For EDITORS

For READERS

All Issues

Vol.15, 2025
Vol.14, 2024
Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 7, Number 1, 2017, Pages 1-19                                                                DOI:10.11948/2017001
Analysis of stability and error estimates for three methods approximating a nonlinear reaction-diffusion equation
Costic\u a Moro\c sanu,Silviu Pav\u al,C\u at\u alin Trenchea
Keywords:Nonlinear PDE of parabolic type, finite difference methods, Newton method, fractional steps method, stability and convergence of numerical methods.
Abstract:
      We present the error analysis of three time-stepping schemes used in the discretization of a nonlinear reaction-diffusion equation with Neumann boundary conditions, relevant in phase transition. We prove $L^\infty$ stability by maximum principle arguments, and derive error estimates using energy methods for the implicit Euler, and two implicit-explicit approaches, a linearized scheme and a fractional step method. A numerical experiment validates the theoretical results, comparing the accuracy of the methods.
PDF      Download reader