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ANALYSIS OF STABILITY AND ERROR
ESTIMATES FOR THREE METHODS
APPROXIMATING A NONLINEAR
REACTION-DIFFUSION EQUATION
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Abstract We present the error analysis of three time-stepping schemes used
in the discretization of a nonlinear reaction-diffusion equation with Neumann
boundary conditions, relevant in phase transition. We prove L stability by
maximum principle arguments, and derive error estimates using energy meth-
ods for the implicit Euler, and two implicit-explicit approaches, a linearized
scheme and a fractional step method. A numerical experiment validates the
theoretical results, comparing the accuracy of the methods.
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1. Introduction

We consider the following nonlinear reaction-diffusion equation for the unknown
function v(¢, x)

p,vr — p,Av —p,(v—03) = f,, in [0,7] xQ,
p.2v =0, on [0,T] x 09, (1.1)
0(0,2) = vo(x), on 0,

where 2 is a bounded regular domain in R4, d < 3 with smooth boundary 0f2 and
T > 0 stands for the final time. The coeflicients p,,p,,p, are positive constants
2

and f, € LP((0,T) x Q) , p > 2. The initial condition is vy € W;_;(Q) regular,
verifying the compatibility condition p, %vo = 0.

The nonlinear parabolic equation (1.1) occurs in the phase-field transition sys-
tem [7], where the phase function v describes the transition between the solid and
liquid phases in the solidification process of a material occupying a region . (1.1)
it is a particular instance of the Allen-Cahn equation [1-3], which was introduced to
describe the motion of anti-phase boundaries in crystalline solids, and it has been
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widely applied to many [14] complex moving interface problems, e.g., the mixture
of two incompressible fluids, the nucleation of solids, vesicle membranes.

A great deal of work has be done on reaction-diffusion problems and Allen-Cahn
equations [19, 20, 35,40-42]. The Allen-Cahn equation exhibits an exponentially
fast initial transient regime for times of order O(e = +/p,/p,), see also [13, 16]
for a spectral estimate. For more general assumptions and with various types of
boundary conditions, equation (1.1) has been numerically investigated in e.g., [4,
7-11,18,21,22,24,26-29, 31, 34, 36]. It has been shown in [12,25,30] that under
appropriate conditions on vy, there exists a unique solution v € W12([0, T]; LP(Q)),
p > % to equation (1.1). Under an assumption on the w-m-accretivity of a more
general nonlinear operator, error estimates for several first-order approximations
are presented in [6,23]. The error analysis for the implicit backward Euler and
finite elements approximation is presented in [17], while a discontinuous-Galerkin
in time method is analyzed in [15]. Computations with several different higher-order
time-stepping schemes, such as BDF2-AB2 and Crank-Nicolson, are used for the
sharp interface limit in [43]. For finite element analysis and adapting meshes we
refer to [32,33,38,39], while for the existence, uniqueness and a maximum principle
in Hilbert Sobolev spaces we refer to [37].

The outline of the paper is as follows. In Section 2 we introduce the three semi-
discrete in time approximations and prove L stability by maximum principle. The
convergence of the methods is derived in Section 3 by energy estimates arguments,
proving a stability result for error equations, and consistency. The numerical ex-
periment in Section 4 confirms the theoretical rates of convergence. The concluding
remarks are formulated in Section 5.

2. Three methods and stability

Let the time step At be fixed, arbitrary, t, = nAt,Vn = 0,1,..., and assume
that the initial data vy and the forcing term f}' := f,(¢,) are given (superscripts
denote the time level of approximation). We consider the following three first-order
methods for semi-discretization in time:

e the first method we analyze is the implicit backward Euler scheme
= p Av™H —py (0" — (0" = (2.1)

e the second method we consider is an implicit-explicit (IMEX) scheme, which
treats the nonlinearity by partial lagging

—p A (0 m)2) = e (2.2)

e the third method we analyze is also an IMEX scheme, similar to the fractional
time step method considered in [4,21,26-28, 30, 34]

,UnJrl _ ¢n
R

" = o™ (14 22 Ar(v")?) .

n+l _ rn+1
v - f'u )

3

(2.3)
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We note that ¢,, is the value at t,,,1 of the exact solution of the ordinary differen-
tial equation p,u’ + p,u® = 0 on [t,,t,11], With the initial condition u(t,) = v"™.
Moreover, the fractional step method (2.3) can be equivalently written as

vn+1 — "
p1T 7p2Avn+1

2

1 I = fz:Hl'
(14222 At(0)2) 2 [(1 4 222 At(v™)2) * + 1]

—Ps |V - (,Un)S

2.1. Stability of the implicit and IMEX methods

In this section we establish the numerical stability of the approximations in (2.1) and
(2.2), by using a maximum principle. First we recall that (see, e.g., [5, Proposition
3.7.1]) if u € H(Q) then function u* := max{u, 0} belongs to H'(2) and moreover

ou 3
z) a.e. in {x € Q; u > 0},
0x; 0 a.e. in {z € Q; u <0}.

In the remainder we assume that the initial data is smooth, and satisfies the
following bound

vo € WHP(Q), wo(x) € [-1,1] for a.e. z € Q. (2.5)

In particular this implies that vg € WHP(Q) C L>°(Q) for all p > d. Moreover, in
this section we also assume that the forcing term f, is zero.

Theorem 2.1. Suppose that the initial data vy satisfies (2.5) and, in the case of
the IMEX method (2.2) the timestep is sufficiently small, i.e., At < %. Then for
3

alln > 0, the weak solutions v™ of (2.1) and (2.2) starting from the initial condition
vo satisfy

v"(z) € [-1,1] for a.e. x € Q. (2.6)

Proof. The proof is based on the maximum principle for elliptic equations in
Sobolev spaces, using homogeneous Neumann boundary conditions (see [5, Theorem
3.7.2]). We provide it here for the reader’s convenience. We consider first the upper
bound inequality. Let us proceed by induction on the index time level n. For time
level zero, the result follows immediately. Assume that (2.6) holds for the nth time
level and consider the (n + 1)st time level.

(i) The method (2.1) case. From the weak formulation of (2.1)

p n "
/(Klt —p3 +p3(0" T2 0" M pda
Q

+p2/Vv"+1 -Vodr = Z—lt /v"gpdm, Vo € HY(Q),
Q

Q
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we obtain after some manipulation

Z—lt /(v"+1 — D)dz + /pg((l}"“)z —1)v" M pda
Q Q

+p2/Vv"+1 Vodr = == Ar / 1)pdzx,

% /(v"+1 — 1D)pdx + /10311"4'1(11”+1 + 1) (0" = 1)pdx
Q

ntl_ dp = LL d
+p2/v ) - Vodx At (v" = 1)pdz.
Q Q

Now we take as test function ¢ = (v"T! — 1)* and use (2.4) to get

/| n+1l _ +‘2dm+/p3vn+l(,vn+l +1)|(Un+l _1)+|2dm

Q
e [ 9@ =) Pde = B [or -t - 1yt
Q
or equivalently
/| )T dx+/ s(("T = DT+ (0" = DT +2) (0T 1) T Pda
Q
n+l _ 1\+|2 n _ n+1l _ 1\+
+p2/|v e = B /(v 1) — 1)*da,

/| )T dx+/2p3|(u"+1 — )" dx

Q

+ p2 / V(v — 1)t 2de < % /(’U" — 1) (o™ —1)Tda.
Q

Q

Finally, using the induction assumption we have

(2 1 o, /| n 2dx+p2/|v 1) g < 0,

and therefore (v"T! — 1)* = 0 a.e. in Q, i.e., " (2) <1 ae. x € Q, completing
the induction argument for the (2.1) case.
(ii) The method (2.2) case. The variational formulation gives

Z—lt /(v"+1 —1pdz +/ 3((0")? = 1) pdz

Q

+p2/V " Vepdr = £ / 1) de,
Q Q
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% /(,Un+1 ~“eds + /p ((Un)Q _ 1)(1}"“ — Dpdr+ /pg((v")2 _ 1)<,0dx

o) )
(Vo — 1) Vpda = 2L dz,
+p29/ Al ! e
J IR el =)@ = Dedat [ pa(@")? - 1)pds
O Q
+po [ (V" —1) . Vodr = dz,
p Q/ 2 At / Dy
/ [Z—lt — pg(l - (v”)Q)] (U”Jrl —Dpdx
)
+ p2 /(Vv”ﬂ —1) - Vedr = / [%lt —p3(v"™ + 1)} (0™ = 1)pdz,
Q )

(B =) [ = Dpdo+ps [P0 - g s

Q Q

+ P2 Q/(Vv"Jrl —1)-Vedr = Q/ [E —p3(v"™ + 1)}( —1)pdxz,

which for ¢ = (v —1)T yields

~ /| ) et [P0 - ) do

Q
+ p2 / V("™ — 1)T)?de = / {E —p3(v™ + 1)}( — )" = 1)Tda.
Q Q
Under the time step restriction for this method, i.e., At < , using the induction

hypothesis we obtain as above that (vt — 1)* = 0 a.e. 1n Q, completing the
induction argument.

The lower bound inequality follows in a similar manner. O

Remark 2.1. We note that using a maximum principle argument we obtained
that the stability of the backward Euler semidiscretization-in-time scheme (2.1) is
independent of the size of the time step At. In [6], a more restrictive condition-
al stability was reported for a slightly different linearized method, for the sharp
interface problem, namely At < 2¢% = 20

3. Error analysis

In this section we present error estimates for the methods (2.1)—(2.3). We define
the pointwise truncation errors with respect to the time discretization

ey = v(t,) —v", Yn=0,1,...
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and the local truncation errors for methods (2.1)—(2.3), respectively

5?721 =D W — D, Av(tn-i-l)
—Ps (U(tn+1) - U3(tn+1)> = fo(tns1), (3.1)
gglrrtela: =D %;U(tn) - p2AU(tn+1)
— P (U(tn—i-l) - v(tn+1)v2(tn)) — foltng1), (3.2)
entl.—p U(tnt1) — v(ta) — p, Av(tni1)
0s . 1 At 2 n+1
3 2
—Ps V(tny1) — v°(tn) T I
(1+ 222 Atv(t,))” [(1 + 2B Ato2(t,))? + 1}
= foltnt1), (3.3)

VYn = 0,1,.... By subtracting (2.1)—(2.3) respectively from (3.1)—(3.3) we obtain
the following equations in errors

M —n. A n+1 n+1 + D"+1 _ n+1 34
Y P22y TP TPy =, (3.4)
where e" ! = g1 ™+l “and 7!, while the difference term due to the nonlin-
earity D" *! is
L e Gl Dir = V(tns1)0 (ta) — 0™+ (072,
Dn+1 _ 20° (tn)
os T T T
(1428 Atv?(t,)) 2[(1+22 Atv?(t,)) * + 1] (3.5)
2(7jn)3

(1+2p3 At(wn)?) 2 [(1+2p3 At(om) )%+1] '
We have the following result regarding consistency.

Lemma 3.1. Assuming that the weak solution of (1.1) also satisfies
v € WE2([0,T]; LP(Q)). Then the local truncation errors satisfy

tN
Atz Jet 2 ) < AP / 1 (P2 (3.6)
to

n+1 p
At E : ||€1’mel Lr(Q)
n=0

tn tn
<art |y / 19O ey + 2782 [ 1)y | (37)
to

At Z lens ™ 17 o

n=0

tN
<AtPor—1 / ‘
to

4 sl arer (2B 10 3.8
P @@ dr T (50 ) 101 (338)
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Proof. From the Taylor expansion we have

trnt1
v(ty, —v(ty th, — T
Vltnt1) = v(tn) H)At (tn) =" (tny1) + / v (1) AL dr,
tVL

which substituting into (3.1), using the original equation (1.1) evaluated at t,+1,
ie.,

P (tns1) = P A0(tgr) — Py (V(tng1) — v(tns1)?) = foltngr),

we obtain

tnit tn41
tn, — T
I oo = o, [ @Rl <p [ ©lar
tn Lr() tn

Applying Hélder’s inequality multiplying by At and adding for n =0,..., N —1 we
obtain (3.6).
Similarly, for the IMEX method’s local truncation error (3.2) we have

tng1 tnt1

th, —T
it =p [ O = ot (vlt) + oltas) [ o
t’!L t’!L

and using the maximum principle for the exact solution yields

n+1
I Lorey < o1 / ()l Loy + 203 / (o).

Moreover, using (a + b)™ < 2™~ (a™ + ™) and the Hélder inequality we get

tn41

et ey < 27807 [ (1) gy + 28200 (Ol

t’VL
then sum for n =0,..., N — 1 and multiply with At to obtain (3.7)

tN

Atz et ey < 280 [ (20 oy + 2820 (D)

to

Finally, the local truncation error (3.3) writes

tn41
ty —
et =p, / v (1) AtTdT
tn
3 3 2
B p3 (U (tn+1) v (tn) p3 2 % p3 2 % )
(14222 At2(t,)) * [(1+ 282 Atv?(t,)) > +1]

tn+1

o, [ O T = b (6 ta) — 0¥ (0)
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_ pSUB(tn) (1 . ; 2 ] )
(14222 Atw2(t,)) * [(1 + 222 Atv(L,)) * + 1]

tnt1
tn, — T
o, [ ) T = by (o) = (6)) (P ) + 0l )olt) + ()
tn
s 1+ 285 At (t,) + (1 + 222 Atv?(t,)) * — 2
py v (1

T+ 2&Atv2(tn))% (1t Q&Awg@n))% ]

/ Plngn) + 0l )0(tn) + 02 (0n)

28 Atv?(t,) + (1 + 22 Atv?(t,,))* — 1
! (1+2§—3Atv2( n)) [(1+2g—jAtv2( n))% +1]

N|=

b, [P —p, [ V) 6P tn) + ol + 0 (6)

P (1+ Q%Ath(tn))% +2
2At=0v°(t, T T >
P (1+ 222 Atv2(t,)) * [(1 + 222 Atv2(t,)) > + 1]

Using the maximum principle for the exact solution we have

Hsl,’illlLP(m

tn+1 tn+t1
3 2
<p, / [v" (7)|dT + 3p, / [v'(7)| dr +At§%|9\1/”,
tn Lr(Q) tn Lr(Q)

and therefore using Holder’s inequality we obtain

At Z leo 1200
N tn+1

_ 3.2 )
< At H / p, [V (T)] + 3p, [V (7 |dTH t7&|9|1/1’)
=0 ; Lr(Q) P

tnt1

N— p 3p2
21’—1H / " 3. [0/ (7)| d H w-1(Ar2 P3P0
Z [ p e snliar], o -2 (0500 )

tnt1

<X (a0 [

n=0 tn

Pl ()4 30 ([ (At——) )

tng1

— AtPOP— 12 / ‘

3
pulo" () + 3 O pS) )
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tN
~aew( ]
to

concluding the proof. O

To obtain convergence results, we will prove a stability result using energy esti-
mates, and begin by testing (3.4) with e?*!|ent![P—2

P 3 p2
"l | A (B ),
P @)+ 3p o DI, dr+ T(502)19)

n+1 _

e er
v v n+l| n+1lp—2 n+1 _n+1l| n+1|p—2
p1/ At =) |ev | dx_pz/Aev ) ‘ev | dx
Q Q

n, / en Pdz + p, / DRt P2y
Q Q

:/5n+1eg+1|eg+1\P—2dx, (3.9)
Q
for any p > 2.
For future reference, we recall here the following form of the discrete Gronwall

lemma. Assume wy, n,qn > 0,3 € [0,1) satisfy wp+¢n < an+8Y .1 Wk, V& >0,
where {e,} is non-decreasing. Then

Wy, +

qn apn — Bwo nf
< . 3.10
5 "1-p8 eXP(l_B) (3.10)
We will analyze each term in (3.9) separately. The first term, involving the
finite difference approximation of the time derivative, is evaluated using Young’s
inequality

1 1 1 1
ab < —a™ + =b", —+—=1, a,beRT. (3.11)
m n m n
Lemma 3.2.
1 n n n ny\, n n —
5(”61)+1||Z£ZJ(Q) - Hevnip(Q)) S /Q(eijl - ev)ev+1|ev+1|p 2 dx. (312)

Proof. Using Young’s inequality (3.11) with

p
m=—-:/ n=p,

— n+1\yp—1 b:n
a= (@t b= P

v

we have

v

e —enertiiertpan = [ (et - et e e s
—_———
Q

Q L P

p—1
p—1 1 1
> [ (et = Pt = jepr)de = [ (et - fenp)da.
2 p p pQ
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The diffusion term gives by integration by parts, using (2.4) and the homoge-
neous Neumann boundary conditions

( _ Aeg-ﬁ-l7 GZ'H ez+1|17—2)

_ (96:}+1 6n+1 6n+1|p72d0' + ( _ 1) |ven+1|2|en+1|1)72daj
- v v v p o v )
o0
— (-1 / IVen+12]en P2y, (3.13)
Q
Next we analyze the nonlinear terms D! defined in (3.5).

Lemma 3.3. Assume that hypotheses of Theorem 2.1 hold, and also there ezists a
mazximum principle result in the case of method (2.3). Then

/D?nj:l n+1‘en+l|p 2d£E

Q
1 3
~i / e P d + 7 / (V(tas1) + 0" )2l P do, (3.14)
Q
/Dn+1 n+1|en+1|p de
/|e"+1|pv - 7/| Py — /2p|6m1’ dz, (3.15)
Q

/Dn+1 n+1‘6n+1|p de

Q
p p—l n+1 1 n

— (34422 A¢) (7 entlp 4 f|ev|p) dz. (3.16)
p1 P p

Q

Proof. Using the algebraic identity 2+ zy +y? = i(x —y)?+ %(w +y)? it follows
that

[ttt = [ (utnan)® - P )er et P da
Q Q

:/( (tn+1)? + 0(tng)0" 1+ (0"F1)) ey TP dee

Q
1
= / (Z(U(thrl) — o™t 4 %(v(tnﬂ) + v”+1)2> len P da
Q
1 n+1|p+2 3 n+1\2| _n+1l|p
=7 [l P dr 4 o [ (0(tna) +0"T) e P da

Q

For the term D%’w corresponding to the linearized method we have

/Dn+1 n+1 equ,+1|p—2 dx

mmex ’U
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- / (0t r2)0? (1) =0 "2 ) ep et P2 d

Q

/ ((v(th) — 0" () + 0" (VP () — (v")2))eﬁ+1|eﬁ+1|p_2 dx

Q

= / (eﬁ"‘lv2 (tn) +v"em (v(tn) + v”)) ententh P2 gy

lem P2 (t,) do + / eptHen P2 el v (v(t,) 4+ 0™) da.
Q

ZJ\Z)

Now assuming the timestep At < , we obtain from the maximum principle for

the exact solution, (2.6), Theorem 2 1 and Young’s inequality

n+1 n+1 n+1|p—2
/ R A

/ lem P2 (t,) da + /€2+1‘€Z+1|p_2 e v (v(ty) +v") dz
Q

> / e P2(t,) da — 2 / et L jen| da

/|e"+1|pv — 7/| Py — /2p|6mpd:c.

In the case of method (2.3), assuming also that there is a maximum principle, after
some manipulations we obtain from (3.5)

n+1_n+1| n+1|p—2
[osert eyt s
Q

1 -1
—(3+4%At)/(f| o+ 2 et da
p p

Q

O

The local truncation error term gives, using the Young inequality (3.11) with
a= |5n+1|7b = |63+1|p71,m =p,n= ppjy

n+1l _n+1l| n+1lp—2 < 1 n+1 b —= 1 n+1)p 3.17

(" ey T ey TP < EHE ||LP(Q)+7||6'U ||LP(Q)' (3.17)

We now substitute in (3.9) the relations (3.12)—(3.17) to obtain

p
Do Jlewtie = ey as
Q

+ pa(p — 1)/|Veﬁ+1\2|62+1|p_2 dx + ps3 /D”+162+1|eﬁ+1\p_2 dx
Q
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n 1 n p—1 n
<p3||e Jr1” Lr(Q) + *”5 +1||Ij:p(9) + 7||€u+1”[[’,p(9)
1 n n
=l gy + (p3+7)|| AR (3.18)
Sum for n=0,...,N —1,
» N N
1 “ ||LP Q)+p2 Z/|V62|2|eﬁ|l’*2df€ +pgz/pne:j|emp*2dz
n:lﬂ n:lQ
P—1\ v
<l "Wy + (ps+ 7 7) leleﬁll’zm),

and multiplying by Atpl yields
1

||61])\,||Z[),P(Q)

N N
b, n|2| n|p—2 P n, n| n|p—2
p—1)=2At /Ve en|P™ dx + p=At /D ellel|P~* dx
)p1 n§=1 [Ver | ley] o n§:1 vley]

<Moo+ Athe”Hm (p3+—) Athenn (3.19)

In the implicit case we obtain from (3.14) the following stability result

p pp
ey Hme +pp—1) pzAtE /|Ve"| len|P2dx + £ paAtE e "||1£th
1 n=1
Q

p n n|p—
< ||eiv|\1£p(ﬂ)+p(p—l)p—2AtZ/|Vev|2\ev|p 2 4y
1 —
N 3
Ay (3 / e+ / (0(ta) + 0"l de )
1 n=1

< 1edloe) + AthezmHm (p3+i) Athe"n

Hence, provided

b,
At < Aty = —————
s im pp3+p_1>

using the Gronwall inequality (3.10), the estimate above yields

N
P At P12 7 ip—
\|eﬁ||ip(m+p<p—1>;—l_ 5 Y [Pl i
- Q

1

tim n=

pps n||p+2
+= lles |l
dp, 1- L Zl L)

< (1- At m) HeOH L () ‘|’ At Zn 1 ”5 HLP(Q) ( NAt ) (3.20)
exp (—— ). (3.
= 1— P\ At — At

Atim
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In the IMEX case we obtain from (3.15) and (3.19)
p al b al
X oy +plp = D380 S [ Ve Plepp = do e a3 [ espeon) do
n=1g n=1g

N
D 1 p—1\p
(U ANy + 5D D el ey + (225 + T) At Z ez 12 c-
1 1 n=1 n=1

Assume now that the timestep of the IMEX method satisfies

b,

At < At P S —
= imex 2pp3 +p_ 1;

then again by Gronwall inequality (3.10) we obtain

e Wy + (o~ D22 S Z/|Ve”| P2 da
1 timez n=1
D.
e / xR
pl timex n=1
< (1 - Atqmw %At)HeO” p(Q) + L Atzn 1 HszmezHLp(Q ( NAt )
ex
o 1 - Atl'ntle:l: Atlm@w At

In the fractional step case we obtain from (3.16) and (3.19)

e oy + 0 =12 AtZ/\Ve 2]en P2 d

nlQ
<(1+ (3+4p~"At)At)||eOII @t AtZHsosHm
(4p3 (1 + b3 At) ) Atz Hen”Lp(Q

Therefore, assuming that the timestep is small enough

At < Aty := ;;#(\/(4p3p+p —1)2 4 16pp? — 4p,p —p + 1)7
3

we obtain from Groénwall’s inequality (3.10) the following stability estimate

e Wiy + (o — D22 Z/We 2len=2 da

n= 19
_ (- s+ (3+4p3At)At)||eOH vyt o LAY et
- 1- Atm

X exp (%)
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We remark that in the sharp interface case, the time restriction for the conver-
Py — e?
ppy+p—1 — pte(p-1)’

with the value found in [23] in the case p = 1.

which is consistent

gence of the implicit methods is At;,, =

Now we collect the stability estimates for the error equations we proven so far
in the following result.

Lemma 3.4. Assuming the time-step At for methods (2.1), (2.2) and (2.3) satisfy
respectively

o p . — P
At S Atlm - Pps-Flp—l’ At S Atzmez - 2pp3—|1-p—17 (321)
At < Atos = 5 (\/(42031? +p—1)*+16pp; —4p,p—p + 1),

then the errors satisfy the following estimates

/|Ve”| lerP=2 da

D
leN 117, 0+ plp — 122

Py l- Atm n=1g
B S S
1 Atim n=1
<o (g gr) (18 ey + 5 1 Aiin;”glm””(“) (322)
||e£v||’£p(ﬂ)+p(pl)zj%n 1/Ve 2|en P2 da
erf Z/|ev|pv dx
! timeas n=1¢,
< exp (%) ((1 + pjl—itﬁ‘tl) HegHip(Q)
= ZHEWM LP(Q) (3.23)
pi1 Atzmm n=1
led 175 0y +2(p — pT AAJ ;/|V62|2|eﬁ|p_2 da
< exp (%) ((+ %(3 +ABAY) - A%;)egngp(m
A LS et (3.21)

tos n=1

Finally we can prove that methods (2.1)—(2.3) are first order accurate in time.

Theorem 3.1. Assume the time steps At satisfy (3.21) and the exact solution
to (1.1) is also WH2([0,T); LP(Q)) regular. Then methods (2.1)—(2.3) satisfy the
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following error estimates

162 I ey + pl0 — D22 - A%t Z / Ve 2enp2 da
pbp, n (| p+2
"‘1* AL ZHe ||I;:+2
Py Atim n=1
tN
NAt N
< exp (m) <||68H Lr(Q) +ﬁ/” "(r )”Lp(g ) (3.25)
m A
im fo
||emp(m+p<p—1>pl Z / Ven 2len P2 da
77n6‘1"ﬂ Q

—I—p; Z/|e Po?(t

! Atmner n=1 Q

NA . A -
< exp (m) ( + EW) ||6UHLZD(Q)
1 Atp2p !

p 1= Atzmw

tn
pP/n d ||LpQ)dr+2pp§/||v’<f>||’zp(mdf) . (3.20)
to

e 2, oy + o~ DR — 25~ / Verlen P2 do
pl Atos n= 1
NAt At
- p3 0P
S exp(Atos *At) (1+p1 (3+4 At) ﬁ>HevHLp(Q)
1 Atp2 p—1 33
/lew )+ 30,00 (D) 0y + TG 22)7102) | (3:27)
p1- AL 2
Proof. Using Lemmata 3.1 and 3.4 we obtain (3.25)—(3.27). O

4. Numerical examples

We will compare the three numerical solutions obtained by (2.1), (2.2) and (2.3)
with the following exact solution to (1.1)

ve(t, x) := exp(—2w?t) cos (w%)7 te[0,7], =z€]0,b],
with the forcing term
folt,x) = e™2% cog (w%) [ —2wp, —p, (%)2 — D, (1 — exp(—4w?t) cos? (ﬂ'%))] .

In numerical tests we will consider a particular case of the nonlinear reaction-
diffusion equation (1.1), namely, the Allen-Cahn equation (see [1]), which means
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p, =ax§ p, =& and p, = 2% So, taking T'=1, w =05, b =1, o = 1.0e + 2,
&=.5 M =30, At = 0.1, N = T/At, the errors ||v. — U§V||OO produced by three
methods (the Newton method, the linearized method and the fractional time step

method) are shown in Figure 1. The approximate solution vév, 7 =12, .., M was
computed iteratively for At = At/k, k=1,2,...,5.

Convergence rate for Newton, linearized and fractional steps method

L”0,T,LA(Q)) errors

. . . . .
10° 10" 107 10° 10"
timesteps At

Figure 1. Errors |[ve — Uf]Hw of the Newton, the linearized and fractional steps method.

5. Conclusions

The Allen-Cahn equation is a semilinear parabolic partial differential equation which
serves as a mathematical model for phase separation processes. The challenge in
the numerical analysis is due to the presence of a small parameter, the thickness of
the interface separating different phases.

We derived discrete maximum principles for the implicit method under no re-
striction on the time step, while for the linearized method the proof holds under a
restriction comparable to the one needed in the error analysis. Our error estimates
for all three methods depend linearly on the small parameter.
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