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EXISTENCE OF SOLUTIONS FOR A
DEGENERATE QUASILINEAR ELLIPTIC
SYSTEM IN BOUNDED DOMAIN

G.A. Afrouzi!, N.T. Chung®' and M. Mirzapour!

Abstract Using variational methods, we study the existence of weak solutions
for the degenerate quasilinear elliptic system

—div hl(x)|Vu|p_2Vu> = Fu(z,u,v) inQ,
—div hz(ib)|V’U|q72V’U> = Fy(z,u,v) in Q,
u=v=0 on 012,

where Q C RY is a smooth bounded domain, VF = (F,, F,) stands for the
gradient of C'-function F' : Q x R? — R, the weights h;, i = 1,2 are allowed
to vanish somewhere, the primitive F(z,u,v) is intimately related to the first
eigenvalue of a corresponding quasilinear system.

Keywords Quasilinear degenerate elliptic system, Palais-Smale condition,
mountain pass theorem, existence.
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1. Introduction

In this paper, we are concerned with the quasilinear elliptic system

—div hl(x)|Vu|p*2Vu> = Fu(z,u,v) in
—div hg($)|Vv|q_2Vv> = Fy(z,u,v) inQ, (1.1)
u=v=0 on 012,

where (2 is a smooth bounded domain in RN(N >2), 1 <p < N, 1< g < N,
(F,, F,) = VF stands for the gradient of F' in the variable (u,v) € R2.

We point out that in the case hi(z) = ho(z) = 1, problem (1.1) has been
studied in many papers. For more details about this kind of systems, we refer
to [4,8,9,11-13, 15, 19], in which the authors used various methods to get the
existence of solutions. The degeneracy of this system is considered in the sense
that the measurable, non-negative diffusion coefficients hq, ho are allowed to vanish
in Q (as well as at the boundary 99) and/or to blow up in Q. The point of
departure for the consideration of suitable assumptions on the diffusion coefficients
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is the work [10], where the degenerate scalar equation was studied. In [5-7,16, 18],
the authors studied the existence, non-existence and multiplicity of solutions for
degenerate system (1.1) in the semilinear case p = ¢ = 2. In recent papers [1, 2],
G.A. Afrouzi et al. have studied the existence of solutions for quasilinear problem
(1.1) under the following condition

lim (lFu(x,u,v)u + va(x,u,v)v - F(m,u,v)) = oo. (1.2)
[(u,v)]—o0 \ P q

This condition plays an important role in proving that the energy functional satisfies
the Palais-Smale condition. Motivated by the results in [10,17], our main goal in
this paper is to illustrate how the ideas introduced in [8,16] can be applied to
handle the problem of existence of nontrivial solutions for system (1.1) in which the
primitive F'(x,u,v) is intimately related to the first eigenvalue of a corresponding
quasilinear system.

Let us introduce the function space (H), which consists of functions h : Q C
RY — R, such that h € L*(Q), hiT e LY(Q) and h=% € L'(), for some p >
1, s> max{%, p%l} satisfying ps < N(s 4 1). Then for the weight functions hq,
ho we assume the following hypothesis:

(H) There exist functions py in the space (H),, for some s, and po in the space
(H),, for some s4, such that
pa(x)

) < hi(z) < Crpa(z) and ——= < ha(z) < Copa(w),
Cl C2

a.e. in €, for some constants Cy,Cy > 1.

We consider the weighted Sobolev spaces W, ™*(2, hy) and W, %(Q,hy) to be
defined as the closures of C§° with respect to the norms

ullf, , = /th(x)|Vu|pdx for all u € C§°(2),

[vllf, , = /th(a:)|Vv|qd:E for all v € CJ° ()

and set W = Wy P(Q,h) x Wy %(Q, hy). It is clear that W is a reflexive Banach
space under the norm

1w, 0)llw = l[wllny,p + [[0]lns g for all (u,v) € W.

For more details about the space setting we refer to [10] and the references therein.
The key in our arguments is the following lemma.

Lemma 1.1 (see [10]). Assume that Q is a bounded domain in RY and the weight
h satisfies (H),. Then the following embedding hold:
(i) WyP(Q,h) < LP:(Q) continuously for 1 < pt < N, where p’ := %;

(i1) WyP(Q,h) = L™(Q) compactly for any r € [1,pF).
In the sequel we denote by the p* and ¢* the quantities pzp and q’;q, respectively,

where s, and s, are induced by condition the (H). The assumptions concerning the
coefficient functions of (1.1) are the following:
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(A) a € Lppifv(Q) and either there exists QF C Q of positive Lebesgue measure,
ie., |QF| > 0, such that a(z) > 0, for all z € QF, neither a(z) =0 in Q.

(D) d € L#=4(Q) and either there exists QF C Q of positive Lebesgue measure,
ie., |QF] > 0, such that d(z) > 0, for all z € Q, neither d(z) = 0 in Q.

(B) b(z) >0, ae. inQ, b#0and be L*(Q2), where w = [1 —atl &}7

p* q*
In [17], the author studied the principal eigenvalue of the system

=V (h1(2)|Vu[P~2Vu) = a(m)|u\p_2u + Ab(z)|ul* Yoy in Q,
—V (he(2)|Vo]972V0) = Md(x)|v]9720 + Ab(2)|u|* T o[ ~1v  in Q, (1.3)
u=v=0 on 0f,

where hy, hy satisfy (H), a > 0, 8 > 0 such that O‘TH + % = 1 and the coefficients
a, d and b satisfy the conditions (A), (D) and (B), respectively. Then we have the
first eigenvalue A; > 0 for (1.3) is given by

A= inf [a“/ (@) VulPdz +5;Ll/ﬂh2(x)|vq;|qczx, (1.4)

(u,v)€O p
where
0= {(wv) eW: = [ a@upds + £ [, d(@)olrds
Jer |u|”‘+1\v|ﬁ+1dz = 1}

Moreover, it is proved in [17] that this eigenvalue is simple, unique up to positive
eigenfunctions and isolated. In order to state the main result of this paper, we
assume the following conditions hold:

(F1) There exist R >0, 0 < p < p and 0 < v < ¢ such that
= Fu(w,u,0) + = Fy(w,u,0) = Fla,u,0) > ol ul + [v]")
p q
forallz € Q and |u| > R, |v| > R;
(F2) There exists positive constant C3 such that
|F' (2, u,v)] < C3(1 + [ul” + [v]?)

for all (u,v) € R? and a.e. x €
(F3) It holds that

2(max{a, 8} + 1)F(z,u,v)

hmsup <A\
()0 2L [o az)|ulrde + 25 [ d(x)|o]adz + [q b(a)|u|* o]0+ de
< liminf (mln{a,ﬂ}—l— 1) F(z,u,v)

[(,0)|—o00 a“ Jo a(x)|ulPdz + ﬂ“ Jo d(z)|v|edz + [, b(z ) |ulett|v|B+1da’

where A; is defined in (1.4).

It should be noticed that the hypothesis (Fg3) is related to the interaction of
the potential F' and the first eigenvalue Ay of (1.3). D.G. Costa [8] was the first
to introduce such assumption. A variant of this condition appeared in [14]. The
readers may consult the work [9] for the non-degenerate case.
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Definition 1.1. We say that (u,v) € W is a weak solution of system (1.1) if and
only if

/ (hl(z)wuw*vuw n hg(x)\wW?ww)dz
Q
- / (Fu(z,u,v)p + Fy(z,u,v)p)de =0

Q

for all (p,v) € W.
Our main result of this paper is the following theorem.

Theorem 1.1. Suppose that the conditions (F1)— (F3) are satisfied. Then problem
(1.1) has a nontrivial weak solution.

2. Proof of the main result

In this section, we will prove Theorem 1.1 using the mountain pass theorem [3].
The functional corresponding to problem (1.1) is

1 1
I(u,v) :E/th(xﬂVu\pdaz—l—5/9h2($)|Vv|qdm—/QF(ac,u,v)dx.

By (F2), we can show that the functional I(u,v) is well defined and is of class C*
in W. Moreover, we have

T (u, 0) (6, ) = / (@I VuP~2VuT + by (@) Vel V0V da
Q
*/S;(FU(CC,’LL,’U)(,O+FU(ZZ?7U7’U)¢))CZSC

for all (u,v),(¢,9) € W. Thus, weak solutions of (1.1) are exactly the critical
points of the functional I(u,v). First, we have the following result.

Lemma 2.1. Let (uyn,v,) be a bounded sequence in W such that I(uy,, vy,) is bound-
ed and I' (up,v,) = 0 as n — co. Then (un,v,) has a convergent subsequence.

Proof. Since the sequence (uy,v,) is bounded in W, we may consider that there
is a subsequence (denote again by (u,v,)), which is weakly convergent in W.
Moreover, we have that

<I/(Un, vn) - Il(umavm)y (un — Um, Un — Um)>

:/ hi(x) (|Vun\p_2Vun - |Vum|p_2Vum) (Vuy, — Vg, )dz
Q

+ /Q ha(x) (|an|q_2an — |va|q_2va> (Vu, — Vo, )dz (2.1)

— Fo (2, U, vn) — Fu(@, U,y Um) ) (Un, — U, )dz
Q

— Fo(x,tun, vn) — Fo(z, tm, vm) ) (Vn — U )da.
Q
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Using (F2), the Holder inequality and Lemma 1.1, we can write
‘ Jo (Fu(w,un,vn) — Fu(x,um,vm))(un — Uy )dx
§ fQ|Fu(x>un7vn)*Fu(xaum,avm)nun*umldl‘
< Jo [Fu(@, i, o) |[un — tmlde + [ |Fu(2, U, vm)| [t — i |da
< o lunPHun = wmlde + [q [um[PHug — wp|dz
< Hun”i;(lg)Hun - umHLP(Q) + ||Um||ZL;;(19)||un - um”LP(Q);
which tends to 0 as m,n — co. Then,
lim (Fu(x,umvn) - Fu(x,um,vm)) (Up, — U )dz = 0. (2.2)
m,n—o00 [o
Similarly, we have
lim (Fv(gmun,vn) - Fv(x,um,vm))(vn — vp)dx = 0. (2.3)
mn—o0 [
From (2.1), (2.2) and (2.3), we arrive at
lim [ hi() (|Vun|p_2Vun - |vum\f)—2vum) (Vi — Vup)dz =0 (2.4)
m,n—00 Jo
and
lim ho(z) (|an|q_2an - |va|q_2VUm> (Vup, — Vop)dz =0.  (2.5)

m,n—o0 [o

We recall the following inequalities

-2
(126 = e =2n.e —n) = e (161 + nl)” le—nf* f1<p<2,

(\€IP‘2£ — [nP=2n, & - n) >l —nP ifp>2,

for all £,7 € RY, where (.,.) denote the usual product in RY, see for example [12].

1 1
If 1 < p <2, by the Holder inequality, choosing ¢, = h{ Un, ¢ = h{ Um, We

get
0 < ”d)n - ¢m||€117p

p(p—2) p(2
Z

(V| + Vo)) T da

< (JolV6n = Voul (960l + [Voul)r=2dz) * (Jo((Von] + VonlPdr) =

< e (Jo(IV0nl" "2V 60 — [V P2V by, V(60 — b)) *

% (Jo(IVn| + |Vm|)rdz) =
< e (Jo(IVPn P2V — |V P2V, V(6 — ¢))dz) |

[N/
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which implies that ||w, — tm||n, p — 0 by (2.4), as m,n — co. If p > 2, one has
0< ”un - um“ihp < 65/ (|vun|p72vun - |Vum|p72vum7 v(un - um)>d$7
Q

so we get ||uy, — Uml|ln, p — 0 by (2.4), as m,n — oo. (u,) is a Cauchy’s sequence
in W,?(Q,hy). Hence (uy) converges strongly in Wy?(Q,h;). Similarly, we can
prove that (v,) converges strongly in W, ¢(€, hs). O

Lemma 2.2. Let ¢ € R. Then, the functional I satisfies the (PS). condition.

Proof. According to Lemma 2.1, it is sufficient to prove that the sequence {(uy, v, )}
is bounded in W. Let {(un,v,)} be such a (PS). sequence, that is, I(uy,v,) — ¢
and I'(up,v,) — 0 as n — co. We obtain

€n +C> I(Un,vn) - I/(una vn) (u?n’ UT”)
= fQ (%Fu(ma Unpy U ) U, + %Fv(ma Up, V)0 — F(z, un’vn))dx
> ¢ Jo([un]” + |vn]”)dz,

which shows from (F4) that
/(|un|“ + |vn|”)dz < ¢7 for all n. (2.6)
Q

Next, we use the following interpolation inequality: let 0 < e; < ey < e3 and
suppose that for some measurable function u : 2 — R we have that

|u|*dz < oo and lu|®dz < oo,
Q Q

/|u|e2da:§ </ |u|€1dx> o </ u|e3d;p> R (2.7)
Q Q Q

We use (2.7) for 0 < p <p < p*and 0 < v < g < ¢*, we get

then

*

[ funlrae < ( / |un“dx)” - ( [t
Q Q Q
</ |Un
Q

p—p

p*dx> o (2.8)

a9 _—qg

/ |vn |Tda < (/ |vn|”dx) o
Q Q

Using (2.6), we obtain

q*dx) o (2.9)

|up|Pde < cs ( un|p*dx> ) (2.10)
Q

A |vn|9dx < ¢y (/Q [vn, fdm) o (2.11)

and
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By Lemma 1.1, it follows that

P—p
PF
(/ P dm) < crollunll?, (2.12)

and e

( ) < cquth2 " (2.13)
where p = . On the other hand, by (F2) and (2.8)-(2.13),
we get

1 1 5 &
Hunvn) 2 il 4 = lonll g = er2 (unlF, + enllE, )

Since I(up,vy) is bounded and p < p, ¢ < ¢, it follows that (u,,v,) is bounded
in W. By Lemma 2.1, we obtain that the functional I(u,v) satisfies the (PS).
condition (compactness condition). O

Now, we verify that the functional I(u, v) satisfies the geometry of the mountain
pass theorem.

Lemma 2.3.
(i) There ezist p, o > 0 such that ||(u,v)||lw = p implies I(u,v) > o > 0.
(ii) There exists (w,V) € W such that ||(w,V)||w > p and I(u,v) < 0.

Proof. (i) Set 0.
p > 0 such that

= m From the left-hand side of (Fg), there exists

Fle,u) < M (e [ a@lulde + 252 [, d(@)lolda
+ Jo bz |u\0‘+1|v|ﬂ+1dx)

provided that ||ul/n, p + [|v]|hs,q = p which will be chosen later. By (1.4) and the
variational characterization of the principal eigenvalue \;, we have

f.(a+1) 0.(8+1)

F(z,u,v)dz < /h x Vupdm—i—*i/h )| Vollda.
R o [ m@Iva 5 [ m(@vel

Hence, we get
I(u,v) fQ hi(z |Vu|pdac+ Jq ha(2)|Voltda — [, F(2,u,v)dx
>0, (“H Jo b1 (2)|VulPdz + ﬁ“ Jo e |Vv\qu> Jo F(z,u,v)dx

0. (a+1 0.(B8+1
el Dy, + L o2

Then, there exists o, p > 0 such that I(u,v) > o > 0if ||ulln, p + [|V]lhe,q = p-
(ii) Set 6* = m From the right-hand side of (F3), we get for € > 0 and
t sufficiently large that

Flz, thug, tivg) > t6* (M +¢) (a+1 Jop a(@)uolda + BEL [, d(a)|vo|"dx

+ o b(@)luol*uo| P dw),



8 G.A. Afrouzi, N.T. Chung and M. Mirzapour

where (ug, vg) is the eigenfunction pair corresponding to the principal eigenvalue A\q
of problem (1.3). Then we have

I(t%uo,t%vo)
L fo ha(2)[VuolPd + £ [ ha(2)|[Vvo|9da — [, F(,tvug, tove)da

IN

IN

to (OhLl fQ h1 |VUO|pd$ + '6+1 fQ hg |V’U0|qdl’)
16"+ (52 f ala) o P + 222 [, d(a)uo] e
+ o b(@)uol*uo | de)

- _p* €<a+1 [y al)|uolPda + ﬂ+1 [y d()[vo|?dz + [, b |uo|a+1|vo\5“dm)

We conclude that I(tp uo, ta vg) — —oo ast — +oo and thus there exists a constant

to such that I(to uo,to vg) < 0. Choose u = tO ug and U = to vy, Lemma 2.3 is
proved. O]
Proof of Theorem 1.1. By Lemmas 2.2 and 2.3, all assumptions of the mountain
pass theorem in [3] are satisfied. Then the functional I admits a nontrivial critical
point in W and thus system (1.1) has a nontrivial weak solution. The proof of
Theorem 1.1 is complete. O
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