For EDITORS

For READERS

All Issues

Vol.15, 2025
Vol.14, 2024
Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 14, Number 6, 2024, Pages -                                                                DOI:10.11948/JAAC-2024-0068
Boundary value problem with impulsive effects and Riemann-Liouville tempered fractional derivatives
Cesar Enrique Torres Ledesma,Hernán A. Cuti Gutierrez,Nemat Nyamoradi
Keywords:Riemann-Liouville and Caputo tempered fractional derivatives, impulsive effects, tempered fractional space of Sobolev type, variational methods
Abstract:
      In this paper, we study a fractional impulsive differential equation with mixed tempered fractional derivatives. We justify some fundamental properties in the variational structure to fractional impulsive differential equations with the tempered fractional derivative operator. Finally, we study the existence of weak solutions with critical point theory and variational methods for the proposed problem.
PDF      Download reader