EXISTENCE OF SOLUTIONS FOR A DEGENERATE QUASILINEAR ELLIPTIC SYSTEM IN BOUNDED DOMAIN

G.A. Afrouzi ${ }^{1}$, N.T. Chung ${ }^{2, \dagger}$ and M. Mirzapour ${ }^{1}$

Abstract Using variational methods, we study the existence of weak solutions
for the degenerate quasilinear elliptic system for the degenerate quasilinear elliptic system

$$
\begin{cases}-\operatorname{div}\left(h_{1}(x)|\nabla u|^{p-2} \nabla u\right)=F_{u}(x, u, v) & \text { in } \Omega \\ -\operatorname{div}\left(h_{2}(x)|\nabla v|^{q-2} \nabla v\right)=F_{v}(x, u, v) & \text { in } \Omega \\ u=v=0 & \text { on } \partial \Omega\end{cases}
$$

where $\Omega \subset \mathbb{R}^{N}$ is a smooth bounded domain, $\nabla F=\left(F_{u}, F_{v}\right)$ stands for the gradient of C^{1}-function $F: \Omega \times \mathbb{R}^{2} \rightarrow \mathbb{R}$, the weights $h_{i}, i=1,2$ are allowed to vanish somewhere, the primitive $F(x, u, v)$ is intimately related to the first eigenvalue of a corresponding quasilinear system.

Keywords Quasilinear degenerate elliptic system, Palais-Smale condition, mountain pass theorem, existence.
MSC(2000) 35J60, 35B30, 35B40.

1. Introduction

In this paper, we are concerned with the quasilinear elliptic system

$$
\begin{cases}-\operatorname{div}\left(h_{1}(x)|\nabla u|^{p-2} \nabla u\right)=F_{u}(x, u, v) & \text { in } \Omega \tag{1.1}\\ -\operatorname{div}\left(h_{2}(x)|\nabla v|^{q-2} \nabla v\right)=F_{v}(x, u, v) & \text { in } \Omega \\ u=v=0 & \text { on } \partial \Omega\end{cases}
$$

where Ω is a smooth bounded domain in $\mathbb{R}^{N}(N \geq 2), 1<p<N, 1<q<N$, $\left(F_{u}, F_{v}\right)=\nabla F$ stands for the gradient of F in the variable $(u, v) \in \mathbb{R}^{2}$.

We point out that in the case $h_{1}(x)=h_{2}(x) \equiv 1$, problem (1.1) has been studied in many papers. For more details about this kind of systems, we refer to $[4,8,9,11-13,15,19]$, in which the authors used various methods to get the existence of solutions. The degeneracy of this system is considered in the sense that the measurable, non-negative diffusion coefficients h_{1}, h_{2} are allowed to vanish in Ω (as well as at the boundary $\partial \Omega$) and/or to blow up in $\bar{\Omega}$. The point of departure for the consideration of suitable assumptions on the diffusion coefficients

[^0]is the work [10], where the degenerate scalar equation was studied. In [5-7, 16, 18], the authors studied the existence, non-existence and multiplicity of solutions for degenerate system (1.1) in the semilinear case $p=q=2$. In recent papers $[1,2]$, G.A. Afrouzi et al. have studied the existence of solutions for quasilinear problem (1.1) under the following condition
\[

$$
\begin{equation*}
\lim _{|(u, v)| \rightarrow \infty}\left(\frac{1}{p} F_{u}(x, u, v) u+\frac{1}{q} F_{v}(x, u, v) v-F(x, u, v)\right)=\infty \tag{1.2}
\end{equation*}
$$

\]

This condition plays an important role in proving that the energy functional satisfies the Palais-Smale condition. Motivated by the results in $[10,17]$, our main goal in this paper is to illustrate how the ideas introduced in $[8,16]$ can be applied to handle the problem of existence of nontrivial solutions for system (1.1) in which the primitive $F(x, u, v)$ is intimately related to the first eigenvalue of a corresponding quasilinear system.

Let us introduce the function space $(\mathbf{H})_{p}$ which consists of functions $h: \Omega \subset$ $\mathbb{R}^{N} \rightarrow \mathbb{R}$, such that $h \in L^{1}(\Omega), h^{\frac{-1}{p-1}} \in L^{1}(\Omega)$ and $h^{-s} \in L^{1}(\Omega)$, for some $p>$ $1, s>\max \left\{\frac{N}{p}, \frac{1}{p-1}\right\}$ satisfying $p s \leq N(s+1)$. Then for the weight functions h_{1}, h_{2} we assume the following hypothesis:
(\mathbf{H}) There exist functions μ_{1} in the space $(\mathbf{H})_{p}$, for some s_{p} and μ_{2} in the space $(\mathbf{H})_{q}$, for some s_{q}, such that

$$
\frac{\mu_{1}(x)}{C_{1}} \leq h_{1}(x) \leq C_{1} \mu_{1}(x) \text { and } \frac{\mu_{2}(x)}{C_{2}} \leq h_{2}(x) \leq C_{2} \mu_{2}(x)
$$

a.e. in Ω, for some constants $C_{1}, C_{2}>1$.

We consider the weighted Sobolev spaces $W_{0}^{1, p}\left(\Omega, h_{1}\right)$ and $W_{0}^{1, q}\left(\Omega, h_{2}\right)$ to be defined as the closures of C_{0}^{∞} with respect to the norms

$$
\begin{aligned}
\|u\|_{h_{1}, p}^{p} & =\int_{\Omega} h_{1}(x)|\nabla u|^{p} d x \text { for all } u \in C_{0}^{\infty}(\Omega) \\
\|v\|_{h_{2}, q}^{q} & =\int_{\Omega} h_{2}(x)|\nabla v|^{q} d x \text { for all } v \in C_{0}^{\infty}(\Omega)
\end{aligned}
$$

and set $W=W_{0}^{1, p}\left(\Omega, h_{1}\right) \times W_{0}^{1, q}\left(\Omega, h_{2}\right)$. It is clear that W is a reflexive Banach space under the norm

$$
\|(u, v)\|_{W}=\|u\|_{h_{1}, p}+\|v\|_{h_{2}, q} \text { for all }(u, v) \in W
$$

For more details about the space setting we refer to [10] and the references therein. The key in our arguments is the following lemma.
Lemma 1.1 (see [10]). Assume that Ω is a bounded domain in \mathbb{R}^{N} and the weight h satisfies $(\mathbf{H})_{p}$. Then the following embedding hold:
(i) $W_{0}^{1, p}(\Omega, h) \hookrightarrow L^{p_{s}^{*}}(\Omega)$ continuously for $1<p_{s}^{*}<N$, where $p_{s}^{*}:=\frac{N p s}{N(s+1)-p s}$;
(ii) $W_{0}^{1, p}(\Omega, h) \hookrightarrow L^{r}(\Omega)$ compactly for any $r \in\left[1, p_{s}^{*}\right)$.

In the sequel we denote by the p^{*} and q^{*} the quantities $p_{s_{p}}^{*}$ and $q_{s_{q}}^{*}$, respectively, where s_{p} and s_{q} are induced by condition the (\mathbf{H}). The assumptions concerning the coefficient functions of (1.1) are the following:
(A) $a \in L^{\frac{p^{*}}{p^{*}-p}}(\Omega)$ and either there exists $\Omega_{a}^{+} \subset \Omega$ of positive Lebesgue measure, i.e., $\left|\Omega_{a}^{+}\right|>0$, such that $a(x)>0$, for all $x \in \Omega_{a}^{+}$, neither $a(x) \equiv 0$ in Ω.
(D) $d \in L^{\frac{q^{*}}{q^{*}-q}}(\Omega)$ and either there exists $\Omega_{d}^{+} \subset \Omega$ of positive Lebesgue measure, i.e., $\left|\Omega_{d}^{+}\right|>0$, such that $d(x)>0$, for all $x \in \Omega_{d}^{+}$, neither $d(x) \equiv 0$ in Ω.
(B) $b(x) \geq 0$, a.e. in $\Omega, b \neq 0$ and $b \in L^{w}(\Omega)$, where $w=\left[1-\frac{\alpha+1}{p^{*}}-\frac{\beta+1}{q^{*}}\right]^{-1}$.

In [17], the author studied the principal eigenvalue of the system

$$
\begin{cases}-\nabla\left(h_{1}(x)|\nabla u|^{p-2} \nabla u\right)=\lambda a(x)|u|^{p-2} u+\lambda b(x)|u|^{\alpha-1}|v|^{\beta+1} u & \text { in } \Omega \tag{1.3}\\ -\nabla\left(h_{2}(x)|\nabla v|^{q-2} \nabla v\right)=\lambda d(x)|v|^{q-2} v+\lambda b(x)|u|^{\alpha+1}|v|^{\beta-1} v & \text { in } \Omega \\ u=v=0 & \text { on } \partial \Omega\end{cases}
$$

where h_{1}, h_{2} satisfy $(\mathbf{H}), \alpha \geq 0, \beta \geq 0$ such that $\frac{\alpha+1}{p}+\frac{\beta+1}{q}=1$ and the coefficients a, d and b satisfy the conditions $(\mathbf{A}),(\mathbf{D})$ and (\mathbf{B}), respectively. Then we have the first eigenvalue $\lambda_{1}>0$ for (1.3) is given by

$$
\begin{equation*}
\lambda_{1}=\inf _{(u, v) \in \Theta}\left[\frac{\alpha+1}{p} \int_{\Omega} h_{1}(x)|\nabla u|^{p} d x+\frac{\beta+1}{q} \int_{\Omega} h_{2}(x)|\nabla v|^{q} d x\right] \tag{1.4}
\end{equation*}
$$

where

$$
\begin{aligned}
\Theta= & \left\{(u, v) \in W ; \frac{\alpha+1}{p} \int_{\Omega} a(x)|u|^{p} d x+\frac{\beta+1}{q} \int_{\Omega} d(x)|v|^{q} d x\right. \\
& \left.+\int_{\Omega} b(x)|u|^{\alpha+1}|v|^{\beta+1} d x=1\right\} .
\end{aligned}
$$

Moreover, it is proved in [17] that this eigenvalue is simple, unique up to positive eigenfunctions and isolated. In order to state the main result of this paper, we assume the following conditions hold:
$\left(\mathbf{F}_{\mathbf{1}}\right)$ There exist $R>0,0<\mu<p$ and $0<\nu<q$ such that

$$
\frac{u}{p} F_{u}(x, u, v)+\frac{v}{q} F_{v}(x, u, v)-F(x, u, v) \geq c\left(|u|^{\mu}+|v|^{\nu}\right)
$$

for all $x \in \bar{\Omega}$ and $|u| \geq R,|v| \geq R$;
$\left(\mathbf{F}_{\mathbf{2}}\right)$ There exists positive constant C_{3} such that

$$
|F(x, u, v)| \leq C_{3}\left(1+|u|^{p}+|v|^{q}\right)
$$

for all $(u, v) \in \mathbb{R}^{2}$ and a.e. $x \in \Omega$;
$\left(\mathbf{F}_{3}\right)$ It holds that

$$
\begin{aligned}
& \limsup _{|(u, v)| \rightarrow 0} \frac{2(\max \{\alpha, \beta\}+1) F(x, u, v)}{\frac{\alpha+1}{p} \int_{\Omega} a(x)|u|^{p} d x+\frac{\beta+1}{q} \int_{\Omega} d(x)|v|^{q} d x+\int_{\Omega} b(x)|u|^{\alpha+1}|v|^{\beta+1} d x}<\lambda_{1} \\
& <\liminf _{|(u, v)| \rightarrow \infty} \frac{(\min \{\alpha, \beta\}+1) F(x, u, v)}{\frac{\alpha+1}{p} \int_{\Omega} a(x)|u|^{p} d x+\frac{\beta+1}{q} \int_{\Omega} d(x)|v|^{q} d x+\int_{\Omega} b(x)|u|^{\alpha+1}|v|^{\beta+1} d x},
\end{aligned}
$$

where λ_{1} is defined in (1.4).
It should be noticed that the hypothesis $\left(\mathbf{F}_{\mathbf{3}}\right)$ is related to the interaction of the potential F and the first eigenvalue λ_{1} of (1.3). D.G. Costa [8] was the first to introduce such assumption. A variant of this condition appeared in [14]. The readers may consult the work [9] for the non-degenerate case.

Definition 1.1. We say that $(u, v) \in W$ is a weak solution of system (1.1) if and only if

$$
\begin{aligned}
& \int_{\Omega}\left(h_{1}(x)|\nabla u|^{p-2} \nabla u \nabla \varphi+h_{2}(x)|\nabla v|^{q-2} \nabla v \nabla \psi\right) d x \\
& -\int_{\Omega}\left(F_{u}(x, u, v) \varphi+F_{v}(x, u, v) \psi\right) d x=0
\end{aligned}
$$

for all $(\varphi, \psi) \in W$.
Our main result of this paper is the following theorem.
Theorem 1.1. Suppose that the conditions $\left(\mathbf{F}_{\mathbf{1}}\right)-\left(\mathbf{F}_{\mathbf{3}}\right)$ are satisfied. Then problem (1.1) has a nontrivial weak solution.

2. Proof of the main result

In this section, we will prove Theorem 1.1 using the mountain pass theorem [3]. The functional corresponding to problem (1.1) is

$$
I(u, v)=\frac{1}{p} \int_{\Omega} h_{1}(x)|\nabla u|^{p} d x+\frac{1}{q} \int_{\Omega} h_{2}(x)|\nabla v|^{q} d x-\int_{\Omega} F(x, u, v) d x
$$

By $\left(\mathbf{F}_{\mathbf{2}}\right)$, we can show that the functional $I(u, v)$ is well defined and is of class C^{1} in W. Moreover, we have

$$
\begin{aligned}
I^{\prime}(u, v)(\phi, \psi)= & \int_{\Omega}\left(h_{1}(x)|\nabla u|^{p-2} \nabla u \nabla \varphi+h_{2}(x)|\nabla v|^{q-2} \nabla v \nabla \psi\right) d x \\
& -\int_{\Omega}\left(F_{u}(x, u, v) \varphi+F_{v}(x, u, v) \psi\right) d x
\end{aligned}
$$

for all $(u, v),(\phi, \psi) \in W$. Thus, weak solutions of (1.1) are exactly the critical points of the functional $I(u, v)$. First, we have the following result.

Lemma 2.1. Let $\left(u_{n}, v_{n}\right)$ be a bounded sequence in W such that $I\left(u_{n}, v_{n}\right)$ is bounded and $I^{\prime}\left(u_{n}, v_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Then $\left(u_{n}, v_{n}\right)$ has a convergent subsequence.

Proof. Since the sequence $\left(u_{n}, v_{n}\right)$ is bounded in W, we may consider that there is a subsequence (denote again by $\left(u_{n}, v_{n}\right)$), which is weakly convergent in W. Moreover, we have that

$$
\begin{align*}
& \left\langle I^{\prime}\left(u_{n}, v_{n}\right)-I^{\prime}\left(u_{m}, v_{m}\right),\left(u_{n}-u_{m}, v_{n}-v_{m}\right)\right\rangle \\
= & \int_{\Omega} h_{1}(x)\left(\left|\nabla u_{n}\right|^{p-2} \nabla u_{n}-\left|\nabla u_{m}\right|^{p-2} \nabla u_{m}\right)\left(\nabla u_{n}-\nabla u_{m}\right) d x \\
& +\int_{\Omega} h_{2}(x)\left(\left|\nabla v_{n}\right|^{q-2} \nabla v_{n}-\left|\nabla v_{m}\right|^{q-2} \nabla v_{m}\right)\left(\nabla v_{n}-\nabla v_{m}\right) d x \tag{2.1}\\
& -\int_{\Omega}\left(F_{u}\left(x, u_{n}, v_{n}\right)-F_{u}\left(x, u_{m}, v_{m}\right)\right)\left(u_{n}-u_{m}\right) d x \\
& -\int_{\Omega}\left(F_{v}\left(x, u_{n}, v_{n}\right)-F_{v}\left(x, u_{m}, v_{m}\right)\right)\left(v_{n}-v_{m}\right) d x .
\end{align*}
$$

Using $\left(\mathbf{F}_{\mathbf{2}}\right)$, the Hölder inequality and Lemma 1.1, we can write

$$
\begin{aligned}
& \left|\int_{\Omega}\left(F_{u}\left(x, u_{n}, v_{n}\right)-F_{u}\left(x, u_{m}, v_{m}\right)\right)\left(u_{n}-u_{m}\right) d x\right| \\
\leq & \int_{\Omega}\left|F_{u}\left(x, u_{n}, v_{n}\right)-F_{u}\left(x, u_{m}, v_{m}\right)\right|\left|u_{n}-u_{m}\right| d x \\
\leq & \int_{\Omega}\left|F_{u}\left(x, u_{n}, v_{n}\right)\left\|u_{n}-u_{m}\left|d x+\int_{\Omega}\right| F_{u}\left(x, u_{m}, v_{m}\right)\right\| u_{n}-u_{m}\right| d x \\
\leq & \int_{\Omega}\left|u_{n}\right|^{p-1}\left|u_{n}-u_{m}\right| d x+\int_{\Omega}\left|u_{m}\right|^{p-1}\left|u_{n}-u_{m}\right| d x \\
\leq & \left\|u_{n}\right\|_{L^{p}(\Omega)}^{p-1}\left\|u_{n}-u_{m}\right\|_{L^{p}(\Omega)}+\left\|u_{m}\right\|_{L^{p}(\Omega)}^{p-1}\left\|u_{n}-u_{m}\right\|_{L^{p}(\Omega)},
\end{aligned}
$$

which tends to 0 as $m, n \rightarrow \infty$. Then,

$$
\begin{equation*}
\lim _{m, n \rightarrow \infty} \int_{\Omega}\left(F_{u}\left(x, u_{n}, v_{n}\right)-F_{u}\left(x, u_{m}, v_{m}\right)\right)\left(u_{n}-u_{m}\right) d x=0 \tag{2.2}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
\lim _{m, n \rightarrow \infty} \int_{\Omega}\left(F_{v}\left(x, u_{n}, v_{n}\right)-F_{v}\left(x, u_{m}, v_{m}\right)\right)\left(v_{n}-v_{m}\right) d x=0 \tag{2.3}
\end{equation*}
$$

From (2.1), (2.2) and (2.3), we arrive at

$$
\begin{equation*}
\lim _{m, n \rightarrow \infty} \int_{\Omega} h_{1}(x)\left(\left|\nabla u_{n}\right|^{p-2} \nabla u_{n}-\left|\nabla u_{m}\right|^{p-2} \nabla u_{m}\right)\left(\nabla u_{n}-\nabla u_{m}\right) d x=0 \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{m, n \rightarrow \infty} \int_{\Omega} h_{2}(x)\left(\left|\nabla v_{n}\right|^{q-2} \nabla v_{n}-\left|\nabla v_{m}\right|^{q-2} \nabla v_{m}\right)\left(\nabla v_{n}-\nabla v_{m}\right) d x=0 \tag{2.5}
\end{equation*}
$$

We recall the following inequalities
$\left(|\xi|^{p-2} \xi-|\eta|^{p-2} \eta, \xi-\eta\right) \geq c_{1}(|\xi|+|\eta|)^{p-2}|\xi-\eta|^{2} \quad$ if $1<p<2$,
$\left(|\xi|^{p-2} \xi-|\eta|^{p-2} \eta, \xi-\eta\right) \geq c_{2}|\xi-\eta|^{p} \quad$ if $p \geq 2$,
for all $\xi, \eta \in \mathbb{R}^{N}$, where (.,.) denote the usual product in \mathbb{R}^{N}, see for example [12]. If $1<p<2$, by the Hölder inequality, choosing $\phi_{n}=h_{1}^{\frac{1}{p}} u_{n}, \phi_{m}=h_{1}^{\frac{1}{p}} u_{m}$, we get

$$
\begin{aligned}
0 \leq & \left\|\phi_{n}-\phi_{m}\right\|_{h_{1}, p}^{p} \\
\leq & \int_{\Omega}\left|\nabla \phi_{n}-\nabla \phi_{m}\right|^{p}\left(\left|\nabla \phi_{n}\right|+\left|\nabla \phi_{m}\right|\right)^{\frac{p(p-2)}{2}}\left(\left|\nabla \phi_{n}\right|+\left|\nabla \phi_{m}\right|\right)^{\frac{p(2-p)}{2}} d x \\
\leq & \left(\int_{\Omega}\left|\nabla \phi_{n}-\nabla \phi_{m}\right|^{2}\left(\left|\nabla \phi_{n}\right|+\left|\nabla \phi_{m}\right|\right)^{p-2} d x\right)^{\frac{p}{2}}\left(\int_{\Omega}\left(\left|\nabla \phi_{n}\right|+\left|\nabla \phi_{m}\right|\right)^{p} d x\right)^{\frac{2-p}{2}} \\
\leq & c_{3}\left(\int_{\Omega}\left(\left|\nabla \phi_{n}\right|^{p-2} \nabla \phi_{n}-\left|\nabla \phi_{m}\right|^{p-2} \nabla \phi_{m}, \nabla\left(\phi_{n}-\phi_{m}\right)\right) d x\right)^{\frac{p}{2}} \\
& \times\left(\int_{\Omega}\left(\left|\nabla \phi_{n}\right|+\left|\nabla \phi_{m}\right|\right)^{p} d x\right)^{\frac{2-p}{2}} \\
\leq & c_{4}\left(\int_{\Omega}\left(\left|\nabla \phi_{n}\right|^{p-2} \nabla \phi_{n}-\left|\nabla \phi_{m}\right|^{p-2} \nabla \phi_{m}, \nabla\left(\phi_{n}-\phi_{m}\right)\right) d x\right)^{\frac{p}{2}},
\end{aligned}
$$

which implies that $\left\|u_{n}-u_{m}\right\|_{h_{1}, p} \rightarrow 0$ by (2.4), as $m, n \rightarrow \infty$. If $p \geq 2$, one has

$$
0 \leq\left\|u_{n}-u_{m}\right\|_{h_{1}, p}^{p} \leq c_{5} \int_{\Omega}\left(\left|\nabla u_{n}\right|^{p-2} \nabla u_{n}-\left|\nabla u_{m}\right|^{p-2} \nabla u_{m}, \nabla\left(u_{n}-u_{m}\right)\right) d x
$$

so we get $\left\|u_{n}-u_{m}\right\|_{h_{1}, p} \rightarrow 0$ by (2.4), as $m, n \rightarrow \infty$. (u_{n}) is a Cauchy's sequence in $W_{0}^{1, p}\left(\Omega, h_{1}\right)$. Hence $\left(u_{n}\right)$ converges strongly in $W_{0}^{1, p}\left(\Omega, h_{1}\right)$. Similarly, we can prove that $\left(v_{n}\right)$ converges strongly in $W_{0}^{1, q}\left(\Omega, h_{2}\right)$.
Lemma 2.2. Let $c \in R$. Then, the functional I satisfies the $(P S)_{c}$ condition.
Proof. According to Lemma 2.1, it is sufficient to prove that the sequence $\left\{\left(u_{n}, v_{n}\right)\right\}$ is bounded in W. Let $\left\{\left(u_{n}, v_{n}\right)\right\}$ be such a $(P S)_{c}$ sequence, that is, $I\left(u_{n}, v_{n}\right) \rightarrow c$ and $I^{\prime}\left(u_{n}, v_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. We obtain

$$
\begin{aligned}
& \epsilon_{n}+c \geq I\left(u_{n}, v_{n}\right)-I^{\prime}\left(u_{n}, v_{n}\right)\left(\frac{u_{n}}{p}, \frac{v_{n}}{q}\right) \\
& =\int_{\Omega}\left(\frac{1}{p} F_{u}\left(x, u_{n}, v_{n}\right) u_{n}+\frac{1}{q} F_{v}\left(x, u_{n}, v_{n}\right) v_{n}-F\left(x, u_{n}, v_{n}\right)\right) d x \\
& \geq c_{6} \int_{\Omega}\left(\left|u_{n}\right|^{\mu}+\left|v_{n}\right|^{\nu}\right) d x,
\end{aligned}
$$

which shows from $\left(\mathbf{F}_{\mathbf{1}}\right)$ that

$$
\begin{equation*}
\int_{\Omega}\left(\left|u_{n}\right|^{\mu}+\left|v_{n}\right|^{\nu}\right) d x \leq c_{7} \text { for all } n . \tag{2.6}
\end{equation*}
$$

Next, we use the following interpolation inequality: let $0<e_{1}<e_{2}<e_{3}$ and suppose that for some measurable function $u: \Omega \rightarrow R$ we have that

$$
\int_{\Omega}|u|^{e_{1}} d x<\infty \text { and } \int_{\Omega}|u|^{e_{3}} d x<\infty
$$

then

$$
\begin{equation*}
\int_{\Omega}|u|^{e_{2}} d x \leq\left(\int_{\Omega}|u|^{e_{1}} d x\right)^{\frac{e_{3}-e_{2}}{e_{3}-e_{1}}}\left(\int_{\Omega}|u|^{e_{3}} d x\right)^{\frac{e_{2}-e_{1}}{e_{3}-e_{1}}} . \tag{2.7}
\end{equation*}
$$

We use (2.7) for $0<\mu<p<p^{*}$ and $0<\nu<q<q^{*}$, we get

$$
\begin{align*}
& \int_{\Omega}\left|u_{n}\right|^{p} d x \leq\left(\int_{\Omega}\left|u_{n}\right|^{\mu} d x\right)^{\frac{p^{*}-p}{p^{*}-\mu}}\left(\int_{\Omega}\left|u_{n}\right|^{p^{*}} d x\right)^{\frac{p-\mu}{p^{*}-\mu}}, \tag{2.8}\\
& \int_{\Omega}\left|v_{n}\right|^{q} d x \leq\left(\int_{\Omega}\left|v_{n}\right|^{\nu} d x\right)^{\frac{q^{*}-q}{q^{*}-\nu}}\left(\int_{\Omega}\left|v_{n}\right|^{q^{*}} d x\right)^{\frac{q-\nu}{q^{*}-\nu}} \tag{2.9}
\end{align*}
$$

Using (2.6), we obtain

$$
\begin{equation*}
\int_{\Omega}\left|u_{n}\right|^{p} d x \leq c_{8}\left(\int_{\Omega}\left|u_{n}\right|^{p^{*}} d x\right)^{\frac{p-\mu}{p^{*}-\mu}} \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\Omega}\left|v_{n}\right|^{q} d x \leq c_{9}\left(\int_{\Omega}\left|v_{n}\right| q^{*} d x\right)^{\frac{q-\nu}{q^{*}-\nu}} . \tag{2.11}
\end{equation*}
$$

By Lemma 1.1, it follows that

$$
\begin{equation*}
\left(\int_{\Omega}\left|u_{n}\right|^{p^{*}} d x\right)^{\frac{p-\mu}{p^{*}-\mu}} \leq c_{10}\left\|u_{n}\right\|_{h_{1}, p}^{\widetilde{p}} \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\int_{\Omega}\left|v_{n}\right|^{q^{*}} d x\right)^{\frac{q-\nu}{q^{*}-\nu}} \leq c_{11}\left\|v_{n}\right\|_{h_{2}, q}^{\widetilde{q}} \tag{2.13}
\end{equation*}
$$

where $\widetilde{p}=\frac{p-\mu}{p^{*}-\mu} p^{*}$ and $\widetilde{q}=\frac{q-\nu}{q^{*}-\nu} q^{*}$. On the other hand, by $\left(\mathbf{F}_{\mathbf{2}}\right)$ and (2.8)-(2.13), we get

$$
I\left(u_{n}, v_{n}\right) \geq \frac{1}{p}\left\|u_{n}\right\|_{h_{1}, p}^{p}+\frac{1}{q}\left\|v_{n}\right\|_{h_{2}, q}^{q}-c_{12}\left(\left\|u_{n}\right\|_{h_{1}, p}^{\widetilde{p}}+\left\|v_{n}\right\|_{h_{2}, q}^{\widetilde{q}}\right) .
$$

Since $I\left(u_{n}, v_{n}\right)$ is bounded and $\widetilde{p}<p, \widetilde{q}<q$, it follows that $\left(u_{n}, v_{n}\right)$ is bounded in W. By Lemma 2.1, we obtain that the functional $I(u, v)$ satisfies the $(P S)_{c}$ condition (compactness condition).

Now, we verify that the functional $I(u, v)$ satisfies the geometry of the mountain pass theorem.

Lemma 2.3.

(i) There exist $\rho, \sigma>0$ such that $\|(u, v)\|_{W}=\rho$ implies $I(u, v) \geq \sigma>0$.
(ii) There exists $(\widehat{u}, \widehat{v}) \in W$ such that $\|(\widehat{u}, \widehat{v})\|_{W}>\rho$ and $I(\widehat{u}, \widehat{v})<0$.

Proof. (i) Set $\theta_{*}=\frac{1}{\max \{\alpha, \beta\}+1}$. From the left-hand side of $\left(\mathbf{F}_{\mathbf{3}}\right)$, there exists $\rho>0$ such that

$$
\begin{aligned}
F(x, u, v) \leq & \frac{\lambda_{1} \theta_{*}}{2}\left(\frac{\alpha+1}{p} \int_{\Omega} a(x)|u|^{p} d x+\frac{\beta+1}{q} \int_{\Omega} d(x)|v|^{q} d x\right. \\
& \left.+\int_{\Omega} b(x)|u|^{\alpha+1}|v|^{\beta+1} d x\right)
\end{aligned}
$$

provided that $\|u\|_{h_{1}, p}+\|v\|_{h_{2}, q}=\rho$ which will be chosen later. By (1.4) and the variational characterization of the principal eigenvalue λ_{1}, we have

$$
\int_{\Omega} F(x, u, v) d x \leq \frac{\theta_{*}(\alpha+1)}{2 p} \int_{\Omega} h_{1}(x)|\nabla u|^{p} d x+\frac{\theta_{*}(\beta+1)}{2 q} \int_{\Omega} h_{2}(x)|\nabla v|^{q} d x
$$

Hence, we get

$$
\begin{aligned}
I(u, v) & =\frac{1}{p} \int_{\Omega} h_{1}(x)|\nabla u|^{p} d x+\frac{1}{q} \int_{\Omega} h_{2}(x)|\nabla v|^{q} d x-\int_{\Omega} F(x, u, v) d x \\
& \geq \theta_{*}\left(\frac{\alpha+1}{p} \int_{\Omega} h_{1}(x)|\nabla u|^{p} d x+\frac{\beta+1}{q} \int_{\Omega} h_{2}(x)|\nabla v|^{q} d x\right)-\int_{\Omega} F(x, u, v) d x \\
& \geq \frac{\theta_{*}(\alpha+1)}{2 p}\|u\|_{h_{1}, p}^{p}+\frac{\theta_{*}(\beta+1)}{2 q}\|v\|_{h_{2}, q}^{q}
\end{aligned}
$$

Then, there exists $\sigma, \rho>0$ such that $I(u, v) \geq \sigma>0$ if $\|u\|_{h_{1}, p}+\|v\|_{h_{2}, q}=\rho$.
(ii) Set $\theta^{*}=\frac{1}{\min \{\alpha, \beta\}+1}$. From the right-hand side of $\left(\mathbf{F}_{\mathbf{3}}\right)$, we get for $\epsilon>0$ and t sufficiently large that

$$
\begin{aligned}
F\left(x, t^{\frac{1}{p}} u_{0}, t^{\frac{1}{q}} v_{0}\right) \geq & t \theta^{*}\left(\lambda_{1}+\epsilon\right)\left(\frac{\alpha+1}{p} \int_{\Omega} a(x)\left|u_{0}\right|^{p} d x+\frac{\beta+1}{q} \int_{\Omega} d(x)\left|v_{0}\right|^{q} d x\right. \\
& \left.+\int_{\Omega} b(x)\left|u_{0}\right|^{\alpha+1}\left|v_{0}\right|^{\beta+1} d x\right)
\end{aligned}
$$

where $\left(u_{0}, v_{0}\right)$ is the eigenfunction pair corresponding to the principal eigenvalue λ_{1} of problem (1.3). Then we have

$$
\begin{aligned}
& I\left(t^{\frac{1}{p}} u_{0}, t^{\frac{1}{q}} v_{0}\right) \\
\leq & \frac{t}{p} \int_{\Omega} h_{1}(x)\left|\nabla u_{0}\right|^{p} d x+\frac{t}{q} \int_{\Omega} h_{2}(x)\left|\nabla v_{0}\right|^{q} d x-\int_{\Omega} F\left(x, t^{\frac{1}{p}} u_{0}, t^{\frac{1}{q}} v_{0}\right) d x \\
\leq & t \theta^{*}\left(\frac{\alpha+1}{p} \int_{\Omega} h_{1}(x)\left|\nabla u_{0}\right|^{p} d x+\frac{\beta+1}{q} \int_{\Omega} h_{2}(x)\left|\nabla v_{0}\right|^{q} d x\right) \\
& -t \theta^{*}\left(\lambda_{1}+\epsilon\right)\left(\frac{\alpha+1}{p} \int_{\Omega} a(x)\left|u_{0}\right|^{p} d x+\frac{\beta+1}{q} \int_{\Omega} d(x)\left|v_{0}\right|^{q} d x\right. \\
& \left.+\int_{\Omega} b(x)\left|u_{0}\right|^{\alpha+1}\left|v_{0}\right|^{\beta+1} d x\right) \\
= & -t \theta^{*} \epsilon\left(\frac{\alpha+1}{p} \int_{\Omega} a(x)\left|u_{0}\right|^{p} d x+\frac{\beta+1}{q} \int_{\Omega} d(x)\left|v_{0}\right|^{q} d x+\int_{\Omega} b(x)\left|u_{0}\right|^{\alpha+1}\left|v_{0}\right|^{\beta+1} d x\right) .
\end{aligned}
$$

We conclude that $I\left(t^{\frac{1}{p}} u_{0}, t^{\frac{1}{q}} v_{0}\right) \rightarrow-\infty$ as $t \rightarrow+\infty$, and thus there exists a constant t_{0} such that $I\left(t_{0}^{\frac{1}{p}} u_{0}, t_{0}^{\frac{1}{q}} v_{0}\right)<0$. Choose $\widehat{u}=t_{0}^{\frac{1}{p}} u_{0}$ and $\widehat{v}=t_{0}^{\frac{1}{q}} v_{0}$, Lemma 2.3 is proved.
Proof of Theorem 1.1. By Lemmas 2.2 and 2.3, all assumptions of the mountain pass theorem in [3] are satisfied. Then the functional I admits a nontrivial critical point in W and thus system (1.1) has a nontrivial weak solution. The proof of Theorem 1.1 is complete.

Acknowledgements

The authors wish to express their gratitude to the referee for his/her careful reading of the manuscript and fruitful suggestions.

References

[1] G.A. Afrouzi, S. Mahdavi and Nikolaos B. Zographopoulos, Existence of solutions for non-uniformly nonlinear elliptic systems, Electron. J. Diff. Equ., 167 (2011), 1-9.
[2] G.A. Afrouzi and S. Mahdavi, Existence results for a class of degenerate quasilinear elliptic systems, Lithuanian Math. J., 51 (2011), 451-460.
[3] A. Ambrosetti and P.H. Rabinowitz, Dual variational methods in critical points theory and applications, J. Funct. Anal., 4 (1973), 349-381.
[4] L. Boccardo and D.G. De Figueiredo, Some remarks on a system of quasilinear elliptic equations, Nonlinear Diff. Equ. Appl. (NoDEA), 9 (2002), 309-323.
[5] P. Caldiroli and R. Musina, On a variational degenerate elliptic problem, Nonlinear Diff. Equ. Appl. (NoDEA), 7 (2000), 187-199.
[6] N.T. Chung, Existence of infinitely many solutions for degenerate and singular elliptic systems with indefinite concave nonlinearities, Electron. J. Diff. Equ., 30 (2011), 1-12.
[7] N.T. Chung and H.Q. Toan, On a class of degenerate and singular elliptic systems in bounded domain, J. Math. Anal. Appl., 360 (2009), 422-431.
[8] D.G. Costa, On a class of elliptic systems in \mathbb{R}^{N}, Electron. J. Diff. Equ., 7 (1994), 1-14.
[9] A. Djellit and S. Tas, Existence of solutions for a class of elliptic systems in \mathbb{R}^{N} involving the p-Laplacian, Electron. J. Diff. Equ., 56 (2003), 1-8.
[10] P. Drabek, A. Kufner and F. Nicolosi, Quasilinear elliptic equations with degeneration and singularities, Walter de Gruyter and Co., Berlin, 1997.
[11] D.D. Hai and R. Shivaji, An existence result on positive solutions of p-Laplacian systems, Nonlinear Anal., 56 (2004), 1007-1010.
[12] D.W. Huang and Y.Q. Li, Multiplicity of solutions for a noncooperative pLaplacian elliptic system in \mathbb{R}^{N}, J. Differential Equations, 215 (2005), 206-223.
[13] S. Ma, Nontrivial solutions for resonant cooperative elliptic systems via computations of the critical groups, Nonlinear Analysis, 73 (2010), 3856-3872.
[14] J.M.B. do Ó, Solutions to perturbed eigenvalue problems of the p-Laplacian in \mathbb{R}^{N}, Electron. J. Diff. Equ., 11 (1997), 1-15.
[15] T.F. Wu, The Nehari manifold for a semilinear elliptic system involving signchanging weight functions, Nonlinear Analysis, 68 (2008), 1733-1745.
[16] G. Zhang and Y. Wang, Some existence results for a class of degenerate semilinear elliptic systems, J. Math. Anal. Appl., 333 (2007), 904-918.
[17] N.B. Zographopoulos, On the principal eigenvalue of degenerate quasilinear elliptic systems, Math. Nachr., 281 (2008), No. 9, 1351-1365.
[18] N.B. Zographopoulos, On a class of degenarate potential elliptic system, Nonlinear Diff. Equ. Appl. (NoDEA), 11 (2004), 191-199.
[19] N.B. Zographopoulos, p-Laplacian systems on resonance, Appl. Anal., 83 (2004), 509-519.

[^0]: \dagger the corresponding author.Email address:ntchung82@yahoo.com(N.T. Chung)
 ${ }^{1}$ Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran
 ${ }^{2}$ Department of Mathematics and Informatics, Quang Binh University, 312 Ly Thuong Kiet, Dong Hoi, Quang Binh, Vietnam

