A BOUNDARY VALUE PROBLEM WITH IMPULSIVE EFFECTS AND RIEMANN-LIOUVILLE TEMPERED FRACTIONAL DERIVATIVES

HERNÁN A. CUTI GUTIERREZ, NEMAT NYAMORADI, AND CÉSAR E. TORRES LEDESMA

Abstract

In this paper, we study a fractional impulsive differential equation with mixed tempered fractional derivatives. We justify some fundamental properties in the variational structure to fractional impulsive differential equations with the tempered fractional derivative operator. Finally, we study the existence of weak solutions with critical point theory and variational methods for the proposed problem. To prove the effectiveness of our main result, we investigate an interesting example.

1. Introduction

In applied science such as biology, physics, control theory, economics and mechanics among other areas processes are frequently simulated using fractional differential equations, for details, see $[12,22,23,29,30,48]$ and the references therein. The theory of fractional differential equations has consequently attracted a lot of attention in recent years. For example, existence and stability are studied in [1, 5], and several resolution strategies are in [33, 36, 41]. In [13] the authors studied the nonlinear time-fractional gas dynamics equation. On the other hand, in [28], it is proposed an impulsive nonlinear differential equation with fractional derivative with interesting applications to pest management and, besides, some contributions to the study of option price governed by a Black-Scholes equation with a time-fractional derivative can be found in [8]. Some recent important applications of fractional differential models are those about time-fractional Schrödinger equation [16], Schrödinger equation with fractional Laplacian [18], fractional wave equations [11], fractional damped dynamical systems [4] and fractional Euler-Lagrange equation modeling a fractional oscillator [6]. Some other recent application, these such equations are important and are considered as a novel subject in the theory of fractional differential equations. Using analytical methods such as fixed point theory, there have many results dealing with the existence of solutions to nonlinear fractional differential equations in this subject. For instance, we name here critical point theory and variational methods [3, 20, 21, 47, 49, 51, 52], topological degree theory [19], Leray-Schauder nonlinear alternative [55], and so on.

The tempered fractional calculus is the generalized version of fractional calculus. The tempered fractional derivatives and integrals are obtained when the fractional derivatives and integrals are multiplied by an exponential factor [27,43]. Recently, it has been observed that the use of tempered fractional derivatives, which leads to the so-called truncated Lévy flight, exhibits some important advantages compared to the usual fractional derivatives, especially with regard to the spatial moments $[15,24,45,54]$. In this context, it should be noted that solutions obtained for the tempered fractional derivative contain those for the untempered one as a special case. Therefore, the truncated Lévy process can be seen as a generalization of the

[^0]conventional untempered one. Tempered fractional differential equations have been applied in different fields of physics such as in geophysics, statistical physics, plasma physics or in the context of astrophysics $[10,32,46,54]$. Apart from the physics field, the tempered fractional derivatives have also been applied in finance for modeling price fluctuations with semi-heavy tails [45]. Recently, Almeida and Morgado [2] studied variational problems where the cost functional involves the tempered Caputo fractional derivative.

Differential equations with impulsive effects arise from many phenomena in the real world and describe the dynamics of processes in which sudden, discontinuous jumps occur. We refer to $[9,17,25,26,44,53]$ for some monographs and papers including relevant information about this topic. In $[7,34,35,42]$, it is proved the existence and multiplicity of weak solutions for a class of Dirichlet's boundary value problems for fractional differential equations with impulses by using a critical point theory. More precisely, in [50], the authors studied the existence of weak solutions by using new linking theorem due to Schechter included in [38].

The used method in this paper is standard, but its configuration and relations of variational methods in the present paper is new. The obtained results in tempered fractional derivatives are new and contribute to this new research topic concerning the study of positive boundary value problems.

Motivated by these previous works, we would like to study variational structure for the tempered fractional derivative operator and we have justified some fundamental properties in the variational structure. Also, we deal with the following tempered fractional boundary value problem

$$
\left\{\begin{array}{l}
\mathbb{D}_{b^{-}}^{\alpha, \sigma}\left({ }^{C} \mathbb{D}_{a}^{\alpha, \sigma} u(x)\right)=f(x, u), \quad x \neq x_{j} \text { a.e. } x \in(0, T) \tag{1.1}\\
u(0)=u(T)=0 \\
\Delta\left(\mathbb{I}_{T^{-}}^{1-\alpha, \sigma} C_{\mathbb{D}_{0^{+}}^{\alpha, \sigma}}^{\alpha,}\right)\left(x_{j}\right)=I_{j}\left(u\left(x_{j}\right)\right), \quad j=1,2, \cdots, n
\end{array}\right.
$$

where $\alpha \in\left(\frac{1}{2}, 1\right)$ and $\sigma>0$,

$$
\begin{aligned}
& 0=x_{0}<x_{1}<x_{2}<\cdots<x_{n}<x_{n+1}=T \\
& \Delta\left(\mathbb{I}_{T^{-}}^{1-\alpha, \sigma} \mathbb{D}_{0^{+}}^{\alpha, \sigma} u\right)\left(x_{j}\right)=\lim _{x \rightarrow x_{j}^{+}} \mathbb{I}_{T^{-}}^{1-\alpha, \sigma C} \mathbb{D}_{0^{+}}^{\alpha, \sigma} u(x)-\lim _{x \rightarrow x_{j}^{-}} \mathbb{I}_{T^{-}}^{1-\alpha, \sigma C} \mathbb{D}_{0^{+}}^{\alpha, \sigma} u(x)
\end{aligned}
$$

$f:(0, T) \times \mathbb{R} \rightarrow \mathbb{R}$ and $I_{j}: \mathbb{R} \rightarrow \mathbb{R}, j=1,2, \cdots, n$ are continuous functions satisfying some suitable conditions. More precisely, we assume that $I_{j}(s)$ and f satisfy the following hypotheses:
$\left(F_{1}\right)$ There exists a constant $\eta>2$ such that $f(x, u)=o\left(|u|^{\eta}\right)$ as $|u| \rightarrow \infty$ and $f(x, u)=$ $o(|u|)$ as $|u| \rightarrow 0$ uniformly for $x \in[0, T]$.
$\left(F_{2}\right)$ There exist constant $\gamma>2$ and $\vartheta_{0}>0$ such that

$$
0<\gamma F(x, u) \leq u f(x, u), \quad \text { for every } \quad(x, u) \in[0, T] \times \mathbb{R}, \quad|\tau| \geq \vartheta_{0}
$$

$\left(I_{1}\right)$ There exists a constant $1<\varpi<\gamma-1$ such that $I_{j}(u)=o\left(|u|^{\varpi}\right)$ as $|u| \rightarrow \infty$ and $I_{j}(u)=o(|u|)$ as $|u| \rightarrow 0$.
(I_{2}) There exist constant $0<\gamma_{j}<2$ and $\vartheta>0$ for any $j=1, \ldots, n$, such that

$$
0<\gamma_{j} \int_{0}^{\tau} I_{j}(s) d s \leq I_{j}(\tau) \tau, \quad \text { for every } \tau \in \mathbb{R}, \quad|\tau| \geq \vartheta
$$

Our main results read as follows:
Theorem 1.1. Assume that the conditions $\left(F_{1}\right),\left(F_{2}\right),\left(I_{1}\right)$ and $\left(I_{2}\right)$ hold. Moreover, $I_{j}(t)$ and $F(x, t)$ about t are evens. Then problem (1.1) has infinitely many weak solutions.

If we choose $\sigma=0$, problem (1.1) reduce to the following boundary value problem

$$
\left\{\begin{array}{l}
D_{b^{-}}^{\alpha}\left({ }^{C} D_{a^{+}}^{\alpha} u(x)\right)=f(x, u), \quad x \neq x_{j} \text { a.e. } x \in(0, T) \tag{1.2}\\
u(0)=u(T)=0 \\
\Delta\left(I_{T^{-}}^{1-\alpha C} D_{0^{+}}^{\alpha} u\right)\left(x_{j}\right)=I_{j}\left(u\left(x_{j}\right)\right), \quad j=1,2, \cdots, n
\end{array}\right.
$$

where $D_{b^{-}}^{\alpha} u$ and ${ }^{C} D_{a^{+}}^{\alpha} u$ are the right Riemann-Liouville fractional derivative and the left Caputo fractional derivative respectively. As a consequence of Theorem 4 we have the following result.

Theorem 1.2. Assume that the conditions $\left(F_{1}\right),\left(F_{2}\right),\left(I_{1}\right)$ and $\left(I_{2}\right)$ hold. Moreover, $I_{j}(t)$ and $F(x, t)$ about t are evens. Then problem (1.2) has infinitely many weak solutions.

Remark 1. We recall that in Theorem 1.1 and Theorem 1.2 we just consider the case $\alpha \in\left(\frac{1}{2}, 1\right)$, because, in this case we can consider the classical Dirichlet boundary conditions and we have the following characterization of our fractional space

$$
\mathbb{H}_{0}^{\alpha, \sigma}(a, b)=\left\{u \in L^{2}(a, b):{ }^{C} \mathbb{D}_{a^{+}}^{\alpha, \sigma} u \in L^{2}(a, b) \text { and } u(a)=u(b)=0\right\} .
$$

The case $\alpha \in\left(0, \frac{1}{2}\right)$ is an open problem yet.

2. Some previous results

Let (a, b) be a bounded interval. For $\alpha \in(0,1), \sigma>0$ and a suitable function u, the left and right Riemann-Liouville tempered fractional derivatives of order α are defined as

$$
\begin{equation*}
\mathbb{D}_{a^{+}}^{\alpha, \sigma} u(x)=\left(\frac{d}{d x}+\sigma\right) \mathbb{I}_{a^{+}}^{1-\alpha, \sigma} u(x), \quad x>a, \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbb{D}_{b^{-}}^{\alpha ; \sigma} u(x)=-\left(\frac{d}{d x}-\sigma\right) \mathbb{I}_{b^{-}}^{1-\alpha, \sigma} u(x), \quad x<b . \tag{2.2}
\end{equation*}
$$

respectively, where $\mathbb{I}_{a^{+}}^{\alpha, \sigma} u, \mathbb{I}_{b^{-}}^{\alpha, \sigma} u$ are the left and right Riemann-Liouville tempered fractional integrals of order α defined as

$$
\begin{equation*}
\mathbb{I}_{a^{+}}^{\alpha, \sigma} u(x)=\frac{1}{\Gamma(\alpha)} \int_{a}^{x}(x-s)^{\alpha-1} e^{-\sigma(x-s)} u(s) d s, \quad x>a, \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbb{I}_{b^{-}}^{\alpha, \sigma} u(x)=\frac{1}{\Gamma(\alpha)} \int_{x}^{b}(s-x)^{\alpha-1} e^{-\sigma(s-x)} u(s) d s, x<b \tag{2.4}
\end{equation*}
$$

respectively. An alternative approach in defining the tempered fractional derivatives is based on the left-sided and right-sided tempered Caputo fractional derivatives of order α, defined, respectively, as

$$
\begin{equation*}
C_{\mathbb{D}_{a^{+}}^{\alpha, \sigma}} u(x)=\mathbb{I}_{a^{+}}^{1-\alpha, \sigma}\left(\frac{d}{d x}+\sigma\right) u(x), \quad x>a \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{\mathbb{D}_{b^{-}}^{\alpha, \sigma}} u(x)=-\mathbb{I}_{b^{-}}^{1-\alpha, \sigma}\left(\frac{d}{d x}-\sigma\right) u(x), x<b, \tag{2.6}
\end{equation*}
$$

respectively. Note that, if $u \in A C[a, b]$, then the following identities holds for Riemann-Liouville and Caputo tempered fractional derivatives

$$
\begin{equation*}
\mathbb{D}_{a^{+}}^{\alpha, \sigma} u(x)=e^{-\sigma x}{ }_{a} D_{x}^{\alpha} e^{\sigma x} u(x) \quad \text { and } \quad \mathbb{D}_{b^{-}}^{\alpha, \sigma} u(x)=e^{\sigma x}{ }_{x} D_{b}^{\alpha} e^{-\sigma x} u(x), \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
{ }^{C} \mathbb{D}_{a^{+}}^{\alpha, \sigma} u(x)=e^{-\sigma x} \cdot{ }_{a}^{C} D_{x}^{\alpha} e^{\sigma x} u(x) \quad \text { and } \quad \mathbb{D}_{b^{-}}^{\alpha, \sigma} u(x)=e^{\sigma x} \cdot{ }_{x}^{C} D_{b}^{\alpha} e^{-\sigma x} u(x) . \tag{2.8}
\end{equation*}
$$

In what follows we consider some properties of tempered fractional operators which are know in the literature.

Lemma 2.1. [52] Let $\alpha>0, \sigma>0$ and $u \in A C[a, b]$. Then $\mathbb{I}_{a^{+}}^{\alpha, \sigma} u, \mathbb{I}_{b^{-}}^{\alpha, \sigma} u$ are well defined. Moreover

$$
\begin{equation*}
\mathbb{I}_{a^{+}}^{\alpha, \sigma} u(x)=\frac{u(a)}{\sigma^{\alpha} \Gamma(\alpha)} \gamma(\alpha, \sigma(x-a))+\frac{1}{\sigma^{\alpha} \Gamma(\alpha)} \int_{a}^{x} \gamma(\alpha, \sigma(x-t)) u^{\prime}(t) d t, \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbb{I}_{b^{-}}^{\alpha, \sigma} u(x)=\frac{u(b)}{\sigma^{\alpha} \Gamma(\alpha)} \gamma(\alpha, \sigma(b-x))-\frac{1}{\sigma^{\alpha} \Gamma(\alpha)} \int_{x}^{b} \gamma(\alpha, \sigma(t-x)) u^{\prime}(t) d t \tag{2.10}
\end{equation*}
$$

where

$$
\gamma(\alpha, x)=\int_{0}^{x} t^{\alpha-1} e^{-t} d t
$$

is the lower incomplete Gamma function.
Remark 2. The incomplete Gamma function has the following bounds

$$
\begin{equation*}
e^{-x} \frac{x^{\alpha}}{\alpha} \leq \gamma(\alpha, x) \leq \frac{x^{\alpha}}{\alpha} \tag{2.11}
\end{equation*}
$$

Moreover, for each $n \in \mathbb{N}$ and $-n<\alpha<-n+1$, using integration by parts and induction, we obtain

$$
\begin{equation*}
\gamma(\alpha, x)=\int_{0}^{x} t^{\alpha-1}\left(e^{-t}-\sum_{k=0}^{n-1} \frac{(-t)^{k}}{k!}\right) d t+\sum_{k=0}^{n-1} \frac{(-1)^{k}}{(\alpha+k) k!} x^{\alpha+k} . \tag{2.12}
\end{equation*}
$$

This equality can be used to extend the definition of $\gamma(\alpha, x)$ to negative, non integer values of α. For example, if $\alpha \in(-1,0)$ and $x>0$, then

$$
\begin{equation*}
\gamma(\alpha, x)=\frac{1}{\alpha} \gamma(\alpha+1, x)+\frac{1}{\alpha} x^{\alpha} e^{-x} . \tag{2.13}
\end{equation*}
$$

For more details the reader's can see [14].
Theorem 2.2. [52] Let $\alpha \in(0,1), \sigma>0, p \in[1, \infty]$. Then, the tempered fractional integrals of Riemann-Liouville $\mathbb{I}_{a^{+}}^{\alpha, \sigma}, \mathbb{I}_{b^{-}}^{\alpha, \sigma}: L^{p}(a, b) \rightarrow L^{p}(a, b)$ are bounded. Moreover

$$
\begin{equation*}
\left\|\mathbb{I}_{a^{+}}^{\alpha, \sigma} u\right\|_{L^{p}(a, b)} \leq \frac{\gamma(\alpha, \sigma(b-a))}{\sigma^{\alpha} \Gamma(\alpha)}\|u\|_{L^{p}(a, b)} \tag{2.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\mathbb{I}_{b^{-}}^{\alpha, \sigma} u\right\|_{L^{p}(a, b)} \leq \frac{\gamma(\alpha, \sigma(b-a))}{\sigma^{\alpha} \Gamma(\alpha)}\|u\|_{L^{p}(a, b)} \tag{2.15}
\end{equation*}
$$

Lemma 2.3. [37] For $\alpha_{1}, \alpha_{2}>0, \sigma \geq 0$ and for all $u \in L^{p}(a, b)$ with $p \in[1, \infty]$ we have

$$
\mathbb{I}_{a+}^{\alpha_{1}, \sigma} \cdot \mathbb{I}_{a^{+}}^{\alpha_{2}, \sigma} u(x)=\mathbb{I}_{a^{+}}^{\alpha_{1}+\alpha_{2}, \sigma} u(x) \quad \text { and } \quad \mathbb{I}_{b^{-}}^{\alpha_{1}, \sigma} \cdot \mathbb{I}_{b^{-}}^{\alpha_{2}, \sigma} u(x)=\mathbb{I}_{b^{-}}^{\alpha_{1}+\alpha_{2}, \sigma} u(x) .
$$

Theorem 2.4. Let $\alpha \in(0,1), \sigma>0, p \in(1, \infty), q \in(1, \infty)$ and

$$
\frac{1}{p}+\frac{1}{q} \leq 1+\alpha .
$$

If $u \in L^{p}(a, b)$ and $v \in L^{q}(a, b)$, then

$$
\begin{equation*}
\int_{a}^{b} \mathbb{I}_{a^{+}}^{\alpha, \sigma} u(x) v(x) d x=\int_{a}^{b} u(x) \mathbb{I}_{b^{-}}^{\alpha, \sigma} v(x) d x . \tag{2.16}
\end{equation*}
$$

Now we consider some smoothness properties of the Riemann-Liouville tempered fractional integrals

Theorem 2.5. [52] Let $\alpha \in(0,1), \sigma>0$ and $u \in C[a, b]$. Then the tempered fractional integrals of Riemann-Liouville $\mathbb{I}_{a^{+}}^{\alpha, \sigma} u, \mathbb{I}_{b^{-}}^{\alpha, \sigma}$ are continuos on $[a, b]$ and

$$
\begin{equation*}
\lim _{x \rightarrow a^{+}} \mathbb{I}_{a^{+}}^{\alpha, \sigma} u(x)=0 \quad \text { and } \quad \lim _{x \rightarrow b^{-}} \mathbb{I}_{b^{-}}^{\alpha, \sigma} u(x)=0 . \tag{2.17}
\end{equation*}
$$

Moreover

$$
\left\|\mathbb{I}_{a^{+}}^{\alpha, \sigma} u\right\|_{\infty} \leq \frac{1}{\sigma^{\alpha} \Gamma(\alpha)} \gamma(\alpha, \sigma(b-a))\|u\|_{\infty},
$$

and

$$
\left\|\mathbb{I}_{b^{-}}^{\alpha, \sigma} u\right\|_{\infty} \leq \frac{1}{\sigma^{\alpha} \Gamma(\alpha)} \gamma(\alpha, \sigma(b-a))\|u\|_{\infty}
$$

The following result were considered by Torres et al. [52, Theorem 3.9]. More precisely, assuming that $\alpha \in\left(\frac{1}{2}, 1\right), \sigma>0$ and $u \in L^{2}(a, b)$, then Torres et al. proved that $\mathbb{I}_{a^{+}}^{\alpha, \sigma} u, \mathbb{I}_{b^{-}}^{\alpha, \sigma} u \in C[a, b]$. We note that under a carefully analysis we are able to prove that the Riemann-Liouville fractional tempered integrals $\mathbb{I}_{a^{+}}^{\alpha, \sigma} u, \mathbb{I}_{b^{-}}^{\alpha, \sigma} u$ are Hölder continuous with order $\alpha-\frac{1}{2}$. To state our result we need the following inequality: For any $x_{1} \geq x_{2} \geq 0$ and $q \geq 1$

$$
\begin{equation*}
\left(x_{1}-x_{2}\right)^{q} \leq x_{1}^{q}-x_{2}^{q} \tag{2.18}
\end{equation*}
$$

Theorem 2.6. Let $\alpha \in\left(\frac{1}{2}, 1\right)$ and $\sigma>0$. Then, for each $u \in L^{2}(a, b), \mathbb{I}_{a^{+}}^{\alpha, \sigma} u \in \mathbb{H}_{0}^{\alpha-\frac{1}{2}, \sigma}(a, b)$ (Defined in Section 3) and

$$
\lim _{x \rightarrow a^{+}} \mathbb{I}_{a^{+}}^{\alpha, \sigma} u(x)=0,
$$

where $\mathbb{H}_{0}^{\alpha-\frac{1}{2}, \sigma}(a, b)$ denotes the Hölder space of order $\alpha-\frac{1}{2}>0$.
Proof. Let $a<x_{1}<x_{1} \leq b$ and $u \in L^{p}(a, b)$, then by Hölder inequality (2.19)

$$
\begin{aligned}
& \left|\mathbb{I}_{a^{+}}^{\alpha, \sigma} u\left(x_{1}\right)-\mathbb{I}_{a^{+}}^{\alpha, \sigma} u\left(x_{2}\right)\right| \\
& \leq \frac{1}{\Gamma(\alpha)}\left[\int_{a}^{x_{1}}\left|\left(x_{1}-s\right)^{\alpha-1} e^{-\sigma\left(x_{1}-s\right)}-\left(x_{2}-s\right)^{\alpha-1} e^{-\sigma\left(x_{2}-s\right)}\right||u(s)| d s\right. \\
& \left.+\int_{x_{1}}^{x_{2}}\left(x_{2}-s\right)^{\alpha-1} e^{-\sigma\left(x_{2}-s\right)}|u(s)| d s\right] \\
& \leq \frac{1}{\Gamma(\alpha)}\left(\int_{a}^{x_{1}}\left|\left(x_{1}-s\right)^{\alpha-1} e^{-\sigma(x-s)}-\left(x_{2}-s\right)^{\alpha-1} e^{-\sigma\left(x_{2}-s\right)}\right|^{2} d s\right)^{1 / 2}\left(\int_{a}^{x_{1}}|u(s)|^{2} d s\right)^{1 / 2} \\
& +\frac{1}{\Gamma(\alpha)}\left(\int_{x_{1}}^{x_{2}}\left(x_{2}-s\right)^{2 \alpha-2} e^{-2 \sigma\left(x_{2}-s\right)} d s\right)^{1 / 2}\left(\int_{x_{1}}^{x_{2}}|u(s)|^{2} d s\right)^{1 / 2} .
\end{aligned}
$$

Doing the change of variable $t=2 \sigma\left(x_{2}-s\right)$ and using (2.11) we get

$$
\int_{x_{1}}^{x_{2}}\left(x_{2}-s\right)^{2 \alpha-2} e^{-2 \sigma\left(x_{2}-s\right)} d s=\frac{1}{(2 \sigma)^{2 \alpha-1}} \gamma\left(2 \alpha-1,2 \sigma\left(x_{2}-x_{1}\right)\right) \leq \frac{\left(x_{2}-x_{1}\right)^{2 \alpha-1}}{2 \alpha-1} .
$$

Hence

$$
\begin{equation*}
\left(\int_{x_{1}}^{x_{2}}\left(x_{2}-s\right)^{2 \alpha-2} e^{-2 \sigma\left(x_{2}-s\right)} d s\right)^{1 / 2} \leq \frac{1}{(2 \alpha-1)^{1 / 2}}\left(x_{2}-x_{1}\right)^{\alpha-\frac{1}{2}} . \tag{2.20}
\end{equation*}
$$

On the other hand, the change of variable $t=\frac{x_{1}-s}{x_{2}-x_{1}}$ yields that

$$
\begin{align*}
& \int_{a}^{x_{1}}\left|\left(x_{1}-s\right)^{\alpha-1} e^{-\sigma\left(x_{1}-s\right)}-\left(x_{2}-s\right)^{\alpha-1} e^{-\sigma\left(x_{2}-s\right)}\right|^{2} d s \\
& =\left(x_{2}-x_{1}\right)^{2 \alpha-1} \int_{0}^{\frac{x_{1}-a}{x_{2}-x_{1}}}\left|t^{\alpha-1} e^{-\sigma t\left(x_{2}-x_{1}\right)}-(1+t)^{\alpha-1} e^{-\sigma(1+t)\left(x_{2}-x_{1}\right)}\right|^{2} d t \tag{2.21}
\end{align*}
$$

So, if $\frac{x_{1}-a}{x_{2}-x_{1}} \leq 1$, by (2.18) we derive

$$
\begin{aligned}
& \int_{0}^{\frac{x_{1}-a}{x_{2}-x_{1}}}\left|t^{\alpha-1} e^{-\sigma t\left(x_{2}-x_{1}\right)}-(1+t)^{\alpha-1} e^{-\sigma(1+t)\left(x_{2}-x_{1}\right)}\right|^{2} d t \\
& \leq \int_{0}^{1}\left|t^{\alpha-1} e^{-\sigma t\left(x_{2}-x_{1}\right)}-(1+t)^{\alpha-1} e^{-\sigma(1+t)\left(x_{2}-x_{1}\right)}\right|^{2} d t \\
& \leq \int_{0}^{1}\left(t^{2 \alpha-2} e^{-2 \sigma t\left(x_{2}-x_{1}\right)}-(1+t)^{2 \alpha-2} e^{-2 \sigma(1+t)\left(x_{2}-x_{1}\right)}\right) d t \\
& =\frac{1}{\left[2 \sigma\left(x_{2}-x_{1}\right)\right]^{2 \alpha-1}}\left(2 \gamma\left(2 \alpha-1,2 \sigma\left(x_{2}-x_{1}\right)\right)-\gamma\left(2 \alpha-1,4 \sigma\left(x_{2}-x_{1}\right)\right)\right)
\end{aligned}
$$

Now, note that by (2.11) we obtain

$$
\gamma\left(2 \alpha-1,2 \sigma\left(x_{2}-x_{1}\right)\right) \leq \frac{\left[2 \sigma\left(x_{2}-x_{1}\right)\right]^{2 \alpha-1}}{2 \alpha-1}
$$

and

$$
e^{-4 \sigma\left(x_{2}-x_{1}\right)} \frac{\left[4 \sigma\left(x_{2}-x_{1}\right)\right]^{2 \alpha-1}}{2 \alpha-1} \leq \gamma\left(2 \alpha-1,4 \sigma\left(x_{2}-x_{1}\right)\right),
$$

consequently
$2 \gamma\left(2 \alpha-1,2 \sigma\left(x_{2}-x_{1}\right)\right)-\gamma\left(2 \alpha-1,4 \sigma\left(x_{2}-x_{1}\right)\right) \leq \frac{\left[2 \sigma\left(x_{2}-x_{1}\right)\right]^{2 \alpha-1}}{2 \alpha-1}\left(2-2^{2 \alpha-1} e^{-4 \sigma\left(x_{2}-x_{1}\right)}\right)$.
Therefore, replacing in (2.19) we obtain

$$
\begin{align*}
& \int_{a}^{x_{1}}\left|\left(x_{1}-s\right)^{\alpha-1} e^{-\sigma\left(x_{1}-s\right)}-\left(x_{2}-s\right)^{\alpha-1} e^{-\sigma\left(x_{2}-s\right)}\right|^{2} d s \tag{2.22}\\
& \leq \frac{\left(x_{2}-x_{1}\right)^{2 \alpha-1}}{2 \alpha-1}\left(2-2^{2 \alpha-1} e^{-4 \sigma\left(x_{2}-x_{1}\right)}\right) \leq \frac{2}{2 \alpha-1}\left(x_{2}-x_{1}\right)^{2 \alpha-1}
\end{align*}
$$

On the other hand, if $\frac{x_{1}-a}{x_{2}-x_{1}}>1$, then

$$
\begin{align*}
& \int_{0}^{\frac{x_{1}-a}{x_{2}-x_{1}}}\left|t^{\alpha-1} e^{-\sigma t\left(x_{2}-x_{1}\right)}-(1+t)^{\alpha-1} e^{-\sigma(1+t)\left(x_{2}-x_{1}\right)}\right|^{2} d t \\
& =\int_{0}^{1}\left|t^{\alpha-1} e^{-\sigma t\left(x_{2}-x_{1}\right)}-(1+t)^{\alpha-1} e^{-\sigma(1+t)\left(x_{2}-x_{1}\right)}\right|^{2} d t \\
& +\int_{1}^{\frac{x_{1}-a}{x_{2}-x_{1}}}\left|t^{\alpha-1} e^{-\sigma t\left(x_{2}-x_{1}\right)}-(1+t)^{\alpha-1} e^{-\sigma(1+t)\left(x_{2}-x_{1}\right)}\right|^{2} d t \tag{2.23}\\
& \leq \frac{2}{2 \alpha-1}+\int_{1}^{\frac{x_{1}-a}{x_{2}-x_{1}}}\left|t^{\alpha-1} e^{-\sigma t\left(x_{2}-x_{1}\right)}-(1+t)^{\alpha-1} e^{-\sigma(1+t)\left(x_{2}-x_{1}\right)}\right|^{2} d t
\end{align*}
$$

The mean value theorem and the change of variable $\lambda=2 \sigma t\left(x_{2}-x_{1}\right)$ yield that

$$
\begin{aligned}
& \int_{1}^{\frac{x_{1}-a}{x_{2}-x_{1}}}\left|t^{\alpha-1} e^{-\sigma t\left(x_{2}-x_{1}\right)}-(1+t)^{\alpha-1} e^{-\sigma(1+t)\left(x_{2}-x_{1}\right)}\right|^{2} d t \\
& =\int_{1}^{\frac{x_{1}-a}{x_{2}-x_{1}}}\left((1-\alpha) r^{\alpha-2} e^{-\sigma t\left(x_{2}-x_{1}\right)}+\sigma\left(x_{2}-x_{1}\right) t^{\alpha-1} e^{-\sigma t\left(x_{2}-x_{1}\right)}\right)^{2} d t \\
& \leq 2(1-\alpha)^{2} \int_{1}^{\frac{x_{1}-a}{x_{2}-x_{1}}} t^{2 \alpha-4} e^{-2 \sigma t\left(x_{2}-x_{1}\right)} d t+2 \sigma^{2}\left(x_{2}-x_{1}\right)^{2} \int_{1}^{\frac{x_{1}-a}{x_{2}-x_{1}}} t^{2 \alpha-2} e^{-2 \sigma t\left(x_{2}-x_{1}\right)} d t \\
& =\frac{2(1-\alpha)^{2}}{(2 \sigma)^{2 \alpha-3}}\left(x_{2}-x_{1}\right)^{3-2 \alpha} \int_{2 \sigma\left(x_{2}-x_{1}\right)}^{2 \sigma\left(x_{1}-a\right)} \lambda^{2 \alpha-4} e^{-\lambda} d \lambda+\frac{2 \sigma^{2}}{(2 \sigma)^{2 \alpha-1}}\left(x_{2}-x_{3}\right)^{3-2 \alpha} \int_{2 \sigma\left(x_{2}-x_{1}\right)}^{2 \sigma\left(x_{1}-a\right)} \lambda^{2 \alpha-2} e^{-\lambda} d \lambda .
\end{aligned}
$$

Note that, integrating by parts the first integral of the last expression we get

$$
\begin{aligned}
\int_{2 \sigma\left(x_{2}-x_{1}\right)}^{2 \sigma\left(x_{1}-a\right)} \lambda^{2 \alpha-4} e^{-\lambda} d \lambda & =\frac{(2 \sigma)^{2 \alpha-3}}{2 \alpha-3}\left(\left(x_{1}-a\right)^{2 \alpha-3} e^{-2 \sigma\left(x_{1}-a\right)}-\left(x_{2}-x_{1}\right)^{2 \alpha-3} e^{-2 \sigma\left(x_{2}-x_{1}\right)}\right) \\
& +\frac{(2 \sigma)^{2 \alpha-2}}{(2 \alpha-3)(2 \alpha-2)}\left(\left(x_{1}-a\right)^{2 \alpha-2} e^{-2 \sigma\left(x_{1}-a\right)}-\left(x_{2}-x_{1}\right)^{2 \alpha-2} e^{-2 \sigma\left(x_{2}-x_{1}\right)}\right) \\
& +\frac{1}{(2 \alpha-2)(2 \alpha-3)} \int_{2 \sigma\left(x_{2}-x_{1}\right)}^{2 \sigma\left(x_{1}-a\right)} \lambda^{2 \alpha-2} e^{-\lambda} d \lambda
\end{aligned}
$$

Consequently, replacing in the last inequality we derive

$$
\begin{aligned}
& \int_{1}^{\frac{x_{1}-a}{x_{2}-x_{1}}}\left|t^{\alpha-1} e^{-\sigma t\left(x_{2}-x_{1}\right)}-(1+t)^{\alpha-1} e^{-\sigma(1+t)\left(x_{2}-x_{1}\right)}\right|^{2} d t \\
& \leq \frac{2(1-\alpha)^{2}}{(2 \sigma)^{2 \alpha-3}}\left(x_{2}-x_{1}\right)^{3-2 \alpha} \int_{2 \sigma\left(x_{2}-x_{1}\right)}^{2 \sigma\left(x_{1}-a\right)} \lambda^{2 \alpha-4} e^{-\lambda} d \lambda+\frac{2 \sigma^{2}}{(2 \sigma)^{2 \alpha-1}}\left(x_{2}-x_{3}\right)^{3-2 \alpha} \int_{2 \sigma\left(x_{2}-x_{1}\right)}^{2 \sigma\left(x_{1}-a\right)} \lambda^{2 \alpha-2} e^{-\lambda} d \lambda \\
& =\frac{2(1-\alpha)^{2}}{(2 \sigma)^{2 \alpha-3}}\left(x_{2}-x_{1}\right)^{3-2 \alpha}\left[\frac{(2 \sigma)^{2 \alpha-3}}{2 \alpha-3}\left(\left(x_{1}-a\right)^{2 \alpha-3} e^{-2 \sigma\left(x_{1}-a\right)}-\left(x_{2}-x_{1}\right)^{2 \alpha-3} e^{-2 \sigma\left(x_{2}-x_{1}\right)}\right)\right. \\
& \left.+\frac{(2 \sigma)^{2 \alpha-2}}{(2 \alpha-3)(2 \alpha-2)}\left(\left(x_{1}-a\right)^{2 \alpha-2} e^{-2 \sigma\left(x_{1}-a\right)}-\left(x_{2}-x_{1}\right)^{2 \alpha-2} e^{-2 \sigma\left(x_{2}-x_{1}\right)}\right)\right] \\
& +\left(\frac{2 \sigma^{2}}{(2 \sigma)^{2 \alpha-1}}+\frac{2(1-\alpha)^{2}}{(2 \sigma)^{2 \alpha-3}(2 \alpha-2)(2 \alpha-3)}\right)\left(x_{2}-x_{3}\right)^{3-2 \alpha} \int_{2 \sigma\left(x_{2}-x_{1}\right)}^{2 \sigma\left(x_{1}-a\right)} \lambda^{2 \alpha-2} e^{-\lambda} d \lambda \\
& \leq \frac{2(1-\alpha)^{2}}{2 \alpha-3}\left(x_{2}-x_{1}\right)^{3-2 \alpha}\left(\left(x_{1}-a\right)^{2 \alpha-3} e^{-2 \sigma\left(x_{1}-a\right)}-\left(x_{2}-x_{1}\right)^{2 \alpha-3} e^{-2 \sigma\left(x_{2}-x_{1}\right)}\right) \\
& +\left(\frac{2 \sigma^{2}}{(2 \sigma)^{2 \alpha-1}}+\frac{2(1-\alpha)^{2}}{(2 \sigma)^{2 \alpha-3}(2 \alpha-2)(2 \alpha-3)}\right)\left(x_{2}-x_{3}\right)^{3-2 \alpha} \int_{2 \sigma\left(x_{2}-x_{1}\right)}^{2 \sigma\left(x_{1}-a\right)} \lambda^{2 \alpha-2} e^{-\lambda} d \lambda .
\end{aligned}
$$

By other side, (2.11) yields that

$$
\begin{aligned}
\int_{2 \sigma\left(x_{2}-x_{1}\right)}^{2 \sigma\left(x_{1}-a\right)} \lambda^{2 \alpha-2} e^{-\lambda} d \lambda & =\gamma\left(2 \alpha-1,2 \sigma\left(x_{1}-a\right)\right)-\gamma\left(2 \alpha-1,2 \sigma\left(x_{2}-x_{1}\right)\right) \\
& \leq \frac{(2 \sigma)^{2 \alpha-1}}{2 \alpha-1}\left(x_{2}-x_{1}\right)^{2 \alpha-1}\left(\left(\frac{x_{1}-a}{x_{2}-x_{1}}\right)^{2 \alpha-1}-e^{-2 \sigma\left(x_{2}-x_{1}\right)}\right)
\end{aligned}
$$

Hence
(2.24)

$$
\begin{aligned}
& \int_{1}^{\frac{x_{1}-a}{x_{2}-x_{1}}}\left|t^{\alpha-1} e^{-\sigma t\left(x_{2}-x_{1}\right)}-(1+t)^{\alpha-1} e^{-\sigma(1+t)\left(x_{2}-x_{1}\right)}\right|^{2} d t \\
& \leq \frac{2(1-\alpha)^{2}}{2 \alpha-3}\left(\left(\frac{x_{1}-a}{x_{2}-x_{1}}\right)^{2 \alpha-3} e^{-2 \sigma\left(x_{1}-a\right)}-e^{-2 \sigma\left(x_{2}-x_{1}\right)}\right) \\
& +\left(\frac{2 \sigma^{2}}{2 \alpha-1}+\frac{8(1-\alpha)^{2} \sigma^{2}}{(2 \alpha-1)(2 \alpha-2)(2 \alpha-3)}\right)\left(x_{2}-x_{1}\right)^{2}\left(\left(\frac{x_{1}-a}{x_{2}-x_{1}}\right)^{2 \alpha-1}-e^{-2 \sigma\left(x_{2}-x_{1}\right)}\right)
\end{aligned}
$$

Finally, combining (2.21) with (2.23) and (2.24) we derive

$$
\begin{equation*}
\int_{a}^{x_{1}}\left|\left(x_{1}-s\right)^{\alpha-1} e^{-\sigma\left(x_{1}-s\right)}-\left(x_{2}-s\right)^{\alpha-1} e^{-\sigma\left(x_{2}-s\right)}\right|^{2} d s \leq \mathfrak{M}\left(x_{2}-x_{1}\right)^{2 \alpha-1} \tag{2.25}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathfrak{M}=\frac{2}{2 \alpha-1}+\frac{2(1-\alpha)^{2}}{2 \alpha-3}\left(\left(\frac{x_{1}-a}{x_{2}-x_{1}}\right)^{2 \alpha-3} e^{-2 \sigma\left(x_{1}-a\right)}-e^{-2 \sigma\left(x_{2}-x_{1}\right)}\right) \\
& +\left(\frac{2 \sigma^{2}}{2 \alpha-1}+\frac{8(1-\alpha)^{2} \sigma^{2}}{(2 \alpha-1)(2 \alpha-2)(2 \alpha-3)}\right)\left(x_{2}-x_{1}\right)^{2}\left(\left(\frac{x_{1}-a}{x_{2}-x_{1}}\right)^{2 \alpha-1}-e^{-2 \sigma\left(x_{2}-x_{1}\right)}\right)
\end{aligned}
$$

Therefore, by $(2.19),(2.20),(2.22)$ and (2.25) we get

$$
\begin{aligned}
& \left|\mathbb{I}_{a^{+}}^{\alpha, \sigma} u\left(x_{1}\right)-\mathbb{I}_{a^{+}}^{\alpha, \sigma} u\left(x_{2}\right)\right| \\
& \leq \frac{1}{\Gamma(\alpha)}\left(\int_{a}^{x_{1}}\left|\left(x_{1}-s\right)^{\alpha-1} e^{-\sigma(x-s)}-\left(x_{2}-s\right)^{\alpha-1} e^{-\sigma\left(x_{2}-s\right)}\right|^{2} d s\right)^{1 / 2}\left(\int_{a}^{x_{1}}|u(s)|^{2} d s\right)^{1 / 2} \\
& +\frac{1}{\Gamma(\alpha)}\left(\int_{x_{1}}^{x_{2}}\left(x_{2}-s\right)^{2 \alpha-2} e^{-2 \sigma\left(x_{2}-s\right)} d s\right)^{1 / 2}\left(\int_{x_{1}}^{x_{2}}|u(s)|^{2} d s\right)^{1 / 2} \\
& \leq \frac{\mathfrak{M}^{1 / 2}}{\Gamma(\alpha)}\left(x_{2}-x_{1}\right)^{\alpha-\frac{1}{2}}\|u\|_{L^{2}(a, b)}+\frac{1}{(2 \alpha-1)^{1 / 2} \Gamma(\alpha)}\left(x_{2}-x_{1}\right)^{\alpha-\frac{1}{2}}\|u\|_{L^{2}(a, b)} \\
& =\frac{1}{\Gamma(\alpha)}\left(\mathfrak{M}^{1 / 2}+\frac{1}{(2 \alpha-1)^{1 / 2}}\right)\|u\|_{L^{2}(a, b)}\left(x_{2}-x_{1}\right)^{\alpha-\frac{1}{2}}
\end{aligned}
$$

which implies that $\mathbb{I}_{x^{+}}^{\alpha, \sigma} u \in \mathbb{H}_{0}^{\alpha-\frac{1}{2}, \sigma}(a, b)$.
To finish with the proof, note that for any $u \in L^{2}(a, b)$ and Hölder inequality we get

$$
\begin{aligned}
\left|\mathbb{I}_{a^{+}}^{\alpha, \sigma} u(x)\right| & \leq \frac{1}{\Gamma(\alpha)} \int_{a}^{x}(x-s)^{\alpha-1} e^{-\sigma(x-s)}|u(s)| d s \\
& \leq \frac{1}{\Gamma(\alpha)}\left(\int_{a}^{x}(x-s)^{2(\alpha-1)} e^{-\sigma 2(x-s)} d s\right)^{1 / 2}\left(\int_{a}^{x}|u(s)|^{2} d s\right)^{1 / 2} \\
& \leq \frac{1}{2^{\alpha-\frac{1}{2}} \Gamma(\alpha)} \frac{[\gamma(2 \alpha-1,2 \sigma(x-a))]^{1 / 2}}{\sigma^{\alpha-\frac{1}{2}}}\|u\|_{L^{2}(a, b)}
\end{aligned}
$$

Furthermore, (2.11) yields that

$$
e^{-\sigma(x-a)} \frac{2^{\alpha-\frac{1}{2}}}{(2 \alpha-1)^{1 / 2}}(x-a)^{\alpha-\frac{1}{2}} \leq \frac{(\gamma(2 \alpha-1,2 \sigma(x-a)))^{1 / 2}}{\sigma^{\alpha-\frac{1}{2}}} \leq \frac{2^{\alpha-\frac{1}{2}}}{(2 \alpha-1)^{1 / 2}}(x-a)^{\alpha-\frac{1}{2}}
$$

which implies

$$
\lim _{x \rightarrow a^{+}} \frac{(\gamma(2 \alpha-1,2 \sigma(x-a)))^{1 / 2}}{\sigma^{\alpha-\frac{1}{2}}}=0 .
$$

So, combining this limit with the last inequality we get

$$
\lim _{x \rightarrow a^{+}} \mathbb{I}_{a^{+}}^{\alpha, \sigma} u(x)=0 .
$$

Considering the Riemann-Liouville and Caputo tempered fractional derivative we have the following result
Theorem 2.7. Let $\alpha \in(0,1), \sigma>0$ and $u \in A C[a, b]$. Then

$$
\begin{equation*}
\mathbb{D}_{a^{+}}^{\alpha, \sigma} u(x)=\frac{u(a)}{\Gamma(1-\alpha)}(x-a)^{-\alpha} e^{-\sigma(x-a)}+C_{\mathbb{D}_{a^{+}}^{\alpha, \sigma}} u(x) \tag{2.26}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbb{D}_{b^{-}}^{\alpha, \sigma} u(x)=\frac{u(b)}{\Gamma(1-\alpha)}(b-x)^{-\alpha} e^{-\sigma(b-x)}+{ }^{C} \mathbb{D}_{b^{-}}^{\alpha, \sigma} u(x) . \tag{2.27}
\end{equation*}
$$

The following result are the fundamental theorem of calculus for Caputo tempered fractional derivative

Theorem 2.8. For $\alpha \in(0,1), \sigma>0$ and $u \in A C[a, b]$, we have

$$
\begin{align*}
& { }^{C} \mathbb{D}_{a^{+}}^{\alpha, \sigma} \cdot \mathbb{I}_{a^{+}}^{\alpha, \sigma} u(x)=u(x), \tag{1}\\
& { }^{C} \mathbb{D}_{b^{-}}^{\alpha, \sigma} \cdot \mathbb{I}_{b^{-}}^{\alpha, \sigma} u(x)=u(x) . \\
& \mathbb{I}_{a^{+}}^{\alpha, \sigma} \cdot C_{\mathbb{D}_{a^{+}}^{\alpha, \sigma}} u(x)=u(x)-e^{-\sigma(x-a)} u(a), \tag{2}\\
& \mathbb{I}_{b^{-}}^{\alpha, \sigma} . C_{\mathbb{D}_{b^{-}}^{\alpha, \sigma}} u(x)=u(x)-e^{-\sigma(x-b)} u(b) .
\end{align*}
$$

In our next result we are dealing with the integration by parts theorem for Riemann-Liouville tempered fractional derivative.

Theorem 2.9. Let $\alpha \in(0,1), \sigma>0$ and $u, v \in A C[a, b]$, then

$$
\begin{equation*}
\int_{a}^{b} u(x) \mathbb{D}_{b^{-}}^{\alpha, \sigma} v(x) d x=\lim _{x \rightarrow a^{+}} u(x) \mathbb{I}_{b^{-}}^{1-\alpha, \sigma} v(x)-\lim _{x \rightarrow b^{-}} u(x) \mathbb{I}_{b^{-}}^{1-\alpha, \sigma} v(x)+\int_{a}^{b} C_{\mathbb{D}^{\alpha}}^{\alpha, \sigma} u(x) v(x) d x . \tag{2.28}
\end{equation*}
$$

Proof. Note that, as in Lemma 2.1 we can show that, if $\varphi \in A C[a, b]$, then ${ }_{a} I_{x}^{\alpha} \varphi{ }_{,}{ }_{x} I_{b}^{\alpha} \varphi \in$ $A C[a, b]$. Hence, ${ }_{x} I_{b}^{1-\alpha} e^{-\sigma \cdot} v \in A C[a, b]$ and then

$$
{ }_{x} D_{b}^{\alpha} e^{-\sigma x} v(x)=-\frac{d}{d x} x I_{b}^{1-\alpha} e^{-\sigma x} v(x) \in L^{1}[a, b] .
$$

Consequently

$$
\int_{a}^{b}\left|\mathbb{D}_{b^{-}}^{\alpha, \sigma} v(x)\right| d x=\int_{a}^{b}\left|e^{\sigma x}{ }_{x} D_{b}^{\alpha} e^{-\sigma x} v(x)\right| d x \leq e^{\sigma b} \int_{a}^{b}\left|{ }_{x} D_{b}^{\alpha} e^{-\sigma x} v(x)\right| d x<\infty .
$$

By other side, as $u \in A C[a, b]$, then $u \in C[a, b]$. Therefore

$$
\int_{a}^{b} u(x) \mathbb{D}_{b^{-}}^{\alpha, \sigma} v(x) d x \leq\left|\int_{a}^{b} u(x) \mathbb{D}_{b^{-}}^{\alpha, \sigma} v(x) d x\right| \leq\|u\|_{\infty} \int_{a}^{b}\left|\mathbb{D}_{b^{-}}^{\alpha, \sigma} v(x)\right| d x<\infty .
$$

Now we are going to show (2.28). In fact, by using integration by parts and Theorem 2.4 we get

$$
\begin{aligned}
\int_{a}^{b} u(x) \mathbb{D}_{b^{-}}^{\alpha, \sigma} v(x) d x & =\int_{a}^{b} u(x) e^{\sigma x}{ }_{x} D_{b}^{\alpha} e^{-\sigma x} v(x) d x=-\int_{a}^{b} u(x) e^{\sigma x} \frac{d}{d x} x I_{b}^{1-\alpha} e^{-\sigma x} v(x) d x \\
& =-\left[\left.u(x) \mathbb{I}_{b^{-}}^{1-\alpha, \sigma} v(x)\right|_{a} ^{b}-\int_{a}^{b}\left[e^{\sigma x} u(x)\right]^{\prime}{ }_{x} I_{b}^{1-\alpha} e^{-\sigma x} v(x) d x\right] \\
& =\lim _{x \rightarrow a^{+}} u(x) \mathbb{I}_{b^{-}}^{1-\alpha, \sigma} v(x)-\lim _{x \rightarrow b^{-}} u(x) \mathbb{I}_{b^{-}}^{1-\alpha, \sigma} v(x)+\int_{a}^{b} C_{\mathbb{D}^{+}}^{\alpha, \sigma} u(x) v(x) d x .
\end{aligned}
$$

3. Tempered fractional space of Sobolev type

In this section we introduce the tempered fractional space of Sobolev type $\mathbb{H}_{0}^{\alpha, \sigma}(a, b)$ defined as

$$
\mathbb{H}_{0}^{\alpha, \sigma}(a, b)={\overline{C_{0}^{\infty}(a, b)}}^{\|\cdot\|_{\alpha, \sigma}},
$$

where

$$
\begin{equation*}
\|u\|_{\alpha, \sigma}=\left(\int_{a}^{b}|u(x)|^{2} d x+\left.\left.\int_{a}^{b}\right|^{C} \mathbb{D}_{a^{+}}^{\alpha, \sigma} u(x)\right|^{2} d x\right)^{1 / 2} \tag{3.1}
\end{equation*}
$$

and endowed with the inner product

$$
\begin{equation*}
\langle u, v\rangle_{\alpha, \sigma}=\int_{a}^{b} u v d x+\int_{a}^{b}{ }_{\mathbb{D}^{+}}^{\alpha, \sigma} u{ }_{a^{+}} \mathbb{D}_{a^{+}}^{\alpha, \sigma} v d x \tag{3.2}
\end{equation*}
$$

$\mathbb{H}_{0}^{\alpha, \sigma}(a, b)$ is a Hilbert space. In fact. Let $\left(u_{n}\right)_{n \in \mathbb{N}}$ be a Cauchy sequence in $\mathbb{H}_{0}^{\alpha, \sigma}(a, b)$. Then $\left(u_{n}\right)_{n \in \mathbb{N}}$ and $\left({ }^{C} \mathbb{D}_{a^{+}}^{\alpha, \sigma} u_{n}\right)_{n \in \mathbb{N}}$ are Cauchy sequences in $L^{2}(a, b)$ and there are $u, v \in L^{2}(a, b)$ such that

$$
u_{n} \rightarrow u \quad \text { and } \quad C_{\mathbb{D}_{a+}^{\alpha, \sigma}}^{u_{n}} \rightarrow v \text { in } L^{2}(a, b) \text { as } n \rightarrow \infty .
$$

Let $\varphi \in C_{0}^{\infty}(a, b)$, then by Theorem 2.4 and definition of Caputo tempered fractional derivative we have

$$
\begin{aligned}
\int_{a}^{b}{ }_{C^{2}}^{\alpha, \sigma} u_{n}(x) \varphi(x) d x & =\int_{a}^{b}\left(e^{-\sigma x} \cdot{ }_{a}^{C} D_{x}^{\alpha} e^{\sigma x} u_{n}(x)\right) \varphi(x) d x \\
& =\int_{a}^{b}{ }_{a} I_{x}^{1-\alpha}\left(e^{\sigma x} u_{n}(x)\right)^{\prime} e^{-\sigma x} \varphi(x) d x \\
& =\int_{a}^{b}\left(e^{\sigma x} u_{n}(x)\right)^{\prime}{ }_{x} I_{b}^{1-\alpha} e^{-\sigma x} \varphi(x) d x \\
& \left.=e^{\sigma x} u_{n}(x)\right)\left._{x} I_{b}^{1-\alpha} e^{-\sigma x} \varphi(x)\right|_{a} ^{b}-\int_{a}^{b} e^{\sigma x} u_{n}(x) \frac{d}{d x} x I_{b}^{1-\alpha} e^{-\sigma x} \varphi(x) d x \\
& =\int_{a}^{b} u_{n}(x) \mathbb{D}_{b^{-}}^{\alpha, \sigma} \varphi(x) d x \rightarrow \int_{a}^{b} u(x) \mathbb{D}_{b^{-}}^{\alpha, \sigma} \varphi(x) d x=\int_{a}^{b} C_{\mathbb{D}_{a^{+}}^{\alpha, \sigma}} u(x) \varphi(x) d x,
\end{aligned}
$$

as $n \rightarrow \infty$. Then $u \in \mathbb{H}_{0}^{\alpha, \sigma}(a, b),{ }^{C} \mathbb{D}_{a^{+}}^{\alpha, \sigma} u=v$ and

$$
\left\|u_{n}-u\right\|_{\alpha, \sigma} \rightarrow 0 \text { as } n \rightarrow \infty .
$$

Considering this function space, we have the following properties.
Lemma 3.1. For any $u \in \mathbb{H}_{0}^{\alpha, \sigma}(a, b)$, we have

$$
\mathbb{I}_{a^{+}}^{\alpha, \sigma} \cdot C_{\mathbb{D}_{a^{+}}^{\alpha, \sigma}} u(x)=u(x), \text { a.e. in }(a, b)
$$

Proof. By definition, there exists $\left(\varphi_{n}\right)_{n \in \mathbb{N}} \subset C_{0}^{\infty}(a, b)$ such that

$$
\lim _{n \rightarrow \infty}\left\|u-\varphi_{n}\right\|_{\alpha, \sigma}=0
$$

Hence

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|u-\varphi_{n}\right\|_{L^{2}(a, b)}=0 \quad \text { and } \quad \lim _{n \rightarrow \infty}\left\|^{C} \mathbb{D}_{a^{+}}^{\alpha, \sigma}\left(u-\varphi_{n}\right)\right\|_{L^{2}(a, b)}=0 \tag{3.3}
\end{equation*}
$$

Fatou's Lemma yields that

$$
\begin{align*}
& \int_{a}^{b}|u(x)|^{2} d x \leq \liminf _{n \rightarrow \infty} \int_{a}^{b}\left|\varphi_{n}(x)\right|^{2} d x<\infty \text { and } \\
& \int_{a}^{b}\left|{ }^{C} \mathbb{D}_{a^{+}}^{\alpha, \sigma} u(x)\right|^{2} d x \leq \liminf _{n \rightarrow \infty} \int_{a}^{b}\left|{ }^{C} \mathbb{D}_{a^{+}}^{\alpha, \sigma} \varphi_{n}(x)\right|^{2} d x<+\infty \tag{3.4}
\end{align*}
$$

By other side
$\| \mathbb{I}_{a^{+}}^{\alpha, \sigma} \cdot C_{\mathbb{D}_{a^{+}}^{\alpha, \sigma} u-u\left\|_{L^{2}(a, b)} \leq\right\| \mathbb{I}_{a^{+}}^{\alpha, \sigma} \cdot C_{\mathbb{D}_{a^{+}}^{\alpha, \sigma}}\left(u-\varphi_{n}\right)\left\|_{L^{2}(a, b)}+\right\| \mathbb{I}_{a^{+}}^{\alpha, \sigma} \cdot C_{\mathbb{D}_{a^{+}}^{\alpha, \sigma}} \varphi_{n}-\varphi_{n}\left\|_{L^{2}(a, b)}+\right\| \varphi_{n}-u \|_{L^{2}(a, b)} .}$
Since $\varphi_{n}(a)=0$, Theorem 2.8 implies that

$$
\mathbb{I}_{a^{+}}^{\alpha, \sigma} \cdot{ }^{C} \mathbb{D}_{a^{+}}^{\alpha, \sigma} \varphi_{n}(x)=\varphi_{n}(x),
$$

next

$$
\begin{equation*}
\left\|\mathbb{I}_{a^{+}}^{\alpha, \sigma} \cdot{ }^{C} \mathbb{D}_{a^{+}}^{\alpha, \sigma} \varphi_{n}-\varphi_{n}\right\|_{L^{2}(a, b)}=0 \quad \forall n \in \mathbb{N} . \tag{3.6}
\end{equation*}
$$

By other side, Theorem 2.2 yields that

$$
\begin{equation*}
\left\|\mathbb{I}_{a^{+}}^{\alpha, \sigma} \cdot C_{\mathbb{D}_{a^{+}}^{\alpha, \sigma}}\left(u-\varphi_{n}\right)\right\|_{L^{2}(a, b)} \leq \frac{\gamma(\alpha, \sigma(b-a))}{\sigma^{\alpha} \Gamma(\alpha)}\left\|^{C} \mathbb{D}_{a^{+}}^{\alpha, \sigma}\left(u-\varphi_{n}\right)\right\|_{L^{2}(a, b)} \tag{3.7}
\end{equation*}
$$

Therefore, by (3.3), (3.6), (3.7) and (3.5) we obtain that

$$
\| \mathbb{I}_{a^{+}}^{\alpha, \sigma} \cdot C_{\mathbb{D}_{a^{+}}^{\alpha, \sigma} u-u \|_{L^{2}(a, b)}=0, ~}
$$

which implies the desired result.
As an immediate consequence of this result we have the following version of Poincaré inequality

Corollary 3.2. Let $\alpha \in(0,1), \sigma>0$. Then,

$$
\begin{equation*}
\|u\|_{L^{2}(a, b)} \leq \frac{\gamma(\alpha, \sigma(b-a))}{\sigma^{\alpha} \Gamma(\alpha)}\left\|^{C} \mathbb{D}_{a^{+}}^{\alpha, \sigma} u\right\|_{L^{2}(a, b)} \tag{3.8}
\end{equation*}
$$

for any $u \in \mathbb{H}_{0}^{\alpha, \sigma}(a, b)$.
Remark 3. By Corollary 3.2 we can endowed $\mathbb{H}_{0}^{\alpha, \sigma}(a, b)$ with the norm

$$
\|u\|=\left(\int_{a}^{b}\left|{ }^{C_{0}} a_{a^{+}}^{\alpha, \sigma} u(x)\right|^{2} d x\right)^{1 / 2}
$$

which is equivalent with $\|\cdot\|_{\alpha, \sigma}$. In fact, note that

$$
\|u\| \leq\|u\|_{\alpha, \sigma} .
$$

By other side, Corollary 3.2 yields that

$$
\begin{aligned}
\|u\|_{\alpha, \sigma}^{2} & =\int_{a}^{b}|u(x)|^{2} d x+\int_{a}^{b}\left|{ }^{C} \mathbb{D}_{a^{+}}^{\alpha, \sigma} u(x)\right|^{2} d x \\
& \leq\left(\left[\frac{\gamma(\alpha, \sigma(b-a))}{\sigma^{\alpha} \Gamma(\alpha)}\right]^{2}+1\right) \int_{a}^{b}\left|{ }^{C} \mathbb{D}_{a^{+}}^{\alpha, \sigma} u(x)\right|^{2} d x .
\end{aligned}
$$

Therefore, we get the desired result.
In the following result we are able to show that $\mathbb{H}_{0}^{\alpha, \sigma}(a, b)$ is continuously embedded into $C(a, b)$, more precisely we have:

Theorem 3.3. Let $\alpha \in\left(\frac{1}{2}, 1\right)$ and $\sigma>0$, then $\mathbb{H}_{0}^{\alpha, \sigma}(a, b)$ is continuously embedded into $C(a, b)$. Proof. Let $u \in \mathbb{H}_{0}^{\alpha, \sigma}(a, b)$, Lemma 3.1 yields that $u,{ }^{C} \mathbb{D}_{a^{+}}^{\alpha, \sigma} u \in L^{2}(a, b)$ and

$$
u(x)=\mathbb{I}_{a^{+}}^{\alpha, \sigma} \cdot C_{\mathbb{D}_{a^{+}}^{\alpha, \sigma}}^{\alpha(x)} \text { a.e. } x \in(a, b) .
$$

Hence, by Theorem 2.6 we obtain

$$
\begin{aligned}
\|u\|_{\infty} & =\left\|\mathbb{I}_{a^{+}}^{\alpha, \sigma} \cdot{ }^{C} \mathbb{D}_{a^{+}}^{\alpha, \sigma} u\right\|_{\infty} \\
& \leq \frac{1}{(2 \sigma)^{\alpha-\frac{1}{2}} \Gamma(\alpha)}[\gamma(2 \alpha-1,2 \sigma(b-a))]^{1 / 2} \|^{C_{\mathbb{D}_{a^{+}}^{\alpha, \sigma}} u \|_{L^{2}(a, b)}} \\
& =\frac{1}{(2 \sigma)^{\alpha-\frac{1}{2}} \Gamma(\alpha)}[\gamma(2 \alpha-1,2 \sigma(b-a))]^{1 / 2}\|u\|,
\end{aligned}
$$

which implies the desired result.
The following compactness result will be crucial for our purpose.
Theorem 3.4. Let $\alpha \in\left(\frac{1}{2}, 1\right)$ and $\sigma>0$. Then the embedding

$$
\mathbb{H}_{0}^{\alpha, \sigma}(a, b) \hookrightarrow C \overline{(a, b)}
$$

is compact.
Proof. Let B be a bounded subset of $\mathbb{H}_{0}^{\alpha, \sigma}(a, b)$, then we need to show that B is relative compact in $C \overline{(a, b)}$. By virtue of the Arzelá-Ascoli theorem, the conclusion will be achieved by proving that B is equibounded and equicontinuous in $C \overline{(a, b)}$. In fact, by the previous theorem $\mathbb{H}_{0}^{\alpha, \sigma}(a, b)$ is continuously embedded in $C \overline{(a, b)}$, and

$$
\begin{equation*}
\|u\|_{\infty} \leq \frac{[\gamma(2 \alpha-1,2 \sigma(b-a))]^{1 / 2}}{(2 \sigma)^{\alpha-\frac{1}{2}} \Gamma(\alpha)}\|u\|, \text { for every } u \in B . \tag{3.9}
\end{equation*}
$$

Hence, the set B is equibounded in $C \overline{(a, b)}$. Moreover, by Theorem 2.6 and Lemma 3.1 there is a positive constant \mathcal{K} such that

$$
\begin{aligned}
|u(x)-u(y)| & =\left|\mathbb{I}_{a^{+}}^{\alpha, \sigma} \cdot{ }^{C} \mathbb{D}_{a^{+}}^{\alpha, \sigma} u(x)-\mathbb{I}_{a^{+}}^{\alpha, \sigma} \cdot{ }^{C} \mathbb{D}_{a^{+}}^{\alpha, \sigma} u(y)\right| \\
& \leq \mathcal{K}\left\|^{C} \mathbb{D}_{a^{+}}^{\alpha, \sigma} u\right\|_{L^{2}(a, b)}|x-y|^{\alpha-\frac{1}{2}},
\end{aligned}
$$

which implies the equicontinuity of B. This completes the proof of Theorem 3.4.
Remark 4. If $\alpha \in\left(\frac{1}{2}, 1\right)$ and $\sigma>0$, then for every $u \in \mathbb{H}_{0}^{\alpha, \sigma}(a, b)$, there exists $\left(\phi_{n}\right)_{n \in \mathbb{N}} \subset$ $C_{0}^{\infty}(a, b)$ such that

$$
\lim _{n \rightarrow \infty}\left\|u-\phi_{n}\right\|=0
$$

Combining this limit with Theorem 3.3 we arrive to
$0 \leq|u(a)|=\left|u(a)-\phi_{n}(a)\right| \leq \frac{1}{(2 \sigma)^{\alpha-\frac{1}{2}} \Gamma(\alpha)}[\gamma(2 \alpha-1,2 \sigma(b-a))]^{1 / 2}\left\|u-\phi_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$.

Consequently $u(a)=0$. Similarly we can obtain that $u(b)=0$.
By other side, Lemma 3.1 yields that

$$
{ }^{C_{\mathbb{D}_{a^{+}}^{\alpha, \sigma}}^{\alpha} \in L^{2}(a, b) .}
$$

Therefore, $\mathbb{H}_{0}^{\alpha, \sigma}(a, b)$ can be rewritten as

$$
\mathbb{H}_{0}^{\alpha, \sigma}(a, b)=\left\{u \in L^{2}(a, b):{ }^{C} \mathbb{D}_{a^{+}}^{\alpha, \sigma} u \in L^{2}(a, b) \text { and } u(a)=u(b)=0\right\} .
$$

4. Proof of Theorem 1.1

In this section we are going to give the prove of Theorem 1.1. In this direction, in what follows we consider $a=0, b=T$ and

$$
0=x_{0}<x_{1}<x_{2}<\cdots<x_{n}<x_{n+1}=T .
$$

Hence, for $u \in \mathbb{H}_{0}^{\alpha, \sigma}(0, T)$ next

$$
\begin{align*}
& \int_{0}^{T}{ }_{\mathbb{D}_{0}}^{\alpha, \sigma} u(x)^{C} \mathbb{D}_{0^{+}}^{\alpha, \sigma} \varphi(x) d x=\int_{0}^{T} C_{\mathbb{D}_{0^{+}}^{\alpha, \sigma} u(x)}\left(e^{-\sigma x} \cdot{ }_{0}^{C} D_{x}^{\alpha} e^{\sigma x} \varphi(x)\right) d x \tag{4.1}\\
& =\int_{0}^{T} e^{-\sigma x} \cdot C_{\mathbb{D}_{0^{+}}^{\alpha, \sigma}} u(x)_{0} I_{x}^{1-\alpha}\left(e^{\sigma x} \varphi(x)\right)^{\prime} d x \\
& =\int_{0}^{T}{ }_{x} I_{T}^{1-\alpha}\left(e^{-\sigma x} \cdot C_{\mathbb{D}_{0^{+}}^{\alpha, \sigma}} u(x)\right)\left(e^{\sigma x} \varphi(x)\right)^{\prime} d x \\
& =\sum_{j=0}^{n} \int_{x_{j}}^{x_{j+1}}{ }_{x} I_{T}^{1-\alpha}\left(e^{-\sigma x} \cdot C_{\mathbb{D}_{0^{+}}^{\alpha, \sigma} u(x)}\right)\left(e^{\sigma x} \varphi(x)\right)^{\prime} d x \\
& =\sum_{j=0}^{n}\left(\lim _{x \rightarrow x_{j+1}^{-}} \mathbb{I}_{T^{-}}^{1-\alpha, \sigma} \cdot C_{\mathbb{D}_{0^{+}}^{\alpha, \sigma}} u(x) \varphi(x)-\lim _{x \rightarrow x_{j}^{+}} \mathbb{I}_{T^{-}}^{1-\alpha, \sigma} \cdot C_{\mathbb{D}_{0^{+}}^{\alpha, \sigma}} u(x) \varphi(x)+\int_{x_{j}}^{x_{j+1}} \mathbb{D}_{T^{-}}^{\alpha, \sigma}\left({ }^{C} \mathbb{D}_{0^{+}}^{\alpha, \sigma} u(x)\right) \varphi(x) d x\right)
\end{align*}
$$

Note that

$$
\begin{aligned}
& \sum_{j=0}^{n}\left(\lim _{x \rightarrow x_{j+1}^{-}} \mathbb{I}_{T^{-}}^{1-\alpha, \sigma} \cdot C_{\mathbb{D}_{0^{+}}^{\alpha, \sigma}}^{\left.\alpha(x) \varphi(x)-\lim _{x \rightarrow x_{j}^{+}} \mathbb{I}_{T^{-}}^{1-\alpha, \sigma} \cdot C_{\mathbb{D}_{0^{+}}^{\alpha, \sigma}} u(x) \varphi(x)\right), ~(x)}\right. \\
& =\lim _{x \rightarrow x_{n+1}^{-}} \varphi(x) \mathbb{I}_{T^{-}}^{1-\alpha, \sigma} \cdot C_{\mathbb{D}_{0^{+}}^{\alpha, \sigma}}^{\alpha,} u(x)-\lim _{x \rightarrow x_{n}^{+}} \varphi(x) \mathbb{I}_{T^{-}}^{1-\alpha, \sigma} \cdot{ }^{C} \mathbb{D}_{0^{+}}^{\alpha, \sigma} u(x) \\
& +\lim _{x \rightarrow x_{1}^{-}} \varphi(x) \mathbb{I}_{T^{-}}^{1-\alpha, \sigma} \cdot C_{\mathbb{D}_{0^{+}}^{\alpha, \sigma}}^{\alpha(x)-\lim _{x \rightarrow x_{0}^{+}} \varphi(x) \mathbb{I}_{T^{-}}^{1-\alpha, \sigma} . C_{\mathbb{D}_{0^{+}}}^{\alpha, \sigma} u(x), ~} \\
& +\sum_{j=1}^{n-1}\left(\lim _{x \rightarrow x_{j+1}^{-}} \mathbb{I}_{T^{-}}^{1-\alpha, \sigma} \cdot C_{\mathbb{D}_{0^{+}}^{\alpha, \sigma}} u(x) \varphi(x)-\lim _{x \rightarrow x_{j}^{+}} \mathbb{I}_{T^{-}}^{1-\alpha, \sigma} \cdot{ }^{C} \mathbb{D}_{0^{+}}^{\alpha, \sigma} u(x) \varphi(x)\right) \\
& =-\lim _{x \rightarrow x_{n}^{+}} \varphi(x) \mathbb{I}_{T^{-}}^{1-\alpha, \sigma} \cdot C_{\mathbb{D}_{0^{+}}^{\alpha, \sigma}}^{\alpha,} u(x)+\lim _{x \rightarrow x_{1}^{-}} \varphi(x) \mathbb{I}_{T^{-}}^{1-\alpha, \sigma} \cdot C_{\mathbb{D}_{0^{+}}}^{\alpha, \sigma} u(x) \\
& +\sum_{j=1}^{n-1}\left(\lim _{x \rightarrow x_{j+1}^{-}} \mathbb{I}_{T^{-}}^{1-\alpha, \sigma} \cdot C_{\mathbb{D}_{0^{+}}^{\alpha, \sigma}}^{\left.\alpha(x) \varphi(x)-\lim _{x \rightarrow x_{j}^{+}} \mathbb{I}_{T^{-}}^{1-\alpha, \sigma} \cdot C_{\mathbb{D}_{0^{+}}^{\alpha, \sigma}} u(x) \varphi(x)\right), ~}\right. \\
& =-\sum_{j=1}^{n}\left(\lim _{x \rightarrow x_{j}^{+}} \mathbb{I}_{T^{-}}^{1-\alpha, \sigma} \cdot C_{\mathbb{D}_{0^{+}}^{\alpha, \sigma}}^{\left.\left.\alpha(x) \varphi(x)-\lim _{x \rightarrow x_{j}^{-}} \mathbb{I}_{T^{-}}^{1-\alpha, \sigma} \cdot C_{\mathbb{D}_{0^{+}}^{\alpha, \sigma} u(x) \varphi(x)}\right)\right) ~}\right.
\end{aligned}
$$

Combining this equality with (4.1) we derive

$$
\int_{0}^{T} C_{\mathbb{D}_{0^{+}}^{\alpha, \sigma}} u(x)^{C} \mathbb{D}_{0^{+}}^{\alpha, \sigma} \varphi(x) d x=\int_{0}^{T} \mathbb{D}_{T^{-}}^{\alpha, \sigma}\left({ }^{C} \mathbb{D}_{0^{+}}^{\alpha, \sigma} u(x)\right) \varphi(x) d x-\sum_{j=1}^{n} \Delta\left(\mathbb{I}_{T^{-}}^{1-\alpha, \sigma} \cdot C_{\mathbb{D}_{0^{+}}^{\alpha, \sigma}} u\right)\left(x_{j}\right) \varphi\left(x_{j}\right) .
$$

Now we introduce the notion of solutions that we consider in this paper.
Definition 4.1. A function

$$
u \in\left\{u \in A C[0, T]:\left.\left.\int_{x_{j}}^{x_{j+1}}\right|^{C} \mathbb{D}_{0^{+}}^{\alpha, \sigma} u(x)\right|^{2} d x<\infty, \quad j=0, \cdots, n\right\}
$$

is said to be a classical solution of problem (1.1), if u satisfies the equation a.e. on $(0, T) \backslash\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$, the limits

$$
\lim _{x \rightarrow x_{j}^{+}} \mathbb{I}_{T^{-}}^{1-\alpha, \sigma} \cdot C_{\mathbb{D}_{0^{+}}^{\alpha, \sigma}} u(x) \quad \text { and } \quad \lim _{x \rightarrow x_{j}^{-}} \mathbb{I}_{T^{-}}^{1-\alpha, \sigma} \cdot C_{\mathbb{D}_{0^{+}}^{\alpha, \sigma}} u(x)
$$

exist and satisfy the impulsive condition $\Delta\left(\mathbb{I}_{T^{-}}^{1-\alpha, \sigma} \cdot C_{\mathbb{D}_{0^{+}}^{\alpha, \sigma}} u\right)\left(x_{j}\right)=I_{j}\left(u\left(x_{j}\right)\right)$ and boundary condition $u(0)=u(T)=0$.

Definition 4.2. A function $u \in \mathbb{H}_{0}^{\alpha, \sigma}(0, T)$ is said to be a weak solution of problem (1.1), if for every $\varphi \in \mathbb{H}_{0}^{\alpha, \sigma}(0, T)$, the following identity holds

$$
\int_{0}^{T} C_{\mathbb{D}_{0^{+}}^{\alpha, \sigma}} u(x)^{C} \mathbb{D}_{0^{+}}^{\alpha, \sigma} \varphi(x) d x+\sum_{j=1}^{n} I_{j}\left(u\left(x_{j}\right)\right) \varphi\left(x_{j}\right)=\int_{0}^{T} f(x, u(x)) \varphi(x) d x .
$$

As in [7, Lemma 2.1] we can show the following result.
Lemma 4.1. The function $u \in \mathbb{H}_{0}^{\alpha, \sigma}(0, T)$ is a weak solution of (1.1), if and only if u is a classical solution of (1.1).

Note that the problem (1.1) has a variational structure and its solution are critical points of a suitable functional I defined on the fractional space $\mathbb{H}_{0}^{\alpha, \sigma}(0, T)$ as follows

$$
\begin{equation*}
I(u)=\frac{1}{2}\|u\|^{2}-\int_{0}^{T} F(x, u(x)) d x+\sum_{j=1}^{n} \int_{0}^{u\left(x_{j}\right)} I_{j}(s) d s . \tag{4.2}
\end{equation*}
$$

To prove our main result we need the following lemma:
Lemma 4.2. ([40, Theorem 9.12]). Let X be an infinite dimensional real Banach space and $\Phi \in C^{1}(X, \mathbb{R})$ be even, satisfying the $(P S)$-condition and $\Phi(0)=0$. If $X=X_{1} \oplus X_{2}$ with $k:=\operatorname{dim} X_{2}<\infty$ and Φ satisfies the following conditions:
(i) There exist constants $\rho, \sigma>0$ such that $\left.\Phi\right|_{\partial B_{\rho} \cap X_{1}} \geq \sigma$;
(ii) For each finite dimensional subspace $V \subset X$, there is an $R=R(V)$ such that $\Phi(u) \leq 0$ for every $u \in V$ with $\|u\|>R$.
Then Φ has an unbounded sequence of critical values.
Proof of Theorem 1.1. We shall apply Lemma 4.2 to I. We know that $\mathbb{H}_{0}^{\alpha, \sigma}(0, T)$ is a Banach space and $I \in C^{1}\left(\mathbb{H}_{0}^{\alpha, \sigma}(0, T), \mathbb{R}\right)$. We can easily that, $I(0)=0$ and I is even. Next, we prove that I satisfies the $(P S)$-condition. Assume that $\left\{u_{n}\right\}$ is a (PS)-sequence of I such that $\left\{I\left(u_{n}\right)\right\}$ is bounded and $I^{\prime}\left(u_{n}\right) \longrightarrow 0$, as $n \longrightarrow \infty$.

By $\left(I_{2}\right)$, we have

$$
\begin{aligned}
& \frac{\gamma_{j}}{\tau} \leq \frac{I_{j}(\tau)}{\int_{0}^{\tau} I_{j}(s) d s}, \quad \forall \tau \geq \vartheta \\
& \frac{\gamma_{j}}{\tau} \geq \frac{I_{j}(\tau)}{\int_{0}^{\tau} I_{j}(s) d s}, \quad \forall \tau \leq-\vartheta
\end{aligned}
$$

By integrating the above relations respect to τ on $[\vartheta, \tau]$ and $[\tau,-\vartheta]$, respectively, one can get

$$
\begin{aligned}
& \gamma_{j} \ln \frac{\tau}{\vartheta} \leq \ln \frac{\int_{0}^{\tau} I_{j}(s) d s}{\int_{0}^{\vartheta} I_{j}(s) d s}, \quad \forall \tau \geq \vartheta \\
& \gamma_{j} \ln \frac{\vartheta}{-\tau} \geq \ln \frac{\int_{0}^{-\vartheta} I_{j}(s) d s}{\int_{0}^{\tau} I_{j}(s) d s}, \quad \forall \tau \leq-\vartheta
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
& \int_{0}^{\tau} I_{j}(s) d s \geq\left(\frac{\tau}{\vartheta}\right)^{\gamma_{j}} \int_{0}^{\vartheta} I_{j}(s) d s, \forall \tau \geq \vartheta \\
& \int_{0}^{\tau} I_{j}(s) d s \geq\left(\frac{-\tau}{\vartheta}\right)^{\gamma_{j}} \int_{0}^{-\vartheta} I_{j}(s) d s, \forall \tau \leq-\vartheta
\end{aligned}
$$

So there exist constants $m_{j}=m_{j}\left(\gamma_{j}, \vartheta\right)>0$ such that $\int_{0}^{\tau} I_{j}(s) d s \geq m_{j}|\tau|^{\gamma_{j}}$, for all $|\tau| \geq \vartheta$. By the continuity of $\int_{0}^{\tau} I_{j}(s) d s$, there exist positive constants K_{j}, such that

$$
\int_{0}^{\tau} I_{j}(s) d s \geq-K_{j} \geq m_{j}|\tau|^{\gamma_{j}}-m_{j} \vartheta^{\gamma_{j}}-K_{j}, \quad \forall|\tau| \leq \vartheta
$$

Therefore, we get

$$
\begin{equation*}
\int_{0}^{\tau} I_{j}(s) d s \geq m_{j}|\tau|^{\gamma_{j}}-\widehat{m}_{j}, \quad \forall \tau \in \mathbb{R} \tag{4.3}
\end{equation*}
$$

where $\widehat{m}_{j}=m_{j} \vartheta^{\gamma_{j}}+K_{j}$.

Suppose that $\left\{I\left(u_{n}\right)\right\}$ be a bounded sequence and $I^{\prime}\left(u_{n}\right) \longrightarrow 0$ as $n \rightarrow \infty$. Hence

$$
\begin{aligned}
I\left(u_{n}\right)-\frac{1}{\gamma}\left\langle I^{\prime}\left(u_{n}\right), u_{n}\right\rangle= & \left(\frac{1}{2}-\frac{1}{\gamma}\right)\left\|u_{n}\right\|^{2} \\
& +\frac{1}{\gamma} \int_{0}^{T} f\left(x, u_{n}(x)\right) u_{n}(x) d x-\int_{0}^{T} F\left(x, u_{n}(x)\right) u_{n}(x) d x \\
& +\frac{1}{\gamma} \sum_{j=1}^{n} I_{j}\left(u_{n}\left(x_{j}\right)\right) u_{n}\left(x_{j}\right)-\sum_{j=1}^{n} \int_{0}^{u_{n}\left(x_{j}\right)} I_{j}(s) d s
\end{aligned}
$$

So, by straightforward calculation, for some positive constant $C_{0}>0$, we obtain

$$
I\left(u_{n}\right) \geq\left(\frac{1}{2}-\frac{1}{\gamma}\right)\left\|u_{n}\right\|^{2}+\frac{1}{\gamma}\left\|I^{\prime}\left(u_{n}\right)\right\|_{\left(\mathbb{H}_{0}^{\alpha, \sigma}(0, T)^{*}\right)}\left\|u_{n}\right\|+C_{0}
$$

Since $\left\{I\left(u_{n}\right)\right\}$ is bounded then the sequence $\left\{u_{n}\right\} \subset \mathbb{H}_{0}^{\alpha, \sigma}(0, T)$ is bounded. Since $\mathbb{H}_{0}^{\alpha, \sigma}(0, T)$ is a reflexive Banach space and so by passing to a subsequence (for simplicity denoted again by $\left\{u_{n}\right\}$) if necessary, by Theorem 3.4, we may assume that

$$
\begin{cases}u_{n} \rightharpoonup u, & \text { weakly in } \mathbb{H}_{0}^{\alpha, \sigma}(0, T) \tag{4.4}\\ u_{n} \longrightarrow u, & \text { strongly in } C(0, T)\end{cases}
$$

So, we get

$$
\begin{align*}
\left\|u_{n}-u\right\|^{2} \leq & \left\langle I^{\prime}\left(u_{n}\right)-I^{\prime}(u), u_{n}-u\right\rangle \\
& -\int_{0}^{T}\left(f\left(x, u_{n}(x)\right)-f(x, u(x)), u_{n}(x)-u(x)\right) d x \\
& +\sum_{j=1}^{n}\left[I_{j}\left(u_{n}\left(x_{j}\right)\right)-I_{j}\left(u\left(x_{j}\right)\right)\right]\left(u_{n}\left(x_{j}\right)-u\left(x_{j}\right)\right) . \tag{4.5}
\end{align*}
$$

For any $j=1, \ldots, n$, we have that $u_{n}\left(x_{j}\right) \longrightarrow u\left(x_{j}\right)$ as $n \longrightarrow \infty$. Thus it follows from the continuity of all I_{i} that

$$
\begin{equation*}
\sum_{j=1}^{n}\left[I_{j}\left(u_{n}\left(x_{j}\right)\right)-I_{j}\left(u\left(x_{j}\right)\right)\right]\left(u_{n}\left(x_{j}\right)-u\left(x_{j}\right)\right) \longrightarrow 0 \quad \text { as } n \longrightarrow \infty \tag{4.6}
\end{equation*}
$$

By (4.4), we have

$$
\begin{equation*}
\int_{0}^{T}\left(f\left(x, u_{n}(x)\right)-f(x, u(x))\right)\left(u_{n}(x)-u(x)\right) d x \longrightarrow 0, \text { as } n \longrightarrow \infty \tag{4.7}
\end{equation*}
$$

Since $I^{\prime}\left(u_{n}\right) \longrightarrow 0$, then by using (4.5), (4.6) and (4.7), we have that $\left\|u_{n}-u\right\| \longrightarrow 0$, which means that $I(u)$ satisfies the $(P S)$-condition.

On the other hand, by $\left(F_{1}\right)$, for any $\varepsilon>0$, there exists $C_{0}(\varepsilon)$ such that

$$
\begin{equation*}
F(x, u) \leq \varepsilon|u|^{2}+C_{0}(\varepsilon)|u|^{\eta+1}, \quad \forall(x, u) \in[0, T] \times \mathbb{R} . \tag{4.8}
\end{equation*}
$$

In view of (3.9), (4.3) and (4.8), we get

$$
\begin{aligned}
c \geq I(u)= & \frac{1}{2}\|u\|^{2}+\sum_{j=1}^{n} \int_{0}^{u\left(x_{j}\right)} I_{j}(s) d s-\int_{0}^{T} F(x, u(x)) d x \\
\geq & \frac{1}{2}\|u\|^{2}+\sum_{j=1}^{n}\left(m_{j}\left|u\left(x_{j}\right)\right|^{\gamma_{j}}-\widehat{m}_{j}\right)-\int_{0}^{T}\left(\varepsilon|u|^{2}+C_{0}(\varepsilon)|u|^{\eta+1}\right) d x \\
\geq & \left.\frac{1}{2}\|u\|^{2}-\sum_{j=1}^{n}\left(m_{j} \|\left. u\right|_{\infty} ^{\gamma_{j}}-\widehat{m}_{j}\right)-\varepsilon T\|u\|_{\infty}^{2}-C_{0}(\varepsilon) T\|u\|_{\infty}^{\eta+1}\right) d x \\
\geq & \left(\frac{1}{2}-\varepsilon T\left(\frac{[\gamma(2 \alpha-1,2 \sigma(b-a))]^{1 / 2}}{(2 \sigma)^{\alpha-\frac{1}{2}} \Gamma(\alpha)}\right)^{2}\right)\|u\|^{2} \\
& -\sum_{j=1}^{n} m_{j}\left(\frac{[\gamma(2 \alpha-1,2 \sigma(b-a))]^{1 / 2}}{(2 \sigma)^{\alpha-\frac{1}{2}} \Gamma(\alpha)}\right)^{\gamma_{j}}\|u\|^{\gamma_{j}}+\sum_{j=1}^{n} \widehat{m}_{j} \\
& -C_{0}(\varepsilon) T\left(\frac{[\gamma(2 \alpha-1,2 \sigma(b-a))]^{1 / 2}}{(2 \sigma)^{\alpha-\frac{1}{2}} \Gamma(\alpha)}\right)^{\eta+1}\|u\|^{\eta+1} d x .
\end{aligned}
$$

By (4.9) and (I_{2}), one can get

$$
\begin{align*}
I(u)= & \frac{1}{2}\|u\|^{2}-\int_{0}^{T} F(x, u(x)) d x+\sum_{j=1}^{n} \int_{0}^{u\left(x_{j}\right)} I_{j}(s) d s \\
\geq & \frac{1}{2}\|u\|^{2}-\int_{0}^{T} F(x, u(x)) d x \\
\geq & \left(\frac{1}{2}-\varepsilon T\left(\frac{[\gamma(2 \alpha-1,2 \sigma(b-a))]^{1 / 2}}{(2 \sigma)^{\alpha-\frac{1}{2}} \Gamma(\alpha)}\right)^{2}\right)\|u\|^{2} \\
& -C_{0}(\varepsilon) T\left(\frac{[\gamma(2 \alpha-1,2 \sigma(b-a))]^{1 / 2}}{(2 \sigma)^{\alpha-\frac{1}{2}} \Gamma(\alpha)}\right)^{\eta+1}\|u\|^{\eta+1} . \tag{4.10}
\end{align*}
$$

Let

$$
\begin{gathered}
\varepsilon=\frac{1}{4 T}\left(\frac{[\gamma(2 \alpha-1,2 \sigma(b-a))]^{1 / 2}}{(2 \sigma)^{\alpha-\frac{1}{2}} \Gamma(\alpha)}\right)^{-2} \\
\rho=\left(8 C_{0}(\varepsilon) T\left(\frac{[\gamma(2 \alpha-1,2 \sigma(b-a))]^{1 / 2}}{(2 \sigma)^{\alpha-\frac{1}{2}} \Gamma(\alpha)}\right)^{\eta+1}\right)^{\frac{1}{1-\eta}}
\end{gathered}
$$

and $B_{\rho}=\left\{u \in E^{\alpha}:\|u\|_{\alpha}<\rho\right\}$. Therefore,

$$
\begin{equation*}
\left.I\right|_{\partial B_{\rho}} \geq \frac{1}{8} \rho^{2}:=\sigma>0 \tag{4.11}
\end{equation*}
$$

$\mathbb{H}_{0}^{\alpha, \sigma}(0, T)$ has a countable orthogonal basis $\left\{e_{i}\right\}$. Set $Y_{k}=\operatorname{span}\left\{e_{1}, e_{2}, \ldots e_{k}\right\}$ and $Z_{k}=Y_{k}^{\perp}$. Then $\mathbb{H}_{0}^{\alpha, \sigma}(0, T)=Y_{k} \oplus Z_{k}$. Hence,

$$
\begin{equation*}
\left.I\right|_{\partial B_{\rho} \cap Z_{k}} \geq \sigma>0 . \tag{4.12}
\end{equation*}
$$

Furthermore, for any finite dimensional subspace $V \subset \mathbb{H}_{0}^{\alpha, \sigma}(0, T)$, there is a positive constant m such that $V \subset Y_{m}$. Since all norms in a finite dimensional space are equivalent, then there is a constant $\varrho>0$ such that

$$
\begin{equation*}
\|u\|_{\gamma} \geq \varrho\|u\|, \quad \forall u \in Y_{m} . \tag{4.13}
\end{equation*}
$$

By similar method in (4.3) and (F_{2}), we can get

$$
\begin{equation*}
F(x, u) \geq m|u|^{\gamma}-\widehat{m}, \quad \forall(x, u) \in[0, T] \times \mathbb{R} . \tag{4.14}
\end{equation*}
$$

From $\left(I_{1}\right)$, for any $\varepsilon>0$, there exists $C_{1}(\varepsilon)$ such that

$$
\begin{equation*}
\int_{0}^{u} I_{j}(s) d s \leq \varepsilon|u|^{2}+C_{1}(\varepsilon)|u|^{\varpi+1}, \quad \forall u \in \mathbb{R} . \tag{4.15}
\end{equation*}
$$

In view of (3.9), (4.15) and (4.14), we have

$$
\begin{align*}
I(u)= & \frac{1}{2}\|u\|^{2}-\int_{0}^{T} F(x, u(x)) d x+\sum_{j=1}^{n} \int_{0}^{u\left(x_{j}\right)} I_{j}(s) d s \\
\leq & \frac{1}{2}\|u\|^{2}+\sum_{j=1}^{n}\left(\varepsilon\left|u\left(x_{j}\right)\right|^{2}+C_{1}(\varepsilon)\left|u\left(x_{j}\right)\right|^{\varpi+1}\right)-m \int_{0}^{T}|u(x)|^{\gamma} d x+\widehat{m} T \\
\leq & \left(\frac{1}{2}+\varepsilon n\left(\frac{[\gamma(2 \alpha-1,2 \sigma(b-a))]^{1 / 2}}{(2 \sigma)^{\alpha-\frac{1}{2}} \Gamma(\alpha)}\right)^{2}\right)\|u\|^{2} \\
& +C_{1}(\varepsilon) n\left(\frac{[\gamma(2 \alpha-1,2 \sigma(b-a))]^{1 / 2}}{(2 \sigma)^{\alpha-\frac{1}{2}} \Gamma(\alpha)}\right)^{\varpi+1}\|u\|^{\varpi+1}-m \varrho^{\gamma}\|u\|^{\gamma}+\widehat{m} T, \tag{4.16}
\end{align*}
$$

for all $u \in Y_{m}$. Since $2<\varpi+1<\gamma$ then there is a large $r_{1}>0$ such that $I<0$ on $V \backslash B_{r_{1}}$. Consequently, there is a point $e \in \mathbb{H}_{0}^{\alpha, \sigma}(0, T)$ with $\|e\|_{\alpha}>\rho$ such that $I(e)<0$. By Lemma 4.2, I possesses infinitely many critical points, i.e. the problem (1.1) has infinitely many weak solutions.

Example 1. Let $\alpha=\frac{3}{4}, \sigma=1$ and $n=T=1$. Consider the boundary value problem of the fractional differential equation with impulsive effects

$$
\left\{\begin{array}{l}
\mathbb{D}_{b-}^{\frac{3}{4}, 1}\left(C^{\frac{3}{a}} \frac{\mathbb{D}^{\frac{3}{4}}, 1}{4} u(x)\right)=f(x, u), x \neq x_{j} \text { a.e. } x \in(0,1) \tag{4.17}\\
u(0)=u(T)=0 \\
\Delta\left(\mathbb{I}_{1^{-}}^{1-\alpha, \sigma} C_{\mathbb{D}_{0^{+}}^{\alpha, \sigma}}^{\alpha,} u\left(x_{1}\right)=I_{1}\left(u\left(x_{1}\right)\right)\right.
\end{array}\right.
$$

Let

$$
F(x, u)= \begin{cases}(x+2)|u|^{8} & |u|>1 \\ (x+3)\left(|u|^{4}-|u|^{6}\right) & |u| \leq 1\end{cases}
$$

and $I_{1}(t)=t^{4}$. we have that $\left(F_{2}\right)$ holds with $\gamma=7$ and $\vartheta_{0}=1$. By choosing $\eta=9$, (F_{1}) holds. Also (I_{1}) and $\left(I_{2}\right)$ hold by choosing $\varpi=5$ and $\vartheta=1$. Hence, Theorem yields that the problem (4.17) has infinitely many weak solutions.

CONTRIBUTION

All authors contributed equally to this work.

CONFLICT OF INTEREST

This work does not have any conflicts of interest.

DATA SUPPORTING

The manuscript has no associated data.

ACKNOWLEDGEMENTS

The author warmly thanks the anonymous referees for their useful and nice comments on the paper.

References

[1] N. Abdellouahab, B. Tellab, K. Zennir, Existence and stability results of A nonlinear fractional integrodifferential equation with integral boundary conditions, Kragujev. J. Math. 46, 685-699 (2022). 1
[2] R. Almeida and M. Luísa Morgado, Analysis and numerical approximation of tempered fractional calculus of variations problems, Journal of Computational and Applied Mathematics 361, 1-12 (2019) . 2
[3] C. Bai, Existence of solutions for a nonlinear fractional boundary value problem via a local minimum theorem, Electron. J. Differ. Equ. 2012 (176), 1-9 (2012). 1
[4] K. Balachandran, V. Govindaraj, M. Rivero, J.J. Trujillo, Controllability of fractional damped dynamical systems, Appl. Math. Comput. 257, 66-73 (2015). 1
[5] T. Bentrcia, A. Mennouni, On the asymptotic stability of a Bresse system with two fractional damping terms: Theoretical and numerical analysis, Discret. Contin. Dyn. Syst. Ser. B 28, 580-622 (2023). 1
[6] T. Blaszczyk, M. Ciesielski, Fractional oscillator equation transformation into integral equation and numerical solution, Appl. Math. Comput. 257, 428-435 (2015). 1
[7] G. Bonanno, R. Rodríguez-López and S. Tersian, Existence of solutions to boundary value problem for impulsive fractional differential equations, Fractional Calculus and Applied Analysis 17, 717-744 (2014). 2, 14
[8] W. Chen, X. Xu and S-P. Zhu, Analytically pricing double barrier options based on a time-fractional BlackScholes equation, Comp. Math. App. 69, 12, 1407-1419 (2015). 1
[9] B. Dai, H. Su, D. Hu, Periodic solution of a delayed ratio-dependent predator-prey model with monotonic functional response and impulse, Nonlinear Anal. 70, 126-134 (2009). 2
[10] D. del-Castillo-Negrete, Truncation effects in superdiffusive front propagation with Lévy flights, Phys. Rev. E 79, 031120 (2009). 2
[11] K. Deng, M. Chen, T. Sun, A weighted numerical algorithm for two and three dimensional two-sided space fractional wave equations, Applied Mathematics and Computation 257, 264-273 (2015). 1
[12] K. Diethelm, The analysis of fractional differential equations, Springer-Verlag Berlin Heidelberg 2010. 1
[13] A. Esen, O. Tasbozan, An approach to time fractional gas dynamics equation: quadratic B-spline Galerkin method, Appl. Math. Comput. 261, 330-336 (2015). 1
[14] B. Fisher, B. Jolevsaka-Tuneska and Et. Adem KiliÇman, On defining the incomplete gamma function, Integral Transforms and Special Functions, 14, 4, 293-299, 2003. 4
[15] J. Gajda and M. Magdziarz, Fractional Fokker-Planck equation with tempered α-stable waiting times: Langevin picture and computer simulation, Phys. Rev. E 82, 011117 (2010). 1
[16] R. Garrappa, I. Moret, M. Popolizio, Solving the time-fractional Schrödinger equation by Krylov projection methods, J. Comput. Phys. 293, 115-134 (2015). 1
[17] P.K. George, A.K. Nandakumaran, A. Arapostathis, A note on controllability of impulsive systems, J. Math. Anal. Appl. 241, 276-283 (2000). 2
[18] T.X. Gou, H.R. Sun, Solutions of nonlinear Schrödinger equation with fractional Laplacian without the Ambrosetti-Rabinowitz condition, Appl. Math. Comput. 257, 409-416 (2015). 1
[19] M. Izydorek, J. Janczewska, Homoclinic solutions for nonautonomous second order Hamiltonian systems with a coercive potential, J. Math. Anal. Appl. 335, 1119-1127 (2007). 1
[20] F. Jiao, Y. Zhou, Existence of solutions for a class of fractional boundary value problems via critical point theory, Comput. Math. Appl. 62, 1181-1199 (2011). 1
[21] F. Jiao, Y. Zhou, Existence results for fractional boundary value problem via critical point theory, J. Bifur. Chaos. Appl. Sci. Eng. 22, 1250086 (2012). 1
[22] A. Kilbas, O. Marichev and J. Trujillo. Theory and Applications of Fractional Differential Equations, NorthHolland Mathematics Studies, vol 204, Amsterdam, 2006. 1
[23] D. Kumar and J. Singh. Fractional calculus in medical and health science. CRC Press, 2020. 1
[24] A. Kullberg and D. del-Castillo-Negrete, Transport in the spatially tempered, fractional Fokker-Planck equation, J. Phys. A: Math. Theor. 45, 255101 (2012). 1
[25] V. Lakshmikantham, D.D. Bainov, P.S. Simeonov, Theory of Impulsive Differential Equations, Series in Modern Applied Mathematics, 6, World Scientific, Teaneck, NJ, 1989. 2
[26] H.-L. Li, Y.-L. Jiang, Z.-L. Wang, C. Hu, Global stability problem for feedback control systems of impulsive fractional differential equations on networks, Neurocomputing 161, 155-161 (2015). 2
[27] A. Liemert and A. Kienle, Fundamental solution of the tempered fractional diffusion equation. Journal of Mathematical Physics. 56(11), 2015; 113504. 1
[28] Z. Lin, J.R. Wang, W. Wei, Fractional differential equation models with pulses and criterion for pest management, Appl. Math. Comput. 257, 398-408 (2015). 1
[29] R. Magin, Fractional calculus in bioengineering, part3. Critical Reviews ${ }^{\text {TM }}$ in Biomedical Engineering 32.3\&4 (2004). 1
[30] J. Machado, F. Mainardi, and V. Kiryakova, Fractional calculus: Quo vadimus?(Where are we going?). Frac. Cal. Appl. Anal. 18.2 (2015): 495-526. 1
[31] J. Mawhin, M. Willem, Critical point theory and Hamiltonian systems, Berlin: Springer-Verlag; 1989.
[32] M. Meerschaert, Y. Zhang, and B. Baeumer, Tempered anomalous diffusion in heterogeneous systems, Geophys. Res. Lett. 35, L17403 (2008). 2
[33] A. Mennouni, L. Bougoffa,A.M. Wazwaz, A new recursive scheme for solving a fractional differential equation of ray tracing through the crystalline lens, Optical and Quantum Electronics 54, 373 (2022) 1
[34] N. Nyamoradi, R. Rodríguez-López, On boundary value problems for impulsive fractional differential equations, , Applied Math. Comput. 271, 874-892 (2015). 2
[35] N. Nyamoradi, R. Rodríguez-López, Multiplicity of solutions to fractional Hamiltonian systems with impulsive effects, Chaos Solit. Fract. 102, 2017, 254-263 (2017). 2
[36] N. Nyamoradi, Y. Zhou, Bifurcation results for a class of fractional Hamiltonian systems with Liouville-Wely fractional derivatives, J. Vib. Control 5, 1358-1368 (2014). 1
[37] P. Pandey, R. Pandey, S. Yadav and O. Agrawal, Variational Approach for Tempered Fractional SturmLiouville Problem, Int. J. Appl. Comput. Math 7, 51 (2021). 4
[38] A. Qian, C. Li, Infinitely many solutions for a robin boundary value problem, Int. J. Differ. Equ. (2010) doi:10.1155/2010/548702 2
[39] P. Rabinowitz, Minimax method in critical point theory with applications to differential equations, CBMS Amer. Math. Soc., No 65, 1986. 15
[40] Rabinowitz, P.H.: Minimax methods in critical point theory with applications to differential equations. CBMS Regional Conference Series in Mathematics, vol. 65. Washington DC, USA: American Mathematical Society; (1986). 15
[41] G. Rajchakit, A. Pratap, R, Raja, J. Cao, J. Alzabut, C. Huang, C. Hybrid control scheme for projective lag synchronization of Riemann Liouville sense fractional order memristive BAM neural networks with mixed delays, Mathematics 7, 759 (2019). 1
[42] R. Rodríguez-López, S. Tersian, Multiple solutions to boundary value problem for impulsive fractional differential equations, Fract. Calc. Appl. Anal. 17 (4), 1016-1038 (2014). 2
[43] S. Saifullad, A. Ali, A. Khan, K. Shah and T. Abdeljawad, A Novel Tempered Fractional Transform: Theory, Properties and Applications to Differential Equations, Fractals, (2023), https://doi.org/10.1142/S0218348X23400455 1
[44] A.M. Samoilenko, N.A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore, 1995. 2
[45] F. Sabzikar, M. Meerschaert, and J. Chen, Tempered fractional calculus. J. Comput. Phy. 293 (2015): 14-28. 1, 2
[46] A. Stanislavsky, K. Weron, and A. Weron, Diffusion and relaxation controlled by tempered α-stable processes, Phys. Rev. E 78, 051106 (2008). 2
[47] H.R. Sun, Q.G. Zhang, Existence of solutions for a fractional boundary value problem via the mountain pass method and an iterative technique, Comput. Math. Appl. 64, 3436-3443 (2012). 1
[48] V. Tarasov, Handbook of fractional calculus with applications. Vol. 5. Berlin: de Gruyter, 2019. 1
[49] C. Torres Ledesma and N. Nyamoradi, (k, ψ)-Hilfer variational problem, J. Elliptic Parab. Equat. (2022) doi:10.1007/s41808-022-00173-w. 1
[50] C. Torres Ledesma and N. Nyamoradi, (k, ψ)-Hilfer impulsive variational problem, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. (2023) doi:10.1007/s13398-022-01377-4. 2
[51] C. Torres Ledesma and J. Vanterler da C. Sousa, Fractional integration by parts and Sobolev-type inequalities for ψ-fractional operators, Math Meth Appl Sci. 2022; 1-22. 1
[52] C. Torres Ledesma, H. Cuti Gutierrez, J. Ávalos Rodríguez and W. Zubiaga Vera, Some boundedness results for Riemann-Liouville tempered fractional integrals, preprint 2022. 1, 4, 5
[53] Y. Wang, Y. Li, J. Zhou, Solvability of boundary value problems for impulsive fractional differential equations via critical point theory, Mediterr. J. Math. 13, 4845-4866 (2016). 2
[54] Y. Zhang, Moments for tempered fractional advection-diffusion equations, J. Stat. Phys. 139, 915-939 (2010). 1, 2
[55] S.Q. Zhang, Existence of a solution for the fractional differential equation with nonlinear boundary conditions, Comput. Math. Appl. 61, 1202-1208 (2011). 1
(Hernán A. Cuti Gutierrez)
fCA Research Group, Departamento de Matemáticas, Instituto de Investigación en Matemáticas, FCFYM
Universidad Nacional de Trujillo
Av. Juan Pablo II s/n. Trujillo-Perú
Email address: hcuti@unitru.edu.pe
(Nemat Nyamoradi)
Department of Mathematics
Faculty of Sciences
Razi University
67149 Kermanshah, Iran.
Email address: nyamoradi@razi.ac.ir
(César E. Torres Ledesma)
FCA Research Group, Departamento de Matemáticas,
Instituto de Investigación en Matemáticas, FCFYM
Universidad Nacional de Trujillo
Av. Juan Pablo II s/n. Trujillo-Perú
Email address: ctl_576@yahoo.es

[^0]: 2010 Mathematics Subject Classification. Primary 26A33; Secondary 34B15, 35J20, 58E05.
 Key words and phrases. Riemann-Liouville and Caputo tempered fractional derivatives, impulsive effects, tempered fractional space of Sobolev type, variational methods.

 Corresponding author: César E. Torres Ledesma, ctl_576@yahoo.es.

