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Abstract Based on Lyapunov-exponent generation and the Gram-Schimdt
orthogonalization, analysis and design of some anti-controlled higher-dimensional
hyperchaotic systems are investigated in this paper. First, some theoretical
results for Lyapunov-exponent generating algorithms are proposed. Then, the
relationship between the number of Lyapunov exponents and the number of
positive real parts of the eigenvalues of the Jacobi matrix is qualitatively de-
scribed and analyzed. By configuring as many as possible positive real parts
of the Jacobian eigenvalues, a simple anti-controller of the form b sin(σx) for
higher-dimensional linear systems is designed, so that the controlled system-
s can be hyperchaotic with multiple positive Lyapunov exponents. Utilizing
the above property, one can resolve the positive Lyapunov exponents alloca-
tion problem by purposefully designing the number of positive real parts of
the corresponding eigenvalues. Two examples of such anti-controlled higher-
dimensional hyperchaotic systems are given for demonstration.
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1. Introduction

Since the pioneering work of Lorenz who found the first chaotic system, chaos
theory has been widely studied as an important branch of modern physics and
mathematics. In troublesome cases, chaos (messy, irregular or disordered) should be
reduced as much as possible. On the other hand, chaotic systems can become useful
under certain circumstances, for example, it has sensitive dependence on initial
conditions, the orbits are ergodic and pseudo-random, etc. So, chaos is thought
to be important in biological systems, secure communication and encryption, etc.
[4, 7, 12, 24]. And there is some growing interest in taking advantage of the very
nature of chaos, especially in image encryption and video encryption [8, 10, 14].
These motivate the current research on the task of generating chaos at will, or
purposefully enhancing existing chaos, referred to anti-controlling chaos [22]. In
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the past half a century, many researchers were attracted by the special properties
of chaos, and many research works on it have been carried out and widely applied
[6, 13, 17]. For making an arbitrarily given, deterministic, discrete-time dynamical
system to become chaotic, Chen et al. investigated a simple control method that
combines a linear state-feedback with a nonlinear mod-operation [2]. Meanwhile,
many 3D autonomous chaotic systems are found [5, 11, 15, 21]. Furthermore, these
new hyperchaotic systems have been widely investigated [3, 9, 16,25,27].

Numerous efforts have been devoted to constructing various hyperchaotic sys-
tems with multiple positive Lyapunov exponents, because Lyapunov exponent is a
good index to guide whether there will be chaotic behavior or not. For continuous-
time dynamical systems, most reports in the literature take a trial-and-error ap-
proach to anti-controlling chaos, through parameter tuning, numerical simulation
and Lyapunov exponent calculation [26]. Most of the experiments demonstrate
that without a guiding theory it is quite difficult to construct higher-dimensional
hyperchaotic systems relying only on special skills and experiences.

Recently, reference [18] introduces a new and unified approach for designing
desirable dissipative hyperchaotic systems. A new approach for purposefully con-
structing desirable dissipative hyperchaotic systems is proposed. In theory, if the
dimension of the system is sufficiently high, then the system can generate any de-
sired number of positive Lyapunov exponents. Furthermore, a new methodology
for designing a dissipative hyperchaotic system with a desired number of positive
Lyapunov exponents is proposed, and a general design principle and the correspond-
ing implementation steps are then developed, in reference [19]. To the best of our
knowledge, it is desirable that the method in references [18, 19] can configure the
number of positive Lyapunov exponents, but it is not clear why the anti-controlled
hyperchaotic system could configure multiple positive Lyapunov exponents, i.e., the
relationship between the anti-controlled hyperchaotic system with an anti-controller
bsin(σx) and the number of positive Lyapunov exponents is still unclear. So, based
on the definition and methods of Lyapunov-exponent calculation, in this paper we
aim to further understand the question about the desired number of positive Lya-
punov exponents in an anti-controlled hyperchaotic system.

The present paper explains the underlying mechanism of anti-control methods
to configure multiple positive Lyapunov exponents from the perspective of physics.
In order to better understand the Lyapunov exponents, an algorithm for generating
positive Lyapunov exponents based on QR-factorization is introduced. Then, the
qualitative relationship between Lyapunov exponents and eigenvalues is revealed
and analyzed. The number of positive real parts of the system Jacobian eigenval-
ues and the number of positive Lyapunov exponents are closely related, showing
that the more positive the real parts of the system Jacobian eigenvalues, the more
positive the Lyapunov exponents. Therefore, one may configure positive Lyapunov
exponents in the controlled system by configuring positive real parts of the system
Jacobian eigenvalues at the equilibrium point of interest. Finally, two anti-control
examples show the feasibility and validity of the proposed method, with discussions
on the new controlled systems having different control positions.

The rest of the paper is organized as follows. In Section 2, some related def-
initions and algorithms based on the QR-factorization of dynamical systems are
introduced. The relationship between the eigenvalues and the Lyapunov exponents
is analyzed in Section 3. Two examples of higher-dimensional anti-control systems
are provided and some discussions of the controlled systems are given in Section 4.
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Conclusions are drawn in Section 5.

2. Some relative definitions and algorithms

Definition 2.1 ( [1, 20, 23]). Given a continuous dynamical system ẋ = F (x),x ∈
Rn, let a point x(t0) ∈ x(t) at the time of t0, and construct a n-dimentional or-
thogonal ball with a center x(t0) and ‖δx(x0, 0)‖ is the radius of the sphere, then
the orthogonal ball will be non-orthogonal ellipsoid as the evolution of dynamical
system at the time of t. If the i-th radius of the ellipsoid is ‖δxi(x0, t)‖, then the
i-th Lyapunov exponent of dynamical system is

λi = lim
t→∞

1

t
ln
‖δxi(x0, t)‖
‖δx(x0, 0)‖

. (2.1)

In general, for a linear system ẋ = Ax(|A| 6= 0), the matrix A can be transformed
into QR by the QR-factorization, where Q is an orthogonal matrix, and R is an
upper triangular matrix. In order to know more about the QR-factorization, the
simple understanding of QR-factorization is introduced in definition 2.2.

Definition 2.2. If dynamical system ẋ = Ax, x ∈ Rn, satisfying A = QR, where
Q = [q1, q2, · · · , qn] is an orthogonal matrix, and R is an upper triangular matrix,
then the vectors qi(i = 1, 2, · · · , n) of matrix Q can be regarded as the mutually
orthogonal directions of the orbits expansion or contraction, and the main diagonal
elements ‖di‖2(i = 1, 2, · · · , n) denote the corresponding degree of expansion or
contraction in the directions qi(i = 1, 2, · · · , n), respectively.

More explanations and illustrations of definition 2.2 are given as follows.

Given a matrix A = [a1, a2, · · · , an], where



a1 = [a11, a21, · · · , an1]T ,

a2 = [a12, a22, · · · , an2]T ,

· · · ,

an = [a1n, a2n, · · · , ann]T .

(2.2)

Based on the Gram-Schmidt orthogonal method, if let



d1 = a1,

d2 = a2 − k21d1,

d3 = a3 − k31d1 − k32d2,

· · · ,

dn = an − kn1d1 − kn2d2 − · · · − kn,n−1dn−1,

(2.3)
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where di = [d1i, d2i, · · · , dni]T , i = 1, 2, · · · , n, then we have

a1 = d1,

a2 = d2 + k21d1,

a3 = d2 + k31d1 + k32d2,

· · · ,

an = dn + kn1d1 + kn2d2 + · · ·+ kn,n−1dn−1,

(2.4)

where kij = (ai, dj)/(dj , dj), j < i, (di, dj) = 0, i 6= j.
So, we obtain

A = [a1, a2, a3, · · · , an] = [d1, d2, d3, · · · , dn]·



1 k21 k31 · · · kn−1,1 kn1

1 k32 · · · kn−1,2 kn2

1 · · · kn−1,3 kn3

. . .
...

...

1 kn,n−1

1


. (2.5)

Let qi = di/||di||2, then di = ||di||2qi, where qi = [q1i, q2i, · · · , qni]T , di =
[d1i, d2i, · · · , dni]T , i = 1, 2, · · · , n. Substituting di into equation (2.4), we obtain

A = [a1, a2, a3, · · · , an] = QR, (2.6)

where the Q and R are generally given by

Q = [q1, q2, q3, · · · , qn]

R =



||d1||2 ||d1||2k21 ||d1||2k31 · · · ||d1||2kn−1,1 ||d1||2kn1

||d2||2 ||d2||2k32 · · · ||d2||2kn−1,2 ||d2||2kn2

||d3||2 · · · ||d3||2kn−1,3 ||d3||2kn3

. . .
...

...

||dn−1||2 ||dn−1||2kn,n−1

||dn||2


,

(2.7)

where the mathematical expression of ||di||2 is given by

‖d1‖2 =
√

a1a1T =
√

a112 + a212 + · · ·+ an1
2,

‖d2‖2 =

√
(a2 − k21d1)(a2 − k21d1)T ,

· · · ,

‖dn‖2
=

√
(an − kn1d1 − kn2d2 − · · · − kn,n−1dn−1)(an − kn1d1 − kn2d2 − · · · − kn,n−1dn−1)T .

(2.8)
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Based on the above analyses, if a dynamical system ẋ = Ax,A is decomposed
by the QR-factorization, then the mutually orthogonal vectors qi(i = 1, 2, · · · , n) of
matrix Q can be regarded as the directions of the orbits expansion or contraction,
and the main diagonal elements ri = ‖di‖2(i = 1, 2, · · · , n) denote the corresponding
degree of expansion or contraction, respectively.

Consider a continuous-time and asymptotically stable linear system ẋ = Ax, x ∈
Rn, where A is a non-singular matrix. A nonlinear feedback controller f(σx, b),
which is uniformly bounded, is designed to control linear system ẋ = Ax. So, the
controlled system becomes

ẋ = Ax+ f(σx, b). (2.9)

Lemma 2.1 (Lemma 1, [26]). If the real parts of all eigenvalues of matrix A are
negative and

sup ‖f(σx, b)‖ 6 ‖b‖ < M <∞.
Then the orbits of the controlled system (2.9) are globally bounded, where ‖•‖ is the
Euclidean norm.

By the definition 2.1, if the orbit of a n-dimensional dynamical system ẋ =
F (x) begin to evolve at the time of t0, then the corresponding slope in mutually
orthogonal directions of expansion or contraction is

dQ(t)

dt
= J(x(t))Q(t). (2.10)

Let the evolution time is ∆t = tL − t0, and decompose it into n small enough
intervals tl−1 − tl, l =, 2, · · · , L, which satisfying [t0, tL] = [t0, t1]∪ [t1, t2]∪ [t2, t3]∪
· · · ∪ [tl−1, tl]∪ · · · ∪ [tL−1, tL], and the Jacobi matrices are J(x)|x=x(l−1)

∆
= J(x(l−

1))(l = 0, 1, · · · , L − 1), respectively. So, according to equation (2.10), we obtain
the slope in mutually orthogonal directions at the point of x(l − 1)

dQ(t)

dt
= J(x(l − 1))Q(t). (2.11)

Then integrate equation (2.11), i.e.
∫ tl
tl−1

dQ(t) =
∫ tl
tl−1

J(x(l − 1))Q(t)dt, and

obtain

Q(tl) = Q(tl−1)+

∫ tl

tl−1

J(x(l − 1))Q(tl−1)dt = Q(tl−1)+(tl−tl−1)J(x(l−1))Q(tl−1),

(2.12)
where l = 1, 2, · · · , L.

According to equation (2.12), if Q(tl−1) is a mutually orthogonal ball at the
time of tl−1, then the ball will change into a non-orthogonal ellipsoid Q(tl) at the
time of tl due to the orbits evolution of expansion or contraction in the dynamical
systems. So, we need to make an QR orthogonal decomposition for the new ellipsoid
Q(tl) when calculating the Lyapunov exponents. By this method, the algorithm for
generating Lyapunov exponents is given as follows:

Let n-dimensional orthogonal ball Q+
0 =


1

. . .

1


n×n

, the other orthogonal

unit balls are denoted by Q+
i (i = 1, 2, · · · ), and the non-orthogonal ellipsoids are

denoted by Qi(i = 1, 2, · · · ).
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Algorithm 1 Consider a n-dimensional chaotic system ẋ = F (x), x = (x1, x2,
· · · , xn) ∈ Rn, whose corresponding Jacobi matrix is J . Then we obtain the Lya-
punov exponent by following steps.

Step 1 Set the step size ∆T which is small enough, and ultilize the Fourth
order Runge-Kutta method to compute the numerical solution of the differential
equations as follows

x1(k + 1) = x1(k) + ∆T (K11 + 2K12 + 2K13 +K14)/6,

x2(k + 1) = x2(k) + ∆T (K21 + 2K22 + 2K23 +K24)/6,

· · · ,

xn(k + 1) = xn(k) + ∆T (Kn1 + 2Kn2 + 2Kn3 +Kn4)/6,

(2.13)

where
Ki1 = fi(t(k), x1(k), x2(k), · · · , xn(k)),

Ki2 = fi(t(k) + 0.5∆T, x1(k) + 0.5∆TK11, x2(k) + 0.5∆TK21, · · · , xn(k) + 0.5∆TKn1),

Ki3 = fi(t(k) + 0.5∆T, x1(k) + 0.5∆TK12, x2(k) + 0.5∆TK22, · · · , xn(k) + 0.5∆TKn2),

Ki4 = fi(t(k) + ∆T, x1(k) + ∆TK13, x2(k) + ∆TK23, · · · , xn(k) + ∆TKn3),

(2.14)
(i = 1, 2, · · · , n).

Step 2 The variable states of the chaotic system ẋ = F (x) reach the orbits
of chaotic attractor after a period of iteration. Then we solve the chaotic system
equations from t0 to tL, and the time is ∆t, which consists of L small enough
intervals and the length of intervals are equal to each other, i.e. [t0, tL] = [t0, t1] ∪ [t1, t2] ∪ [t2, t3] ∪ · · · ∪ [tl−1, tl] ∪ · · · ∪ [tL−1, tL],

t1 − t0 = t2 − t1 = · · · = tL − tL−1 = ∆T.
(2.15)

Suppose the initial value of variables is x(0) = (x1(0), x2(0), · · · , xn(0)) at the
time of t0. Then, x(1) is the numerical solution of the state equation at the time
of t1, x(2) is the numerical solution of the state equation at the time of t2, · · · ,
x(L − 1) is the numerical solution of the state equation at the time of tL−1, and
x(L) is the numerical solution of the state equation at the time of tL.

Step 3 First, by the initial value x(0) at the time of t0, we calculate the inte-
gration of the following equation in the interval [t0, t1], i.e.,

Q1 = Q+
0 +

∫ t1

t0

J(x)|x=x(0) ·Q+
0 dt, (2.16)

whereQ+
0 is the initial orthogonal ball. Then decomposeQ1 by the QR-factorization,

we get Q+
1 by Q1 = Q+

1 R1.
Second, we use the new orthogonal matrix Q+

1 and the solution x(1) to get Q2

by following integral equation in the interval [t1, t2], i.e.,

Q2 = Q+
1 +

∫ t2

t1

J(x)|x=x(1) ·Q+
1 dt, (2.17)

then we obtain Q+
2 by QR-factorization of Q2, i.e. Q2 = Q+

2 R2.
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Similarly, we get the new orthogonal matrix Q+
i−1 by the QR-factorization of

Ql−1 and combine with the solution x(l − 1) of state equations of n-dimensional
chaotic system ẋ = F (x) at the time of tl−1, then calculate the integral equations
in the interval [tl−1, tl], i.e.,

Ql = Q+
l−1 +

∫ tl

tl−1

J(x)|x=x(l−1) ·Q+
l−1dt. (2.18)

Suppose the i-th row and j-th column element of the Jacobi matrix J(x)|x=x(l−1)·
Q+
l−1 is denoted as (J(x)|x=x(l−1) · Q+

l−1)(i, j), i, j = 1, 2, · · · , n, by the formula
(2.18), then we have

Ql =


q
(l−1)
11 + (J(x)|x=x(l−1) ·Q+

l−1)(1, 1) ·∆T · · · q
(l−1)
1n + (J(x)|x=x(l−1) ·Q+

l−1)(1, n) ·∆T

q
(l−1)
21 + (J(x)|x=x(l−1) ·Q+

l−1)(2, 1) ·∆T · · · q
(l−1)
2n + (J(x)|x=x(l−1) ·Q+

l−1)(2, n) ·∆T

.

..
. . .

.

..

q
(l−1)
n1 + (J(x)|x=x(l−1) ·Q+

l−1)(n, 1) ·∆T · · · q(l−1)
nn + (J(x)|x=x(l−1) ·Q+

l−1)(n, n) ·∆T

 ,
(2.19)

where ∆T = (tl − tl−1).
Hence, we getQ+

l andRl by the QR-factorization ofQl = Q+
l Rl, (l = 1, 2, · · · , L).

Step 4 According to steps 1-3, we obtain the upper triangular matrixR1, R2, · · · ,
RL, and compute all the diagonal elements r

(l)
1 , r

(l)
2 , · · · , r(l)

n of the corresponding
triangular matrix, i.e.

R1 =


r

(1)
1 · · · ∗

. . .
...

r
(1)
n

 , R2 =


r

(2)
1 · · · ∗

. . .
...

r
(2)
n

 , · · · , RL =


r

(L)
1 · · · ∗

. . .
...

r
(L)
n

 , (2.20)

where l = 1, 2, · · · , L.
Step 5 Finally, the results of calculating Lyapunov exponents can be given by

LE1 = lim
L→∞

1

tL − t0
·
L∑
l=1

ln r
(l)
1 ,

LE2 = lim
L→∞

1

tL − t0
·
L∑
l=1

ln r
(l)
2 ,

· · · ,

LEn = lim
L→∞

1

tL − t0
·
L∑
l=1

ln r
(l)
n .

(2.21)

In the case of n = 3, the method of calculating Lyapunov exponents in the
algorithm 1 is shown in Figure 1. For the n-dimensional case, the method also run
feasibly, and we just need to replace the three-dimensional sphere and ellipsoid as
shown in Figure 1 with the n-dimensional sphere and ellipsoid.

The main feature of the algorithm 1 is necessary to carry out an orthogonaliza-
tion for Qi after each iteration. In order to further improve the computing speed, we
may use the algorithm 2 which makes an orthogonalization for Qi after multi-steps
iteration. The details of algorithm 2 is given as follows.
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Figure 1. The illustration of the Lyapunov exponents calculation method of algorithm 1

Step 1 Given the initial orthogonal ball Q+
0 , based on the equation

dQ(t)

dt
=

J(x(t))Q(t), then we have

Qm = Q+
0 +

∫ tm
t0

JQdt

= Q+
0 +

∫ t1
t0
J0Q

+
0 dt+

∫ t2
t1
J1Q1dt+ · · ·+

∫ tm
tm−1

Jm−1Qm−1dt

= Q+
0 + J0Q

+
0 · (t1 − t0) + J1Q1 · (t2 − t1) + · · ·+ Jm−1Qm−1 · (tm − tm−1),

(2.22)
where m is an appropriate positive integer, and the mathematical expression of Qi
is described as

Q1=Q+
0 +

∫ t1
t0
J0Q

+
0 dt = Q+

0 + J0Q
+
0 (t1 − t0),

Q2=Q1 +
∫ t2
t1
J1Q1dt = Q1 + J1Q1(t2 − t1),

Q3=Q2 +
∫ t3
t2
J2Q2dt = Q2 + J2Q2(t3 − t2),

· · · ,

Qi=Qi−1 +
∫ ti
ti−1

Ji−1Qi−1dt = Qi−1 + Ji−1Qi−1(ti − ti−1),

· · · ,

Qm−1=Qm−2 +
∫ tm−1

tm−2
Jm−2Qm−2dt = Qm−2 + Jm−2Qm−2(tm−1 − tm−2).

(2.23)
Step 2 We get a non-orthogonal ellipsoid Qm after m iterations, then make

orthogonalization for the matrix Qm, and obtain

Qm = Q+
mRm. (2.24)

After making m iterations for next interval [tm, t2m], we have

Q2m = Q+
m +

∫ t2m

tm

JQdt, (2.25)
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then QR-factorization is used to make orthogonalization for Q2m, and we obtain
Q2m = Q+

2mR2m.
Step 3 Similarly, we get the results Qlm = Q+

lmRlm(l = 1, 2, · · · , L) after L
times of orthogonalization, and calculate the Lyapunov exponents by the formula
(2.21) in the end.

3. Analysis and discussion of the qualitative rela-
tionship between Lyapunov exponent and eigen-
value

Consider the following n-dimensional differential equations

dQ

dt
= JQ,

Q =


q11 q12 · · · q1n

q21 q22 · · · q2n

...
...

. . .
...

qn1 qn2 · · · qnn

 = [q1, q2, q3, · · · , qn],
(3.1)

and they can be described as


d

dt


q11

q21

...

qn1

 ,
d

dt


q12

q22

...

qn2

 , · · · ,
d

dt


q12

q22

...

qn2



 =

J

q11

q21

...

qn1

 , J

q12

q22

...

qn2

 , · · · , J

q12

q22

...

qn2.



 .

(3.2)
Since the corresponding blocks of matrix in the two sides of the equation (3.2)

are equal, the equation (3.2) can be regarded as solving n differential equations, i.e.

dqi
dt

= Jqi(i = 1, 2, · · · , n). (3.3)

The solution of the equation (3.3) is given by
q1i

q2i

· · ·

qni

 =


eλ1tv11 eλ2tv21 · · · eλntvn1

eλ1tv12 eλ2tv22 · · · eλntvn2

· · ·

eλ1tv1n eλ2tv2n · · · eλntvnn




c1i

c2i

· · ·

cni


= c1ie

λ1tv1 + c2ie
λ2tv2 + · · ·+ cnie

λntvn, (3.4)

where λi are single eigenvalues of matrix J and vi are the corresponding eigenvec-
tors, i = 1, 2, · · · , n.
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Then we are going to analysis the physical meaning of equation (3.3). With the
initial condition qi(i = 1, 2, · · · , n), whether the expansion or contraction of qi after
a step of iteration is determined by the real parts of all eigenvalues λ1, λ2, · · · , λn.
The positive real parts of eigenvalues λi expand the ball area in the directions of vi,
and the negative real parts of eigenvalues λi narrow the ball area in the directions
of vi. It means that the more positive real parts of eigenvalues λi, the greater the
effects of expansion in the directions vi. On the contrary, the more negative real
parts of eigenvalues λi, the greater the effects of contraction in the directions of vi.
If the expansion and contraction are equal to each other, then the qi is unchanged.
So, all the above cases are included in the equation (3.3), which the sum of the
expansion or contraction is determined by the combination effects of all the real
parts of eigenvalues λ1, λ2, · · · , λn.

By the equation (3.3), we have
q1i(t)

q2i(t)

· · ·

qni(t)

 =


eλ1tv11 eλ2tv21 · · · eλntvn1

eλ1tv12 eλ2tv22 · · · eλntvn2

· · ·

eλ1tv1n eλ2tv2n · · · eλntvnn

V
−1


q1i(0)

q2i(0)

· · ·

qni(0)

 , (3.5)

where

V −1 =


v11 v21 · · · vn1

v12 v22 · · · vn2

· · ·

v1n v2n · · · vnn



−1

.

To further simplify the above analysis, suppose

V =


v11 v21 · · · vn1

v12 v22 · · · vn2

· · ·

v1n v2n · · · vnn

 =


1 0 · · · 0

0 1 · · · 0

· · ·

0 0 · · · 1

 = V −1. (3.6)

When calculating the Lyapunov exponents, we often begin the evolution from an
n-dimensional orthogonal unit ball Q+

0 , then it becomes an non-orthogonal ellipsoid
after a step of iteration. If we make an orthogonalization for the non-orthogonal
ellipsoid by the Gram-schmidt method, then it will be an n-dimensional orthogonal
ellipsoid. By equations (3.5) and (3.6), we obtain

q1 = eλ1tv1,

q2 = eλ2tv2,

· · · ,

qn = eλntvn.

(3.7)

Obviously, we know the physical meaning by equation (3.7), the positive real
parts of eigenvalues λi mean that the ball is expanded in the direction of vi. On the
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contrary, it will narrow down in the direction of vi if the real parts of eigenvalues λi
are negative, and it keeps unchanged if the real part of eigenvalue is zero. The next
step is to make orthogonalization for the non-orthogonal ellipsoid. By this way, we
will get an average results of the Lyapunov exponents. Furthermore, although in
the practical situations, V unsatisfys (3.6), the results of the qualitative analysis is
still valid.

The zero Lyapunov exponent and negative Lyapunov exponent must exist for a
dissipative system, but the number of positive Lyapunov exponents still needs to
be configured. If we can configure more positive real parts of eigenvalues, then the
orthogonal ball will expand in the more directions of the vectors vi, so we may get
more positive Lyapunov exponents. Based on this method, the following sections
are going to discuss the problem of chaos anti-control design.

4. Analysis and design of anti-controlled higher-dimensional
hyperchaotic systems

4.1. An example of six-dimensional hyperchaotic system

Given a dissipative linear system

ẋ = Ax, (4.1)

where

A =



9.98 3.48 13.7 17.1 14.32 18.72

−4.92 −23.62 −28.3 −24.9 −27.68 −23.28

3.18 11.58 6.6 2.2 7.42 11.82

−13.82 −5.42 −1.2 −7.0 −9.58 −5.18

11.28 19.68 14.9 18.3 15.22 3.92

−10.72 −2.32 −7.1 −3.7 −0.48 −2.38


.

The eigenvalues of linear system (4.1) are described as

µ1,2= −0.1± 20.1246i, µ3,4= −0.2± 8.4853i, µ5,6= −0.3± 9.7980i. (4.2)

So the linear system (4.1) is asymptotically stable.

If add a controller U = B6×6


b sin(σx1)

b sin(σx2)
...

b sin(σx6)

, then the controlled system is given
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by

ẋ = Ax+


b11 b12 · · · b16

b21 b22 · · · b26

...
...

. . .
...

b61 b62 · · · b66


6×6


b sin(σx1)

b sin(σx2)
...

b sin(σx6)

 , (4.3)

where only one element of the control matrix B6×6 is 1 and the rest are 0, by
selecting the position of the element “1”, we are able to control an item of the
linear system (4.1) precisely. Here we use J(i, j) to denote the control position,
where i, j are the row and column of the Jacobi matrix J , respectively.

Table 1. The number of positive Lyapunov exponents L and the number of positive real parts of
eigenvalues r with different control positions for the 6-dimensional controlled system

100 sin(60xj)
J(i, j)

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

r L r L r L r L r L r L

i = 1 × 2 2 5 4 2 1 3 2 4 3

i = 2 2 2 × 5 3 2 1 3 2 4 3

i = 3 1 2 2 2 × 2 1 3 3 2 2

i = 4 3 2 4 4 3 2 × 3 3 2 2

i = 5 3 3 4 4 3 3 2 1 × 4 3

i = 6 1 1 2 2 3 3 2 1 3 2 ×

Based on the analysis in Section 3, we try to configure multiple positive Lya-
punov exponents by designing multiple positive real parts of the system (4.3) Jaco-
bian eigenvalue. With the parameter σ = 60, b = 100, the Jacobi matrix J at the
equilibrium point O(0, 0, 0, 0, 0, 0) can be obtained. Then the controller b sin(σxj)
is added into the different positions J(i, j) of linear system (4.1). And the number
of positive Lyapunov exponents and the number of positive real parts of eigenvalues
are showed in Table 1.

In Table 1, if anti-controller is in the positions of J(1, 3), etc., then there are
four positive Lyapunov exponents, which are really good control effects, and the
number of positive real parts of eigenvalues doesn’t less than 4. On the contrary, if
anti-controller is in the positions of J(6, 1), etc., the number of positive real parts of
eigenvalues doesn’t more than 2, then the number of positive Lyapunov exponents
are 2 or 1. It shows that the number of positive Lyapunov exponents and the number
of eigenvalues with positive real parts are closely related. The more the number
of positive real parts of eigenvalues, the more positive Lyapunov exponents. If the
positive real parts of eigenvalues are fewer, then the number of positive Lyapunov
exponents will correspondingly reduce.
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With parameter σ = 60, b = 100, B =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


6×6

, the Lyapunov expo-

nents of the controlled system (4.3) are given as follows.

LE = [25.9154, 3.2281, 2.0570, 0.3946, 0.00,−32.7964] (4.4)

and the corresponding hyperchaotic attractor is showed in Figure 2.
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20
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Figure 2. The hyperchaotic attractor of the anti-controlled system (4.3)

4.2. An example of nine-dimensional hyperchaotic system

Consider a nine-dimensional linear system

ẋ = Ax =



−0.1 −15

3 −0.1

−0.1 −18

9 −0.1

−0.1 −27

16 −0.1

−0.1 −36

18 −0.1

−0.3



x. (4.5)

Obviously, the eigenvalues of linear system (4.5) are negative, so it is asymptot-
ically stable.
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Let a matrix P9 =


0 1 · · · 1

1 0
. . .

...
...

. . .
. . . 1

1 · · · 1 0


9×9

, |P9| = 8, and the anti-controller U =

B9×9b sin(σx), then the controlled system is described as

ẋ = P−1
9 AP9x+


b11 b12 · · · b19

b21 b22 · · · b29

...
...

. . .
...

b91 b92 · · · b99


9×9


b sin(σx1)

b sin(σx2)
...

b sin(σx9)

 , (4.6)

where only one element of the control matrix B9×9 is 1 and the rest are 0, by
selecting the position of the element “1”, we are able to control an item of the
linear system precisely.

Similarly, with σ = 36, b = 234.8 and different control positions J(i, j)(i, j =
1, 2, · · · , 9), it’s easy to obtain eigenvalues of the controlled system (4.6) Jacobian
at the equilibrium point O(0, 0, · · · , 0). Then the number of positive Lyapunov
exponents and the number of real parts of the Jacobian eigenvalues are given in
Table 2.

Table 2. The number of positive Lyapunov exponents L and the number of positive real parts of
eigenvalues r with different control positions for the 9-dimensional controlled system

234.8sin(36xj),
J(i, j)

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9

r L r L r L r L r L r L r L r L r L

i = 1 × 3 2 5 5 5 4 5 4 5 5 3 3 7 7 2 2

i = 2 3 3 × 5 4 5 3 3 3 5 5 1 1 7 7 4 3

i = 3 5 5 3 2 × 5 4 5 5 5 5 3 3 7 7 2 1

i = 4 7 6 5 4 5 4 × 3 3 3 4 1 1 5 6 4 3

i = 5 5 5 3 2 3 3 5 4 × 5 5 3 3 7 7 2 1

i = 6 7 6 5 3 5 5 7 5 5 4 × 1 2 5 6 4 3

i = 7 7 5 5 3 5 4 5 5 3 4 5 5 × 7 6 4 2

i = 8 5 5 3 2 5 4 5 4 3 3 5 6 5 5 × 2 1

i = 9 7 6 2 1 5 4 4 3 3 3 4 5 1 1 6 6 ×

For the Jacobi matrix of dynamical system (4.6), if the controller is in the
positions of J(1, 8), etc., then the number of positive Lyapunov exponents is 6 or 7,
which indicates good control effects, and this is because the number of positive real
parts of eigenvalues is greater than 6. On the opposite case, if the number of positive
real parts of eigenvalues is only 1 in the positions of J(2, 7), etc., then the number
of positive Lyapunov exponents is regularly less than 2. So, the more the number
of positive real parts of eigenvalues is, the more positive Lyapunov exponents we
may have.
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Figure 3. The hyperchaotic attractor of the anti-controlled system (4.6)

With B =



0 · · · 0 0 0

0 · · · 0 1 0

0 · · · 0 0 0
...

...
...

. . .
...

0 · · · 0 0 0


9×9

, σ = 36, b = 234.8, the Lyapunov exponents of

the controlled system are given by

LE = [35.8469, 6.5246, 2.2298, 2.0050, 0.9328, 0.8100, 0.7804, 0.00, −50.2309]

and its hyperchaotic attractor is showed in Figure 3.

Remark 4.1. The anti-controller bsin(σx) is designed to control the system to be
hyperchaotic, there are many choices for the value of parameters σ and b, the key of
configuring multiple positive Lyapunov exponents is to configure more positive real
parts of the system Jacobian eigenvalues as much as possiable. Therefore, it is easier
for us to choose the suitable value of the parameters, which satisfying the condition
that the system Jacobian eigenvalues contain more positive real parts than to find
a parameter value of σ or b that may configure more positive Lyapunov exponents.

5. Conclusions

Based on Lyapunov-exponent definition and algorithms, this paper further ana-
lyzes and designs a class of anti-controlled higher-dimensional hyperchaotic system-
s. Some theoretical results for Lyapunov-exponent algorithms and the relationship
between the number of Lyapunov exponents and the number of positive real parts
of eigenvalues are obtained. Typical examples show that the more the number of
positive real parts of eigenvalues, the more positive Lyapunov exponents. So that
one can allocate the maximum number of positive Lyapunov exponents by pur-
posefully designing the maximum number of positive real parts of eigenvalues for
anti-controlled higher-dimensional hyperchaotic systems.
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