For EDITORS

For READERS

All Issues

Vol.15, 2025
Vol.14, 2024
Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 7, Number 2, 2017, Pages 559-580                                                                DOI:10.11948/2017035
Inverse problems for the Sturm-Liouville equation with the discontinuous coefficient
Anar Adiloglu Nabiev,Mehmet Gurdal,Suna Saltan
Keywords:Sturm-Louville equation, boundary value problems, spectral analysis of ordinary differential operators, transformation operator, integral representation, asymptotic formulas for eigenvalues, expansion formula.
Abstract:
      In this study we derive the Gelfand-Levitan-Marchenko type main integral equation of the inverse problem for the boundary value problem $L$ and prove the uniquely solvability of the main integral equation. Further, we give the solution of the inverse problem by the spectral data and by two spectrum.
PDF      Download reader