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EXISTENCE OF SOLUTIONS FOR A
DEGENERATE QUASILINEAR ELLIPTIC

SYSTEM IN BOUNDED DOMAIN

G.A. Afrouzi1, N.T. Chung2,† and M. Mirzapour1

Abstract Using variational methods, we study the existence of weak solutions
for the degenerate quasilinear elliptic system

−div
(
h1(x)|∇u|p−2∇u

)
= Fu(x, u, v) in Ω,

−div
(
h2(x)|∇v|q−2∇v

)
= Fv(x, u, v) in Ω,

u = v = 0 on ∂Ω,

where Ω ⊂ RN is a smooth bounded domain, ∇F = (Fu, Fv) stands for the
gradient of C1-function F : Ω × R2 → R, the weights hi, i = 1, 2 are allowed
to vanish somewhere, the primitive F (x, u, v) is intimately related to the first
eigenvalue of a corresponding quasilinear system.

Keywords Quasilinear degenerate elliptic system, Palais-Smale condition,
mountain pass theorem, existence.
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1. Introduction

In this paper, we are concerned with the quasilinear elliptic system
−div

(
h1(x)|∇u|p−2∇u

)
= Fu(x, u, v) in Ω,

−div
(
h2(x)|∇v|q−2∇v

)
= Fv(x, u, v) in Ω,

u = v = 0 on ∂Ω,

(1.1)

where Ω is a smooth bounded domain in RN (N ≥ 2), 1 < p < N , 1 < q < N ,
(Fu, Fv) = ∇F stands for the gradient of F in the variable (u, v) ∈ R2.

We point out that in the case h1(x) = h2(x) ≡ 1, problem (1.1) has been
studied in many papers. For more details about this kind of systems, we refer
to [4, 8, 9, 11–13, 15, 19], in which the authors used various methods to get the
existence of solutions. The degeneracy of this system is considered in the sense
that the measurable, non-negative diffusion coefficients h1, h2 are allowed to vanish
in Ω (as well as at the boundary ∂Ω) and/or to blow up in Ω. The point of
departure for the consideration of suitable assumptions on the diffusion coefficients

†the corresponding author.Email address:ntchung82@yahoo.com(N.T. Chung)
1Department of Mathematics, Faculty of Mathematical Sciences, University of
Mazandaran, Babolsar, Iran

2Department of Mathematics and Informatics, Quang Binh University, 312 Ly
Thuong Kiet, Dong Hoi, Quang Binh, Vietnam



2 G.A. Afrouzi, N.T. Chung and M. Mirzapour

is the work [10], where the degenerate scalar equation was studied. In [5–7,16,18],
the authors studied the existence, non-existence and multiplicity of solutions for
degenerate system (1.1) in the semilinear case p = q = 2. In recent papers [1, 2],
G.A. Afrouzi et al. have studied the existence of solutions for quasilinear problem
(1.1) under the following condition

lim
|(u,v)|→∞

(1
p
Fu(x, u, v)u+

1

q
Fv(x, u, v)v − F (x, u, v)

)
= ∞. (1.2)

This condition plays an important role in proving that the energy functional satisfies
the Palais-Smale condition. Motivated by the results in [10, 17], our main goal in
this paper is to illustrate how the ideas introduced in [8, 16] can be applied to
handle the problem of existence of nontrivial solutions for system (1.1) in which the
primitive F (x, u, v) is intimately related to the first eigenvalue of a corresponding
quasilinear system.

Let us introduce the function space (H)p which consists of functions h : Ω ⊂
RN → R, such that h ∈ L1(Ω), h

−1
p−1 ∈ L1(Ω) and h−s ∈ L1(Ω), for some p >

1, s > max{N
p ,

1
p−1} satisfying ps ≤ N(s + 1). Then for the weight functions h1,

h2 we assume the following hypothesis:

(H) There exist functions µ1 in the space (H)p, for some sp and µ2 in the space
(H)q, for some sq, such that

µ1(x)

C1
≤ h1(x) ≤ C1µ1(x) and

µ2(x)

C2
≤ h2(x) ≤ C2µ2(x),

a.e. in Ω, for some constants C1, C2 > 1.

We consider the weighted Sobolev spaces W 1,p
0 (Ω, h1) and W 1,q

0 (Ω, h2) to be
defined as the closures of C∞

0 with respect to the norms

∥u∥ph1,p
=

∫
Ω

h1(x)|∇u|pdx for all u ∈ C∞
0 (Ω),

∥v∥qh2,q
=

∫
Ω

h2(x)|∇v|qdx for all v ∈ C∞
0 (Ω)

and set W = W 1,p
0 (Ω, h1) ×W 1,q

0 (Ω, h2). It is clear that W is a reflexive Banach
space under the norm

∥(u, v)∥W = ∥u∥h1,p + ∥v∥h2,q for all (u, v) ∈W.

For more details about the space setting we refer to [10] and the references therein.
The key in our arguments is the following lemma.

Lemma 1.1 (see [10]). Assume that Ω is a bounded domain in RN and the weight
h satisfies (H)p. Then the following embedding hold:

(i) W 1,p
0 (Ω, h) ↪→ Lp∗

s (Ω) continuously for 1 < p∗s < N , where p∗s := Nps
N(s+1)−ps ;

(ii) W 1,p
0 (Ω, h) ↪→ Lr(Ω) compactly for any r ∈ [1, p∗s).

In the sequel we denote by the p∗ and q∗ the quantities p∗sp and q∗sq , respectively,
where sp and sq are induced by condition the (H). The assumptions concerning the
coefficient functions of (1.1) are the following:
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(A) a ∈ L
p∗

p∗−p (Ω) and either there exists Ω+
a ⊂ Ω of positive Lebesgue measure,

i.e., |Ω+
a | > 0, such that a(x) > 0, for all x ∈ Ω+

a , neither a(x) ≡ 0 in Ω.

(D) d ∈ L
q∗

q∗−q (Ω) and either there exists Ω+
d ⊂ Ω of positive Lebesgue measure,

i.e., |Ω+
d | > 0, such that d(x) > 0, for all x ∈ Ω+

d , neither d(x) ≡ 0 in Ω.

(B) b(x) ≥ 0, a.e. in Ω, b ̸= 0 and b ∈ Lw(Ω), where w =
[
1− α+1

p∗ − β+1
q∗

]−1

.

In [17], the author studied the principal eigenvalue of the system −∇(h1(x)|∇u|p−2∇u) = λa(x)|u|p−2u+ λb(x)|u|α−1|v|β+1u in Ω,
−∇(h2(x)|∇v|q−2∇v) = λd(x)|v|q−2v + λb(x)|u|α+1|v|β−1v in Ω,
u = v = 0 on ∂Ω,

(1.3)

where h1, h2 satisfy (H), α ≥ 0, β ≥ 0 such that α+1
p + β+1

q = 1 and the coefficients

a, d and b satisfy the conditions (A), (D) and (B), respectively. Then we have the
first eigenvalue λ1 > 0 for (1.3) is given by

λ1 = inf
(u,v)∈Θ

[α+ 1

p

∫
Ω

h1(x)|∇u|pdx+
β + 1

q

∫
Ω

h2(x)|∇v|qdx
]
, (1.4)

where

Θ =
{
(u, v) ∈W ; α+1

p

∫
Ω
a(x)|u|pdx+ β+1

q

∫
Ω
d(x)|v|qdx

+
∫
Ω
b(x)|u|α+1|v|β+1dx = 1

}
.

Moreover, it is proved in [17] that this eigenvalue is simple, unique up to positive
eigenfunctions and isolated. In order to state the main result of this paper, we
assume the following conditions hold:

(F1) There exist R > 0, 0 < µ < p and 0 < ν < q such that

u

p
Fu(x, u, v) +

v

q
Fv(x, u, v)− F (x, u, v) ≥ c(|u|µ + |v|ν)

for all x ∈ Ω and |u| ≥ R , |v| ≥ R;

(F2) There exists positive constant C3 such that

|F (x, u, v)| ≤ C3(1 + |u|p + |v|q)

for all (u, v) ∈ R2 and a.e. x ∈ Ω;

(F3) It holds that

lim sup
|(u,v)|→0

2(max{α, β}+ 1)F (x, u, v)
α+1
p

∫
Ω
a(x)|u|pdx+ β+1

q

∫
Ω
d(x)|v|qdx+

∫
Ω
b(x)|u|α+1|v|β+1dx

< λ1

< lim inf
|(u,v)|→∞

(min{α, β}+ 1)F (x, u, v)
α+1
p

∫
Ω
a(x)|u|pdx+ β+1

q

∫
Ω
d(x)|v|qdx+

∫
Ω
b(x)|u|α+1|v|β+1dx

,

where λ1 is defined in (1.4).

It should be noticed that the hypothesis (F3) is related to the interaction of
the potential F and the first eigenvalue λ1 of (1.3). D.G. Costa [8] was the first
to introduce such assumption. A variant of this condition appeared in [14]. The
readers may consult the work [9] for the non-degenerate case.
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Definition 1.1. We say that (u, v) ∈ W is a weak solution of system (1.1) if and
only if ∫

Ω

(
h1(x)|∇u|p−2∇u∇φ+ h2(x)|∇v|q−2∇v∇ψ

)
dx

−
∫
Ω

(Fu(x, u, v)φ+ Fv(x, u, v)ψ)dx = 0

for all (φ,ψ) ∈W .

Our main result of this paper is the following theorem.

Theorem 1.1. Suppose that the conditions (F1)−(F3) are satisfied. Then problem
(1.1) has a nontrivial weak solution.

2. Proof of the main result

In this section, we will prove Theorem 1.1 using the mountain pass theorem [3].
The functional corresponding to problem (1.1) is

I(u, v) =
1

p

∫
Ω

h1(x)|∇u|pdx+
1

q

∫
Ω

h2(x)|∇v|qdx−
∫
Ω

F (x, u, v)dx.

By (F2), we can show that the functional I(u, v) is well defined and is of class C1

in W . Moreover, we have

I ′(u, v)(ϕ, ψ) =

∫
Ω

(
h1(x)|∇u|p−2∇u∇φ+ h2(x)|∇v|q−2∇v∇ψ

)
dx

−
∫
Ω

(Fu(x, u, v)φ+ Fv(x, u, v)ψ)dx

for all (u, v), (ϕ, ψ) ∈ W . Thus, weak solutions of (1.1) are exactly the critical
points of the functional I(u, v). First, we have the following result.

Lemma 2.1. Let (un, vn) be a bounded sequence in W such that I(un, vn) is bound-
ed and I ′(un, vn) → 0 as n→ ∞. Then (un, vn) has a convergent subsequence.

Proof. Since the sequence (un, vn) is bounded in W , we may consider that there
is a subsequence (denote again by (un, vn)), which is weakly convergent in W .
Moreover, we have that

⟨I ′(un, vn)− I ′(um, vm), (un − um, vn − vm)⟩

=

∫
Ω

h1(x)
(
|∇un|p−2∇un − |∇um|p−2∇um

)
(∇un −∇um)dx

+

∫
Ω

h2(x)
(
|∇vn|q−2∇vn − |∇vm|q−2∇vm

)
(∇vn −∇vm)dx

−
∫
Ω

(
Fu(x, un, vn)− Fu(x, um, vm)

)
(un − um)dx

−
∫
Ω

(
Fv(x, un, vn)− Fv(x, um, vm)

)
(vn − vm)dx.

(2.1)
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Using (F2), the Hölder inequality and Lemma 1.1, we can write∣∣∣ ∫Ω (
Fu(x, un, vn)− Fu(x, um, vm)

)
(un − um)dx

∣∣∣
≤

∫
Ω
|Fu(x, un, vn)− Fu(x, um, vm)||un − um|dx

≤
∫
Ω
|Fu(x, un, vn)||un − um|dx+

∫
Ω
|Fu(x, um, vm)||un − um|dx

≤
∫
Ω
|un|p−1|un − um|dx+

∫
Ω
|um|p−1|un − um|dx

≤ ∥un∥p−1
Lp(Ω)∥un − um∥Lp(Ω) + ∥um∥p−1

Lp(Ω)∥un − um∥Lp(Ω),

which tends to 0 as m,n→ ∞. Then,

lim
m,n→∞

∫
Ω

(
Fu(x, un, vn)− Fu(x, um, vm)

)
(un − um)dx = 0. (2.2)

Similarly, we have

lim
m,n→∞

∫
Ω

(
Fv(x, un, vn)− Fv(x, um, vm)

)
(vn − vm)dx = 0. (2.3)

From (2.1), (2.2) and (2.3), we arrive at

lim
m,n→∞

∫
Ω

h1(x)
(
|∇un|p−2∇un − |∇um|p−2∇um

)
(∇un −∇um)dx = 0 (2.4)

and

lim
m,n→∞

∫
Ω

h2(x)
(
|∇vn|q−2∇vn − |∇vm|q−2∇vm

)
(∇vn −∇vm)dx = 0. (2.5)

We recall the following inequalities(
|ξ|p−2ξ − |η|p−2η, ξ − η

)
≥ c1

(
|ξ|+ |η|

)p−2

|ξ − η|2 if 1 < p < 2,(
|ξ|p−2ξ − |η|p−2η, ξ − η

)
≥ c2|ξ − η|p if p ≥ 2,

for all ξ, η ∈ RN , where (., .) denote the usual product in RN , see for example [12].

If 1 < p < 2, by the Hölder inequality, choosing ϕn = h
1
p

1 un, ϕm = h
1
p

1 um, we
get

0 ≤ ∥ϕn − ϕm∥ph1,p

≤
∫
Ω
|∇ϕn −∇ϕm|p (|∇ϕn|+ |∇ϕm|)

p(p−2)
2 (|∇ϕn|+ |∇ϕm|)

p(2−p)
2 dx

≤
( ∫

Ω
|∇ϕn −∇ϕm|2(|∇ϕn|+ |∇ϕm|)p−2dx

) p
2 (∫

Ω
(|∇ϕn|+ |∇ϕm|)pdx

) 2−p
2

≤ c3
(∫

Ω
(|∇ϕn|p−2∇ϕn − |∇ϕm|p−2∇ϕm,∇(ϕn − ϕm))dx

) p
2

×
(∫

Ω
(|∇ϕn|+ |∇ϕm|)pdx

) 2−p
2

≤ c4
(∫

Ω
(|∇ϕn|p−2∇ϕn − |∇ϕm|p−2∇ϕm,∇(ϕn − ϕm))dx

) p
2 ,
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which implies that ∥un − um∥h1,p → 0 by (2.4), as m,n→ ∞. If p ≥ 2, one has

0 ≤ ∥un − um∥ph1,p
≤ c5

∫
Ω

(
|∇un|p−2∇un − |∇um|p−2∇um,∇(un − um)

)
dx,

so we get ∥un − um∥h1,p → 0 by (2.4), as m,n → ∞. (un) is a Cauchy’s sequence

in W 1,p
0 (Ω, h1). Hence (un) converges strongly in W 1,p

0 (Ω, h1). Similarly, we can
prove that (vn) converges strongly in W 1,q

0 (Ω, h2).

Lemma 2.2. Let c ∈ R. Then, the functional I satisfies the (PS)c condition.

Proof. According to Lemma 2.1, it is sufficient to prove that the sequence {(un, vn)}
is bounded in W . Let {(un, vn)} be such a (PS)c sequence, that is, I(un, vn) → c
and I ′(un, vn) → 0 as n→ ∞. We obtain

ϵn + c ≥ I(un, vn)− I ′(un, vn)
(

un

p ,
vn
q

)
=

∫
Ω

(
1
pFu(x, un, vn)un + 1

qFv(x, un, vn)vn − F (x, un, vn)
)
dx

≥ c6
∫
Ω
(|un|µ + |vn|ν)dx,

which shows from (F1) that∫
Ω

(|un|µ + |vn|ν)dx ≤ c7 for all n. (2.6)

Next, we use the following interpolation inequality: let 0 < e1 < e2 < e3 and
suppose that for some measurable function u : Ω → R we have that∫

Ω

|u|e1dx <∞ and

∫
Ω

|u|e3dx <∞,

then ∫
Ω

|u|e2dx ≤
(∫

Ω

|u|e1dx
) e3−e2

e3−e1
(∫

Ω

|u|e3dx
) e2−e1

e3−e1

. (2.7)

We use (2.7) for 0 < µ < p < p∗ and 0 < ν < q < q∗, we get

∫
Ω

|un|pdx ≤
(∫

Ω

|un|µdx
) p∗−p

p∗−µ
(∫

Ω

|un|p
∗
dx

) p−µ
p∗−µ

, (2.8)

∫
Ω

|vn|qdx ≤
(∫

Ω

|vn|νdx
) q∗−q

q∗−ν
(∫

Ω

|vn|q
∗
dx

) q−ν
q∗−ν

. (2.9)

Using (2.6), we obtain

∫
Ω

|un|pdx ≤ c8

(∫
Ω

|un|p
∗
dx

) p−µ
p∗−µ

(2.10)

and ∫
Ω

|vn|qdx ≤ c9

(∫
Ω

|vn|q
∗
dx

) q−ν
q∗−ν

. (2.11)
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By Lemma 1.1, it follows that(∫
Ω

|un|p
∗
dx

) p−µ
p∗−µ

≤ c10∥un∥p̃h1,p
(2.12)

and (∫
Ω

|vn|q
∗
dx

) q−ν
q∗−ν

≤ c11∥vn∥q̃h2,q
, (2.13)

where p̃ = p−µ
p∗−µp

∗ and q̃ = q−ν
q∗−ν q

∗. On the other hand, by (F2) and (2.8)-(2.13),
we get

I(un, vn) ≥
1

p
∥un∥ph1,p

+
1

q
∥vn∥qh2,q

− c12

(
∥un∥p̃h1,p

+ ∥vn∥q̃h2,q

)
.

Since I(un, vn) is bounded and p̃ < p, q̃ < q, it follows that (un, vn) is bounded
in W . By Lemma 2.1, we obtain that the functional I(u, v) satisfies the (PS)c
condition (compactness condition).

Now, we verify that the functional I(u, v) satisfies the geometry of the mountain
pass theorem.

Lemma 2.3.

(i) There exist ρ, σ > 0 such that ∥(u, v)∥W = ρ implies I(u, v) ≥ σ > 0.

(ii) There exists (û, v̂) ∈W such that ∥(û, v̂)∥W > ρ and I(û, v̂) < 0.

Proof. (i) Set θ∗ = 1
max{α,β}+1 . From the left-hand side of (F3), there exists

ρ > 0 such that

F (x, u, v) ≤ λ1θ∗
2

(
α+1
p

∫
Ω
a(x)|u|pdx+ β+1

q

∫
Ω
d(x)|v|qdx

+
∫
Ω
b(x)|u|α+1|v|β+1dx

)
provided that ∥u∥h1,p + ∥v∥h2,q = ρ which will be chosen later. By (1.4) and the
variational characterization of the principal eigenvalue λ1, we have∫

Ω

F (x, u, v)dx ≤ θ∗(α+ 1)

2p

∫
Ω

h1(x)|∇u|pdx+
θ∗(β + 1)

2q

∫
Ω

h2(x)|∇v|qdx.

Hence, we get

I(u, v) = 1
p

∫
Ω
h1(x)|∇u|pdx+ 1

q

∫
Ω
h2(x)|∇v|qdx−

∫
Ω
F (x, u, v)dx

≥ θ∗

(
α+1
p

∫
Ω
h1(x)|∇u|pdx+ β+1

q

∫
Ω
h2(x)|∇v|qdx

)
−

∫
Ω
F (x, u, v)dx

≥ θ∗(α+1)
2p ∥u∥ph1,p

+ θ∗(β+1)
2q ∥v∥qh2,q

.

Then, there exists σ, ρ > 0 such that I(u, v) ≥ σ > 0 if ∥u∥h1,p + ∥v∥h2,q = ρ.
(ii) Set θ∗ = 1

min{α,β}+1 . From the right-hand side of (F3), we get for ϵ > 0 and

t sufficiently large that

F (x, t
1
pu0, t

1
q v0) ≥ tθ∗(λ1 + ϵ)

(
α+1
p

∫
Ω
a(x)|u0|pdx+ β+1

q

∫
Ω
d(x)|v0|qdx

+
∫
Ω
b(x)|u0|α+1|v0|β+1dx

)
,
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where (u0, v0) is the eigenfunction pair corresponding to the principal eigenvalue λ1
of problem (1.3). Then we have

I(t
1
pu0, t

1
q v0)

≤ t
p

∫
Ω
h1(x)|∇u0|pdx+ t

q

∫
Ω
h2(x)|∇v0|qdx−

∫
Ω
F (x, t

1
pu0, t

1
q v0)dx

≤ tθ∗
(

α+1
p

∫
Ω
h1(x)|∇u0|pdx+ β+1

q

∫
Ω
h2(x)|∇v0|qdx

)
−tθ∗(λ1 + ϵ)

(
α+1
p

∫
Ω
a(x)|u0|pdx+ β+1

q

∫
Ω
d(x)|v0|qdx

+
∫
Ω
b(x)|u0|α+1|v0|β+1dx

)
= −tθ∗ϵ

(
α+1
p

∫
Ω
a(x)|u0|pdx+ β+1

q

∫
Ω
d(x)|v0|qdx+

∫
Ω
b(x)|u0|α+1|v0|β+1dx

)
.

We conclude that I(t
1
pu0, t

1
q v0) → −∞ as t→ +∞, and thus there exists a constant

t0 such that I(t
1
p

0 u0, t
1
q

0 v0) < 0. Choose û = t
1
p

0 u0 and v̂ = t
1
q

0 v0, Lemma 2.3 is
proved.
Proof of Theorem 1.1. By Lemmas 2.2 and 2.3, all assumptions of the mountain
pass theorem in [3] are satisfied. Then the functional I admits a nontrivial critical
point in W and thus system (1.1) has a nontrivial weak solution. The proof of
Theorem 1.1 is complete.
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