For EDITORS

For READERS

All Issues

Vol.15, 2025
Vol.14, 2024
Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 15, Number 2, 2025, Pages -                                                                DOI:10.11948/JAAC-2024-0245
Positive solutions of discrete boundary value problem for a second-order nonlinear difference equation with singular \phi-Laplacian
Ting Wang,Man Xu,Yanyun Li
Keywords:positive solutions, discrete boundary value problem, singular $\phi$-Laplacian, Lower and upper solutions, Szulkin"s critical point theory.
Abstract:
      We establish the nonexistence, existence and multiplicity of positive solutions of the following discrete boundary value problem for a second-order nonlinear difference equation with singular $\phi$-Laplacian {\footnotesize \begin{equation*} \begin{cases} \begin{split} &-\nabla(k^{N-1}\phi(\triangle v_k))=\lambda Nk^{N-1}\left(\frac{f"(\varphi^{-1}(v_k))}{\sqrt{1-(\triangle v_k)^2}}-f(\varphi^{-1}(v_k))H(\varphi^{-1}(v_k),k)\right),k\in[2,n-1]_{\mathbb{Z}},\&|\triangle v_k|<1,\&\triangle v_1=0=v_n,\\end{split} \end{cases} \end{equation*}} where $\phi(s)=\frac{s}{\sqrt{1-s^2}}$, $\phi: (-1,1)\rightarrow\mathbb{R}$ is an increasing homeomorphism with $\phi(0)=0$, $\lambda$ is a positive parameter, $\triangle$ is the forward difference operator defined by $\triangle v_k=v_{k+1}-v_k$, $\nabla$ is the backward difference operator defined by $\nabla v_k=v_k-v_{k-1}$, $f\in C^{\infty}(I)$ and $f>0$, $I$ is an open interval in $\mathbb{R}$, $\varphi(s)=\int_0^s\frac{dt}{f(t)}$, $\varphi^{-1}$ is the inverse function of $\varphi$, $H:I\times[2,n-1]_{\mathbb{Z}}\rightarrow\mathbb{R}$ is a continuous function, $[2,n-1]_{\mathbb{Z}}:={2,3,\ldots,n-1}$, and the integer $n\geq4$. By using the method of upper and lower solutions, topological degree theory and Szulkin"s critical point theory for convex, lower semicontinous perturbations of $C^1$-functionals, we determine the interval of parameter $\lambda$ in which the above problem has zero, one, two positive solutions according to sublinear at zero.
PDF      Download reader