For EDITORS

For READERS

All Issues

Vol.15, 2025
Vol.14, 2024
Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 6, Number 4, 2016, Pages 1135-1151                                                                DOI:10.11948/2016075
Analysis and design of anti-controlled higher-dimensional hyperchaotic systems via Lyapunov-exponent generating algorithms
Jianbin He,Simin Yu,Jianping Cai
Keywords:Lyapunov exponent, QR-factorization, eigenvalue of Jacobi matrix, chaos anti-control.
Abstract:
      Based on Lyapunov-exponent generation and the Gram-Schimdt orthogonalization, analysis and design of some anti-controlled higher-dimensional hyperchaotic systems are investigated in this paper. First, some theoretical results for Lyapunov-exponent generating algorithms are proposed. Then, the relationship between the number of Lyapunov exponents and the number of positive real parts of the eigenvalues of the Jacobi matrix is qualitatively described and analyzed. By configuring as many as possible positive real parts of the Jacobian eigenvalues, a simple anti-controller of the form $b\sin (\sigma x)$ for higher-dimensional linear systems is designed, so that the controlled systems can be hyperchaotic with multiple positive Lyapunov exponents. Utilizing the above property, one can resolve the positive Lyapunov exponents allocation problem by purposefully designing the number of positive real parts of the corresponding eigenvalues. Two examples of such anti-controlled higher-dimensional hyperchaotic systems are given for demonstration.
PDF      Download reader