For EDITORS

For READERS

All Issues

Vol.15, 2025
Vol.14, 2024
Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 14, Number 6, 2024, Pages -                                                                DOI:10.11948/JAAC-2024-0026
Estimates for bilinear $\Theta$-type Calder\
Miaomiao Wang,Guanghui Lu,Shuangping Tao
Keywords:Non-homogeneous metric measure space  bilinear $\theta$-type Calder\
Abstract:
      Let $(\mathcal{X},d,\mu)$ be a non-homogeneous metric measure space satisfying geometrically doubling and upper doubling conditions. Under assumption that a dominating function $\lambda$ satisfi-\\es $\varepsilon$-weak reverse doubling condition, the authors prove that a bilinear $\theta$-type Calder\"{o}n-Zygmund\\ operator $\widetilde{T}_{\theta}$ is bounded from product of generalized weighted Morrey spaces $\mathcal{L}^{p_{1},\Phi,\varrho}_{\omega_{1}}(\mu)\times \mathcal{L}^{p_{2},\Phi,\varrho}_{\omega_{2}}(\mu)$ into weak generalized weighted Morrey spaces $W\mathcal{L}^{p,\Phi,\varrho}_{\nu_{\vec{\omega}}}(\mu)$, and also show that the commutator\\ $\widetilde{T}_{\theta,b_{1},b_{2}}$ generated by $b_{1}, b_{2}\in\widetilde{\mathrm{RBMO}}(\mu)$ and $\widetilde{T}_{\theta}$ are bounded from product of spaces $\mathcal{L}^{p_{1},\Phi,\varrho}_{\omega_{1}}(\mu)\times \mathcal{L}^{p_{2},\Phi,\varrho}_{\omega_{2}}(\mu)$ into spaces $W\mathcal{L}^{p,\Phi,\varrho}_{\nu_{\vec{\omega}}}(\mu)$, where $\Phi: (0,\infty)\rightarrow(0,\infty)$ is a Lebesgue measurable function, $\varrho\in(1,\infty)$, $\vec{p}=(p_{1},p_{2})$, $\vec{\omega}=(\omega_{1},\omega_{2})\in A^{\tau}_{\vec{p}}(\mu)$, $\nu_{\vec{\omega}}\in RH_{r}(\mu)$ for $r\in(1,\infty)$, and $\frac{1}{p}=\frac{1}{p_{1}}+\frac{1}{p_{2}}$ wi-\\th $1
PDF      Download reader