For EDITORS

For READERS

All Issues

Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 3, Number 1, 2013, Pages 1-9                                                                DOI:10.11948/2013001
Existence of solutions for a degenerate auasilinear elliptic system in bounded domain
G.A. Afrouzi,Nguyen Thanh Chung,M. Mirzapour
Keywords:Quasilinear degenerate elliptic system; Palais-Smale condition; mountain pass theorem; existence.
Abstract:
      Using variational methods, we study the existence of weak solutions forthe degenerate quasilinear elliptic system$$\left\{\begin{array}{ll}- \mathrm{div}\Big(h_1(x)|\nabla u|^{p-2}\nabla u\Big) = F_{u}(x,u,v) &\text{ in } \Omega,\\-\mathrm{div}\Big(h_2(x)|\nabla v|^{q-2}\nabla v\Big) = F_{v}(x,u,v) &\text{ in } \Omega,\\u=v=0 & \textrm{ on } \partial\Omega,\end{array}\right.$$where $\Omega\subset \mathbb R^N$ is a smooth bounded domain, $\nabla F= (F_u,F_v)$ stands for the gradient of $C^1$-function $F:\Omega\times\mathbb R^2 \to \mathbb R$, the weights $h_i$, $i=1,2$ are allowed to vanish somewhere,the primitive $F(x,u,v)$ is intimately related to the first eigenvalue of acorresponding quasilinear system.
PDF      Download reader