ, ϕ〉HV ⊗HV = α2
H

∫
[0,T ]4

〈φ(t, θ), ϕ(s, η)〉V⊗V |t− s|2H−2|θ − η|2H−2dsdt.

Moreover, we define the space |HV | ⊗ |HV | of strongly measurable functions by

|HV | ⊗ |HV | := {f : [0, T ]2 → V ⊗ V | ‖f‖|HV |⊗|HV | <∞},

where

‖f‖2|HV |⊗|HV | = α2
H

∫
[0,T ]4

|f(t, θ)|V⊗V |f(s, η)|V⊗V |t− s|2H−2|θ − η|2H−2dθdηdsdt.

Lemma 2.1 (Balan [1]). We have that HV is isomorphic with H⊗ V and

‖f‖HV ≤ ‖f‖|HV | ≤ bH‖f‖L1/H([0,T ];V ) ≤ bH‖f‖L2([0,T ];V ),

and

‖f‖HV ⊗HV ≤ ‖f‖|HV |⊗|HV | ≤ bH‖f‖L1/H([0,T ]2;V⊗V ) ≤ bH‖f‖L2([0,T ]2;V⊗V ).

In particular, EV = E, |HV | = |H| and HV = H, provided V = R.

2.2. Stochastic function spaces

Let p ≥ 1 and n ∈ R. We first recall some basic facts about the space of Bessel
potentials. Let C∞0 = C∞0 (Rd) be the space of infinitely differentiable functions on
Rd with compact support and let D = D(Rd) be the space of real-valued Schwartz
distributions on C∞0 . Define the spaces

Lp = Lp(Rd) := {f : Rd → R | ‖f‖pLp =

∫
Rd
|f(x)|pdx <∞},

Hn
p = Hn

p (Rd) := {f ∈ D | (I −∆)n/2f ∈ Lp},
Hn
p (`2) := {g = (g1, g2, . . .) : `2 − valued functions such that

gk ∈ Hn
p for each k and |(I −∆)n/2g|`2 ∈ Lp},
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and their norms are given by

‖f‖Hnp := ‖(I −∆)n/2f‖Lp , ‖g‖Hnp (`2) := ‖|(I −∆)n/2g|`2‖Lp

for f ∈ Hn
p and g ∈ Hn

p (`2), respectively. Then we have, for u ∈ Hn
p and φ ∈ C∞0

(u, φ) = ((I −∆)n/2u, (I −∆)−n/2φ),

where the right hand side is a usual Lebesgue integral. Using Hölder’s inequality,
one can easily obtain

|(u, φ)|2 ≤ C‖u‖2Hnp ,

where C = ‖(I −∆)−n/2φ‖2Lp/(p−1)
.

Using the spaces mentioned above, we define the following stochastic function
spaces

Hnp := Lp(Ω× [0, T ],F ×B([0, T ]);Hn
p ),

Hnp (`2) := Lp(Ω× [0, T ],F ×B([0, T ]);Hn
p (`2)),

Hnp,H := Lp(Ω× [0, T ],F ×B([0, T ]);L1/H([0, T ], Hn
p )),

Hnp,H(`2) := Lp(Ω× [0, T ],F ×B([0, T ]);L1/H([0, T ], Hn
p (`2))),

D1,p
β (|HHnp |) := {f ∈ D1,p

β (HHnp ) | f ∈ |HHnp |,

Dβf ∈ |H| ⊗ |HHnp |, ‖f‖D1,p
β (|HHnp |)

<∞},

L1,p
H,β(Hn

p ) := {g ∈ D1,p
β (|HHnp |) | ‖g‖L1,p

H,β(Hnp ) <∞},

and the norms are given by

‖f‖pD1,p
β (|HHnp |)

:=E‖f‖p|HHnp | + E‖Dβf‖p|H|⊗|HHnp |,

‖g‖pL1,p
H,β(Hnp )

:=E

∫ T

0

‖g(s, ·)‖pHnp ds+ E

∫ T

0

(∫ T

0

‖Dβ
t g(s, ·)‖1/HHnp

dt

)pH
ds

=‖g‖pHnp + ‖Dβg‖pHnp,H

for f ∈ D1,p
β (|HHnp |) and g ∈ L1,p

H,β(Hn
p ). Note that C∞0 is dense in Hn

p . Then we
introduce the set Sβ(EC∞0 ) of smooth elementary processes of the form

g(t, ·) =

m∑
i=1

Fi1(ti−1,ti](t)φ(·), t ∈ [0, T ],

where Fi ∈ Sβ , 0 ≤ t0 < t1 < . . . < tm ≤ T and φ ∈ C∞0 . The set Sβ(EC∞0 ) is dense

in D1,p
β (|HHnp |) with respect to the norm ‖ · ‖D1,p

β (|HHnp |)
. We let L̃1,p

H,β(Hn
p ) be the

completion of Sβ(EC∞0 ) with respect to the norm ‖ · ‖L1,p
H,β(Hnp ). It is easy to know

that L̃1,p
H,β(Hn

p ) ⊂ L1,p
H,β(Hn

p ).

Let βk = {βkt , t ∈ [0, T ]}, k ≥ 1 be a sequence of independent fractional Brown-
ian motions with the same Hurst index H > 1/2, defined on the same probability
space (Ω,F , (Ft), P ). Then we define

L1,p
H (Hn

p , `2) := {g = (g1, g2, . . .) | gk ∈ D1,p
βk

(|HHnp |)

for each k and ‖g‖L1,p
H (Hnp ,`2) <∞}
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with the norm ‖ · ‖pL1,p
H (Hnp ,`2)

given by

‖g‖pL1,p
H (Hnp ,`2)

:= E

∫ T

0

|g(s, ·)|pHnp (`2)ds+ E

∫ T

0

(∫ T

0

|Dtg(s, ·)|1/HHnp (`2)dt

)pH
ds

= ‖g‖pHnp (`2) + ‖Dg‖pHnp,H(`2),

whereDg(·, ·) := (Dβkgk(·, ·))k. At last, we let L̃1,p
H (Hn

p , `2) be the set of all elements

g ∈ L1,p
H (Hn

p , `2) for which there exists a sequence (gj)j ⊂ L1,p
H (Hn

p , `2) such that

‖gj − g‖L1,p
H (Hnp ,`2) → 0 as j →∞, gkj = 0 for k > Cj and gkj ∈ Sβ(EC∞0 ) for k < Cj .

Remark 2.1. By Proposition 4.3 and Lemma 4.7 in Balan [1], it is easy to check
that for any n ∈ R, φ ∈ C∞0 and g ∈ L̃1,p

H (Hn
p , `2), the series of Skorohod integrals

∞∑
k=1

∫ t

0

(gk(s, ·), φ)δβks

converges in probability uniformly in t ∈ [0, T ].

2.3. Fractional Laplace

Fractional Laplacian operator has been studied by many authors (see, for example
Caffarelli-Silvestre [5] and Stein [30]). As we know, the infinitesimal generator of a
symmetric α-stable process Xα taking values in Rd with α ∈ (0, 2) is the fractional
Laplacian −(−∆)α/2. The connection between Xα and −(−∆)α/2 can be seen as
follows. The fundamental solution of

∂u

∂t
(t, x) = −(−∆)α/2u(t, x) (2.2)

is the transition density of Xα
t . Following the identity

EeiθX
α
t = e−t|θ|

α

and Fourier inversion formula, we can give the fundamental solution Gα(t, x) of (2.2)

Gα(t, x) =
1

(2π)d

∫
Rd
eiθxe−t|θ|

α

dθ = F−1(e−t|θ|
α

)(x),

where F(f)(x) = f̂(x) :=
∫
Rd e

−iθxf(θ)dθ is the Fourier transform of f and F−1(f)(x)

= f̌(x) := 1
(2π)d

∫
Rd e

iθxf(θ)dθ is the inverse Fourier transform of f . For suitable f ,

define

Sαt f(x) = (Gα(t, ·) ∗ f)(x) :=

∫
Rd
Gα(t, x− y)f(y)dy,

where the symbol ”∗” denotes the convolution operation and

∂βxf(x) := (−∆)β/2f(x) := F−1(|θ|βF(f)(θ))(x).
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For β > 0, one can obtain by Fourier transform

∂βxS
α
t f(x) = F−1(|θ|βe−t|θ|

α

F(f)(θ))(x)

=
1

(2π)d

∫
Rd
eiθx|θ|βe−t|θ|

α

dθ ∗ f(x)

= t−
β+d
α

∫
Rd
eiθ(t

−1/αx)|θ|βe−|θ|
α

dθ ∗ f(x)

= t−
β+d
α (∂βxGα(1, x/t1/α)) ∗ f(x).

Define

Ψtf(x) := t−d/αφ(·/t1/α) ∗ f(·)(x),

where φ(x) = ∂
α/2
x Gα(1, x) = 1

(2π)d

∫
Rd e

iθx|θ|α/2e−|θ|αdθ. The next inequality can

be found in I. Kim and K. Kim [15] and Mikulevicius-Pragarauskas [25].∫
Rd

∫ t

0

(∫ s

0

|∂α/2x Sαt−sg(s, ·)(x)|2`2dr
)p/2

dsdx ≤ C
∫
Rd

∫ t

0

|g(s, x)|p`2dsdx (2.3)

with p ≥ 2.

3. a version of Littlewood-Paley inequality

In this section, we shall prove the following theorem which will be used in Section 4.

Theorem 3.1. Let p ≥ 2, 1
2 < H < 1 and let K be a Hilbert space with norm | · |K .

Then, the inequality

∫
Rd

∫ b

a

(∫ t

a

(∫ ν

µ

|∂α/2x Sαt−sf(s, x, r)|1/HK dr

)2H

ds

)p/2
dtdx

≤C
∫ b

a

(∫ ν

µ

(∫
Rd
|f(t, x, r)|pKdx

)1/(pH)

dr

)pH
dt

holds for all f ∈ C∞0 ((a, b) × Rd, L1/H((µ, ν),K)) with −∞ ≤ a < b ≤ ∞ and
−∞ ≤ µ < ν ≤ ∞.

This result can viewed as a generalization of Littlewood-Paley’s inequality, pre-
cisely say∫

Rd

∫ ∞
−∞

(
|∇Tt−sg(s, ·)|2Kds

)p/2
dtdx ≤ Cp,d

∫
Rd

∫ ∞
−∞
|g(t, x)|pKdtdx,

where g ∈ Lp((−∞,∞)×Rd,K), ∇ is the usual gradient operator, Tt is the Gaussian
heat semigroup. In order to prove the theorem above, we introduce some concepts
and establish some useful lemmas.

Recall that the maximal function of a real-valued function g with the domain
Rd is defined by

Mxg(x) := sup
r>0

1

|Br(x)|

∫
Br(x)

|g(y)|dy,
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where Br(x) = {y; |x− y| < r} with Br = Br(0), and |Br(x)| denotes the Lebesgue
measure of Br(x). Similarly, for a function g(t) : R → R, we define the maximal
function of g as follows

Mtg(t) := sup
r>0

1

2r

∫ r

−r
|g(t+ s)|ds.

For a function g(t, x) of two variables, we set

Mxg(t, x) := Mx(g(t, ·))(x), Mtg(t, x) := Mt(g(·, x))(t).

As in Krylov [19,21], we can introduce the filtration Qn = {Qn(i0, i1, . . . , id);
i0, i1, . . . , id ∈ Z}, n ∈ Z of partitions of Rd+1. We denote by Qn(t, x) the unique
Q ∈ Qn containing (t, x). For a measurable function g(t, x), define the sharp func-
tion

g#(t, x) := sup
n∈Z

1

|Qn(t, x)|

∫
Qn(t,x)

|g(s, y)− g|n(t, x)|dsdy,

where g|n(t, x) = 1
|Qn(t,x)|

∫
Qn(t,x)

g(s, y)dsdy. Then by the Fefferman-Stein theo-

rem, we have
‖g‖Lp ≤ C‖g#‖Lp

for any 0 < p <∞ and g ∈ Lp(Rd+1).
Let Q0 := [−2α, 0]× [−1, 1]d and

Gαf(t, x) =

[∫ t

−∞

(∫ ν

µ

|Ψt−sf(s, x, r)|1/HK dr

)2H
1

t− s
ds

]1/2

,

where f ∈ C∞0 ((a, b)× Rd, L1/H((µ, ν),K)).

Lemma 3.1. Assume that f(t, x, r) = 0 outside of [−10, 10] × B3d. Then for any
(t, x) ∈ Q0∫

Q0

|Gαf(s, y)|2dsdy < CMt

(∫ ν

µ

(Mx|f(t, x, r)|2K)1/(2H)dr

)2H

. (3.1)

Proof. Using Minkowski’s inequality, Fourier transform and the fact∫ ∞
0

|φ̂(ξt1/α)|2 dt
t
≤ C,

we have∫
Q0

|Gαf(s, y)|2dsdy

≤
∫ 0

−∞

∫
Rd

∫ s

−∞

(∫ ν

µ

|Ψs−s′f(s′, y, r)|1/HK dr

)2H
1

s− s′
ds′dyds

≤
∫ 0

−∞

[∫ ν

µ

(∫
Rd

∫ 0

s′
|Ψs−s′f(s′, y, r)|2K

1

s− s′
dsdy

)1/(2H)

dr

]2H

ds′

=

∫ 0

−∞

∫ ν

µ

(
(2π)d

∫
Rd

∫ −s′
0

|φ̂(ξs1/α)|2|f̂(s′, ξ, r)|2K
1

s
dsdξ

)1/(2H)

dr

2H

ds′
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≤C
∫ 0

−∞

[∫ ν

µ

(∫
Rd
|f(s, y, r)|2Kdy

)1/(2H)

dr

]2H

ds

≤C
∫ 0

−10

[∫ ν

µ

(
Mx|f(s, x, r)|2K

)1/(2H)
dr

]2H

ds

≤CMt

(∫ ν

µ

(
Mx|f(t, x, r)|2K

)1/(2H)
dr

)2H

.

This completes the proof.

Lemma 3.2. Assume that f(t, x, r) = 0 for t /∈ [−10, 10]. Then (3.1) holds for any
(t, x) ∈ Q0.

Proof. We take ζ ∈ C∞0 (Rd) such that ζ = 1 in B2d, ζ = 0 outside of B3d. SetA =
ζf and B = (1− ζ)f . Combining Lemma 3.1 and the fact that Gαf ≤ GαA+ GαB,
we just need to concentrate on GαB. Then one can assume that f(·, x, ·) = 0 for
x ∈ B2d in the following proof. Also notice that if (s, y) ∈ Q0 and |z| ≤ ρ with
ρ > 1, then

|x− y| ≤ 2d, Bρ(y) ⊂ B2d+ρ(x) ⊂ B(2d+1)ρ(x),

whereas if |z| ≤ 1, then |y− z| ≤ 2d and f(·, y− z, ·) = 0. Then by using (16.16) in
Krylov [19], we obtain, for 0 > s > s′ > −10 and (s, y) ∈ Q0

(∫ ν

µ

|Ψs−s′f(s′, y, r)|1/HK dr

)H
≤(s− s′)−(d+1)/α

(∫ ν

µ

(∫ ∞
1

|φ̄′α/2(ρ/(s− s′)1/α)|

×

(∫
|z|≤ρ

|f(s′, y − z, r)|Kdz

)
dρ

)1/H

dr

H

≤(s− s′)−(d+1)/α

(∫ ν

µ

(∫ ∞
1

|φ̄′α/2(ρ/(s− s′)1/α)|

×

(∫
B(2d+1)ρ(x)

|f(s′, z, r)|Kdz

)
dρ

)1/H

dr

H

≤C(s− s′)−(d+1)/α

∫ ∞
1

|φ̄′α/2(ρ/(s− s′)1/α)|ρddρ

×
(∫ ν

µ

(Mx|f(s′, x, r)|K)
1/H

dr

)H
,

where φ̄α/2(·) is defined as follows (see Lemma 2.2 of I. Kim and K. Kim [15])

φ̄α/2(ρ) =

 C
ρd+α/2

, ρ ≥ (10)−1/α,

Ce−(d+α/2)(101/αρ−1), ρ < (10)−1/α.
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Thus, an elementary calculation shows

|Gαf(s, y)|2 =

∫ s

−∞

(∫ ν

µ

|Ψs−s′f(s′, y, r)|1/HK dr

)2H
1

s− s′
ds′

≤ C
∫ 0

−10

(∫ ν

µ

(Mx|f(s′, x, r)|K)
1/H

dr

)2H

ds′

≤ C
∫ 0

−10

(∫ ν

µ

(
Mx|f(s′, x, r)|2K

)1/(2H)
dr

)2H

ds′

≤ CMt

(∫ ν

µ

(
Mx|f(t, x, r)|2K

)1/(2H)
dr

)2H

,

where the second last inequality above follows from Hölder’s inequality. This com-
pletes the proof.

Lemma 3.3. Assume that f(t, x, r) = 0 for t ≥ −8. Then for any (t, x) ∈ Q0∫
Q0

|Gαf(s, y)− Gαf(t, x)|2dsdy < CMt

(∫ ν

µ

(Mx|f(t, x, r)|2K)1/(2H)dr

)2H

.

Proof. The argument is similar to the proof of Lemma 4.4 of I. Kim and K.
Kim [15] and we omit it.

Lemma 3.4. Assume that f ∈ C∞0 (Rd+1, L1/H((µ, ν),K)). Then for any (t, x) ∈
Rd+1

(Gαf)#(t, x) < C

(
Mt

(∫ ν

µ

(Mx|f(t, x, r)|2K)1/(2H)dr

)2H
)1/2

.

Proof. By Hölder’s inequality, we have

(Gαf)#(t, x) ≤ sup
n∈Z

(
1

|Qn(t, x)|

∫
Qn(t,x)

|Gαf(s, y)− Gαf|n(t, x)|2dsdy

)1/2

.

Therefore it suffices to prove that

1

|Qn(t, x)|

∫
Qn(t,x)

|Gαf(s, y)− Gαf|n(t, x)|2dsdy

≤CMt

(∫ ν

µ

(Mx|f(t, x, r)|2K)1/(2H)dr

)2H

for each integer n. Based on Lemma 3.2, 3.3, the following argument is similar to
the proof of relation (5.2) given in I. Kim and K. Kim [15].

Proof of Theorem 3.1. It is enough to assume that a = −∞, b = ∞ and to
prove

∫
Rd

∫ ∞
−∞
|Gαf(t, x)|pdtdx ≤ C

∫ ∞
−∞

[∫ ν

µ

(∫
Rd
|f(t, x, r)|pKdx

)1/(pH)

dr

]pH
dt

for any p ∈ [2,∞).
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We first consider the case p = 2. As the computation in the proof of Lemma 3.1,
we obtain∫

Rd

∫ ∞
−∞
|Gαf(t, x)|2dtdx

≤
∫ ∞
−∞

∫
Rd

∫ t

−∞

(∫ ν

µ

|Ψt−sf(s, y, r)|1/HK dr

)2H
dsdydt

t− s

≤
∫ ∞
−∞

(∫ ν

µ

(
(2π)d

∫
Rd

∫ ∞
s

|φ̂(ξt1/α)|2|f̂(s, ξ, r)|2K
1

t
dtdξ

)1/(2H)

dr

)2H

ds

≤C
∫ ∞
−∞

(∫ ν

µ

(∫
Rd
|f(t, y, r)|2Kdy

)1/(2H)

dr

)2H

dt.

We now assume that p > 2. Due to the Fefferman-Stein theorem, Lemma 3.4
and Hardy-Littlewood maximal theorem, we get∫

Rd

∫ ∞
−∞
|Gαf(t, x)|pdtdx ≤ C

∫
Rd

∫ ∞
−∞
|(Gαf)#(t, x)|pdtdx

≤C
∫
Rd

∫ ∞
−∞

(
Mt

(∫ ν

µ

(Mx|f(t, x, r)|2K)1/(2H)dr

)2H
)p/2

dtdx

≤C
∫
Rd

∫ ∞
−∞

(∫ ν

µ

(Mx|f(t, x, r)|2K)1/(2H)dr

)pH
dtdx

≤C
∫ ∞
−∞

(∫ ν

µ

(∫
Rd

(Mx|f(t, x, r)|2K)p/2dx

)1/(pH)

dr

)pH
dt

≤C
∫ ∞
−∞

(∫ ν

µ

(∫
Rd
|f(t, x, r)|pKdx

)1/(pH)

dr

)pH
dt,

where the second last inequality above follows from Minkowski’s inequality for in-
tegrals, and the Littlewood-Paley inequality follows.

4. The main results

In this section, we mainly state the Lp-theory of fractional heat equation (1.2).

Definition 4.1. For a D-valued function u ∈ Hn+α
p , we write u ∈ Hn+α

p,H if u(0, ·) ∈
Lp(Ω,F0, H

n+α−α/p
p ) and

du = fdt+

∞∑
k=0

gkδβkt , t ∈ [0, T ]

in the weak sense for some f ∈ Hnp and g ∈ L̃1,p
H (H

n+α/2
p , `2). That is, for any

φ ∈ C∞0 ,

(u(t, ·), φ) = (u(0, ·), φ) +

∫ t

0

(f(s, ·), φ)ds+

∞∑
k=1

∫ t

0

(gk(s, ·), φ)δβkt (4.1)



On Lp-solution of fractional heat equation 593

holds for any t ∈ [0, T ] a.s. In this case, we write

Du := f, Sku := gk, Su = (S1u,S2u, . . .)

and define the norm

‖u‖Hn+α
p,H

:= ‖u‖Hn+α
p

+ ‖Du‖Hnp + ‖Su‖L̃1,p
H (H

n+α/2
p ,`2)

+

(
E‖u(0)‖p

H
n+α−α/p
p

)1/p

.

Theorem 4.1. The space Hn+α
p,H is a Banach space with the norm ‖ · ‖Hn+α

p,H
, and

for u ∈ Hn+α
p,H ,

E sup
t≤T
‖u(t, ·)‖pHnp ≤ Cα,p,d,T

(
‖Du‖Hnp + ‖Su‖L̃1,p

H (H
n+α/2
p ,`2)

+ E‖u(0)‖p
H
n+α−α/p
p

)
and

‖u‖Hnp ≤ Cα,p,d,T ‖u‖Hn+α
p,H

.

Proof. The proof is almost identical to the proof of Theorem 5.5 in Balan [1],
based on the method of proving Theorem 3.7 in Krylov [20], and we omit it.

Remark 4.1. We know that for any n,m ∈ R, the operator (I − ∆)m/2 maps
isometrically Hn

p onto Hn−m
p . Indeed,

‖(I −∆)m/2u‖Hn−mp
= ‖(I −∆)m/2(I −∆)(n−m)/2u‖Lp = ‖u‖Hnp .

On the other hand, Proposition 5.4 in Balan [1] shows that the operator (I−∆)m/2 :
L̃1,p
H (Hn

p , `2) → L̃1,p
H (Hn−m

p , `2) is an isometry. Replacing φ with (I − ∆)m/2φ

in (4.1), then one can easily obtain that the operator (I−∆)m/2 maps isometrically
Hnp,H onto Hn−mp,H .

The following results are also known (see, for example K. Kim and P. Kim [16]).

Theorem 4.2. (i) For any deterministic functions f = f(t, x) and u0 = u0(x)
satisfying ∫ T

0

‖f(t, ·)‖pHnp dt <∞, ‖u0‖Hn+α−α/p
p

<∞,

the equation

du(t, x) = −(−∆)α/2u(t, x)dt+ f(t, x)dt, u(0, x) = u0

has a unique solution u with
∫ T

0
‖u(t, ·)‖p

Hn+α
p

dt <∞ and∫ T

0

‖u(t, ·)‖p
Hn+α
p

dt < Cp,d,T

(∫ T

0

‖f(t, ·)‖pHnp dt+ ‖u0‖p
H
n+α−α/p
p

)
.

(ii) For any f ∈ Hnp and u0 ∈ Lp(Ω,F0, H
n+α−α/p
p ), the equation

du(t, x) = −(−∆)α/2u(t, x)dt+ f(t, x)dt, u(0, x) = u0

has a unique solution u ∈ Hn+α
p with

‖u‖Hn+α
p,H
≤ Cp,d,T

(
‖f‖Hnp +

(
E‖u0‖p

H
n+α−α/p
p

)1/p
)
.
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The next theorem states the main result of this paper.

Theorem 4.3. Let p ≥ 2 and n ∈ R. For any f ∈ Hnp , g ∈ L̃1,p
H (H

n+α/2
p , `2) and

u0 ∈ Lp(Ω,F0, H
n+α−α/p
p ), the equation (1.2) admits a unique solution in Hn+α

p,H ,
in the weak sense, and for this solution

‖u‖Hn+α
p,H
≤ C

(
‖f‖Hnp + ‖g‖L̃1,p

H (H
n+α/2
p ,`2)

+

(
E‖u0‖p

H
n+α−α/p
p

)1/p
)
, (4.2)

where C is a positive constant depending on p, d, T and H.

Proof. By Definition 4.1, the unique solution u ∈ Hn+α
p,H is understood in the weak

sense, that is, for any φ ∈ C∞0 ,

(u(t, ·), φ) =(u(0, ·), φ) +

∫ t

0

((u(s, ·),−(−∆)α/2φ) + (f(s, ·), φ))ds

+

∞∑
k=1

∫ t

0

(gk(s, ·), φ)δβkt

holds for any t ∈ [0, T ] a.s. Due to Remark 4.1, it suffices to prove that the theorem
holds for a particular n = n0. So we let n = −α/2 in the following proof and we
split the proof in two steps.

Step I. We prove the theorem with assumptions f = 0 and u0 = 0. Suppose
that gk = 0 for k > κ0, and

gk(t, ·) =

mk∑
i=0

F ki 1(tki−1,t
k
i ](t)g

k
i (·) t ∈ [0, T ], k ≤ κ0,

where κ0 is a fixed positive integer, F ki ∈ Sβk , 0 ≤ tk0 < tk1 < . . . < tkm ≤ T and

gki (·) ∈ C∞0 . Let v(t, x) :=
∑κ0

k=1

∫ t
0
gk(s, x)δβks and

u(t, x) := v(t, x)−
∫ t

0

(−∆)α/2Sαt−sv(s, x)ds = v(t, x)−
∫ t

0

Sαt−s(−∆)α/2v(s, x)ds.

Then, Fourier transform implies that

d(u− v) = (−(−∆)α/2(u− v)− (−∆)α/2v)dt = −(−∆)α/2udt

and

du = −(−∆)α/2udt+ dv = −(−∆)α/2udt+

κ0∑
k=1

gk(t, x)δβkt .

Using the stochastic Fubini theorem, we obtain

u(t, x) = v(t, x)−
κ0∑
k=1

∫ t

0

∫ s

0

(−∆)α/2Sαt−sg
k(r, x)δβkr ds

= v(t, x)−
κ0∑
k=1

∫ t

0

∫ t

r

(−∆)α/2Sαt−sg
k(r, x)dsδβkr

= v(t, x)−
κ0∑
k=1

∫ t

0

(gk(r, x)− Sαt−rgk(r, x))δβkr

=

κ0∑
k=1

∫ t

0

Sαt−sg
k(s, x)δβks .
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Therefore we can write

∂α/2x u(t, x) =

κ0∑
k=1

∫ t

0

∂α/2x Sαt−sg
k(s, ·)(x)δβks =

∞∑
k=1

∫ t

0

∂α/2x Sαt−sg
k(s, ·)(x)δβks .

Combining this with Theorem 3.6 in Balan [1], we have

E|∂α/2x u(t, x)|p

=E

∣∣∣∣∣
∞∑
k=1

∫ t

0

∂α/2x Sαt−sg
k(s, ·)(x)δβks

∣∣∣∣∣
p

≤CE

(∫ t

0

∞∑
k=1

|∂α/2x Sαt−sg
k(s, ·)(x)|2ds

)p/2

+ CE

∫ t

0

∫ T

0

( ∞∑
k=1

|Dβk

r (∂α/2x Sαt−sg
k(s, ·)(x))|2

)1/(2H)

dr

2H

ds


p/2

=CE

(∫ t

0

|∂α/2x Sαt−sg(s, ·)(x)|2`2ds
)p/2

+ CE

∫ t

0

(∫ T

0

|∂α/2x Sαt−s(Drg(s, ·))(x)|1/H`2
dr

)2H

ds

p/2

,

where we have used the fact that

Dβk

r (∂α/2x Sαt−sg
k(s, ·)(x)) = ∂α/2x Sαt−s(D

βk

r gk(s, ·))(x).

According to Theorem 3.1 and the inequality (2.3), we obtain

E

∫ T

0

‖∂α/2x u(t, ·)‖pLpdt

≤CE
∫
Rd

∫ T

0

(∫ t

0

|∂α/2x Sαt−sg(s, ·)(x)|2`2ds
)p/2

dtdx

+ C

∫
Rd

∫ T

0

∫ t

0

(∫ T

0

|∂α/2x Sαt−s(Drg(s, ·))(x)|1/H`2
dr

)2H

ds

p/2

dtdx

≤CE
∫
Rd

∫ T

0

|g(s, x)|p`2dsdx

+ CE

∫ T

0

(∫ T

0

(∫
Rd
|Drg(s, x)|p`2dx

)1/(pH)

dr

)pH
ds

=C‖g‖pH0
p(`2) + C‖Dg‖pH0

p,H(`2)
= C‖g‖L1,p

H (H0
p ,`2). (4.3)
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Similarly, we obtain

E

∫ T

0

‖u(t, ·)‖pLpdt

≤CE
∫
Rd

∫ T

0

(∫ t

0

|Sαt−sg(s, ·)(x)|2`2ds
)p/2

dtdx

+ CE

∫
Rd

∫ T

0

∫ t

0

(∫ T

0

|Sαt−s(Drg(s, ·))(x)|1/H`2
dr

)2H

ds

p/2

dtdx

≤CE
∫
Rd

∫ T

0

∫ t

0

|Sαt−sg(s, ·)(x)|p`2dsdtdx

+ C

∫
Rd

∫ T

0

∫ t

0

(∫ T

0

|Sαt−s(Drg(s, ·))(x)|1/H`2
dr

)pH
dsdtdx

≤CE
∫
Rd

∫ T

0

∫ t

0

|g(s, x)|p`2dsdtdx

+ CE

∫ T

0

∫ t

0

(∫ T

0

(∫
Rd
|Drg(s, x)|p`2dx

)1/(pH)

dr

)pH
dsdtdx

≤C‖g‖pH0
p(`2) + C‖Dg‖pH0

p,H(`2)

=C‖g‖L1,p
H (H0

p ,`2), (4.4)

where we have used Hölder’s inequality and Minkowski’s inequality, and the fact
that the operator Sαt is bounded for any t ∈ [0, T ]. It follows from the definition
and the well-known inequality

‖u‖Hnp ≤ C‖u‖H−εp + C‖∂n/2x u‖Lp

with ε ≥ 0 that

‖u‖p
Hα/2p,H

≤ C
(
‖u‖p

Hα/2p

+ ‖ − (−∆)α/2u‖p
H−α/2p

+ ‖g‖pL1,p
H (H0

p ,`2)

)
≤ C

(
‖u‖pH0

p
+ ‖∂α/2x u‖pH0

p
+ ‖ − (−∆)α/2u‖p

H−α/2p

+ ‖g‖pL1,p
H (H0

p ,`2)

)
,

which gives

‖u‖p
Hα/2p,H

≤ C
(
‖u‖pH0

p
+ ‖∂α/2x u‖pH0

p
+ ‖g‖pL1,p

H (H0
p ,`2)

)
≤ C‖g‖pL1,p

H (H0
p ,`2)

by (4.3), (4.4) and ‖ − (−∆)α/2u‖
H
−α/2
p

≤ C‖∂α/2x u‖pH0
p
. This leads to (4.2) and

u ∈ Hα/2p,H , and the uniqueness of the solution follows from Theorem 4.2.
By using standard approximation argument, we can drop the additional assump-

tion on g and the conclusions above still hold for any g ∈ L̃1,p
H (H0

p , `2), due to the

completeness of the spaces H
−α/2
p ,L1,p

H (H0
p , `2) and Hα/2p,H .
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Step II. We prove the theorem without assumptions on f and u0 in Step I.
Here we still assume n = −α/2. Owing to Theorem 4.2, it suffices to prove that
there exists a solution u and it satisfies (4.2). Meanwhile, Theorem 4.2 gives that
equation

dv(t, x) = (−(−∆)α/2v(t, x) + f(t, x))dt, v(0, x) = u0

has a solution v ∈ Hα/2p,H and

‖v‖Hα/2p,H

≤ C
(
‖f‖H−α/2p

+ (E‖u0‖p
H
α/2−α/p
p

)1/p

)
.

On the other hand, the assertion proved in Step I implies that the equation

dw(t, x) = −(−∆)α/2w(t, x)dt+

∞∑
k=1

gk(t, x)δβkt , w(0, x) = 0

has a solution w such that ‖w‖Hα/2p,H

≤ C‖g‖pL1,p
H (H0

p ,`2)
. Thus, u is the solution of

equation (1.2), provided we set u = v +w, and moreover the solution u admits the
following estimate:

‖u‖Hα/2p,H

≤ C
(
‖f‖H−α/2p

+ ‖g‖pL1,p
H (H0

p ,`2)
+ (E‖u0‖p

H
α/2−α/p
p

)1/p

)
.

This completes the proof.
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pl., 2012, 122, 3921–3952.

[17] K. Kim, On Lp-theory of stochastic partial differential equations of divergence
form in C1 domains, Probab Theory Related. Fields, 2004, 130, 473–492.

[18] K. Kim, An Lp-theory of stochastic PDEs in Lipschitz domains, Potential
Anal., 2008, 29, 303–326.

[19] N. V. Krylov, On the foundation of the Lp-theory of stochastic partial differ-
ential equations, Lect. Notes Pure Appl. Math., 2006, 245, 179–191.

[20] N. V. Krylov, An analytic approach to SPDEs, in: Stochastic partial differential
equations: six perspectives, Math. Surveys Monogr. Providence, RI., 1999, 64,
185–242,

[21] N. V. Krylov, A generalization of the Littlewood-Paley inequality and some
other results related to stochastic partial differential equations, Ulam Quart.,
1994, 2, 16–26.

[22] N.V. Krylov, On Lp-theory of stochastic partial differential equations in the
whole space, SIAM J. Math. Anal., 1996, 27, 313–340.

[23] B. Maslowski and D. Nualart, Evolution equations driven by a fractional Brow-
nian motion, J. Funct. Anal., 2003, 1, 277–305.

[24] R. Mikulevicius and B. Rozovskii, A note of Krylov’s Lp-theory for systems of
SPDEs, Electron. J. Probab., 2001, 6, 1–35.

[25] R. Mikulevicius and H. Pragarauskas, On Lp-estimates of some singular inte-
grals related to jump processes, SIAM J. Math. Anal., 2012, 44, 2305–2328.

[26] Y. S. Mishura, Stochastic Calculus for fractional Brownian motion and Related
Processes, Lect. Notes in Math., 2008, 1929.

[27] I. Nourdin, Selected Aspects of Fractional Brownian Motion, Springer Verlag
(Bocconi and Springer Series), 2012.

[28] D. Nualart, Malliavin Calculus and Related Topics, 2nd edn. Springer-Verlag,
Berlin, 2006.

[29] D. Nualart and Y. Ouknine, Regularization of quasilinear heat equations by a
fractional noise, Stoch. Dyn., 2004, 4, 201–221.

[30] E. Stein, Singular Integrals and Differentiability Properties of Functions,
Princeton University Press, Princeton, 1970.



On Lp-solution of fractional heat equation 599

[31] S. Tindel, C. Tudor and F. Viens, Stochastic evolution equations with fractional
brownian motion, Probab. Theory Related Fields, 2003, 127, 186–204.

[32] J. B. Walsh, An Introduction to Stochastic Partial Differential Equations, Lec-
ture Notes in Mathematics,Springer-Verlag, Berlin, 1986, 1180, 265–439.

[33] X. Zhang, Lp-theory of semi-linear stochastic partial differential equations on
general measure spaces and applications, J. Funct. Anal., 2006, 239, 44–75.


	Introduction
	Preliminaries
	Fractional Brownian motion
	Stochastic function spaces
	Fractional Laplace

	a version of Littlewood-Paley inequality
	The main results

