For EDITORS

For READERS

All Issues

Vol.15, 2025
Vol.14, 2024
Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 7, Number 2, 2017, Pages 392-410                                                                DOI:10.11948/2017025
Existence of generalized homoclinic solutions of a coupled KdV-type Boussinesq system under a small perturbation
Yixia Shi,Shengfu Deng
Keywords:Generalized homoclinic solution, coupled KdV-type Boussinesq system, reversibility.
Abstract:
      This paper considers the coupled KdV-type Boussinesq system with a small perturbation $u_{xx}=6cv-6u-6uv+\varepsilon f(\varepsilon,u,u_{x},v,v_{x}),$ $ v_{xx}=6cu-6v-3u^{2}+\varepsilon g(\varepsilon,u,u_{x},v,v_{x}),$ where $c=1+\mu$, $\mu>0$ and $\varepsilon$ are small parameters. The linear operator has a pair of real eigenvalues and a pair of purely imaginary eigenvalues. We first change this system into an equivalent system with dimension 4, and then show that its dominant system has a homoclinic solution and the whole system has a periodic solution if the perturbation functions $g$ and $h$ satisfy some conditions. By using the contraction mapping theorem, the perturbation theorem, and the reversibility, we theoretically prove that this homoclinic solution, when higher order terms are added, will persist and exponentially approach to the obtained periodic solution (called generalized homoclinic solution) for small $\varepsilon$ and $\mu>0$.
PDF      Download reader