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To.b, .0, generated by by, by € R/B\M/O(u) and Ty are bounded from product of spaces LELP (1) x
L£22®2(1) into spaces W LE"?(u), where @ : (0, 00) — (0, 00) is a Lebesgue measurable function,
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1. Introduction

It is well known that the researches on the boundedness of operators is not only a hot topic
in modern harmonic analysis, but also their use is best justified by the variety of applications in
which they appear; for example, see [3,4,8]. To investigate the local behaviour of solutions for t-
he second order elliptic partial differential equations, C.B. Morrey [36] introduced the classical
Morrey space. On the basis of this, B. Muckenhoupt and R. Wheeden [37] established the weight-
ed norm inequalities for the Hardy maximal functions; in 1994, E. Nakai [38] introduced a gener-
alized Morrey space LP*(R"™), and also obtained the boundedness of the Hardy-Littlewood max-
imal operator M, the singular integral operator T and the Riesz potential I, on spaces LP* (R™).
In 2009, T.Y. Komori and S. Shirai [18] introduced a weighted Morrey space LP;*(R™), and pro-
ved that the Hardy-Littlewood maximal operator M, the Calderén-Zygmund operator T" and the
fractional integral operator I, are bounded on spaces LP;”(R™). In recent years, many papers f-
ocus the various Morrey spaces on different kinds of underlying spaces. For example, in 2021, I.
Ekincioglu et al. [10] introduced a generalized variable exponent Morrey space M- p(')’V’(R”), and
showed that the multilinear commutators T3, generated by Calderén-Zygmund operators 7' and
b= (b, ,bm) € (BMO(R”))m are bounded on spaces MP()#(R™). In 2022, Wei [39] obtain-
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ed the definition of a generalized mixed Morrey space Mg (R™) and its dual space, and then estab-
lished the boundedness of Calderén-Zygmund singular integral operators 1" on spaces M ;;(R”) f-
or p=(p1, -+ ,Pn) € (1,00)". In 2023, F. Deringoz [9] obtained the definition of a generalized
weighted Orlicz-Morrey space M®#(R™), and proved that the Calderén-Zygmund operators T
and their commutators [b, T] associated with BMO functions are bounded on spaces M2+¥(R™).
Recently, Lu et al. [34] obtain the definition of a generalized Morrey space over RD-spaces sati-
sfying the doubling conditions in the sense of Coifman and Weiss in [6,7] and the reverse doubling
conditions, and show that the bilinear generalized fractional integral operator T., and its comm-
utator Ta,b17b2 which is formed by b, by € BMO(X) are bounded on product of spaces £#1P1 (X') x
L#2P2(X). More development on the various generalized Morrey spaces can be seen in [19, 20,
23,30, 31,40].

Regarding two important class of function spaces in harmonic analysis, i.e., spaces of homoge-
neous type in the sense of Coifman and Weiss [6,7] and non-doubling measure spaces whose meas-
ures satisfy the polynomial growth conditions (see [41,44,45,48]), many results from real analysis
and harmonic analysis on spaces R™ are proved still valid on these two spaces. But, generally, s-
ome results hold on spaces of homogeneous type many not be correct on spaces without doubling
measures. To unify the two class of spaces, in 2010, Hytonen [15] introduced a new class of metric
measure spaces satisfying so-called geometrically doubling and upper doubling conditions, which
are now called non-homogeneous metric measure spaces and simply denoted by (X, d, ). Since
then, many papers focus on the various properties of function spaces and integral operators over
(X,d, p). For example, in 2021, Lu [26] showed that an #-type Calderén-Zygmund operator Ty
and its commutator [b, Tp] generated by b € RBMO(p) and Ty are bounded on weighted weak L-
ebesgue spaces W LP(w) and weighted weak Morrey spaces W LP**(w). At the same year, Zhao
et al. in [51] obtained some weak-type multiple weighted estimates for the iterated commutator
Ti5 formed by b = (b1, ,bm) € [R/B\I\_/I/O(u)]’” and a multilinear Calderén-Zygmund operator
T. In 2022, Lu [27] proved that fractional type Marcinkiewicz integrals M, , n, and their com-
mutators M, , 1, formed by b € R/lé\M/O(u) and M, , ,» are bounded on generalized Morrey
spaces LP*?(u) and Morrey spaces M (p), where ¢ is a Lebesgue measurable function defined on
(0,00) and 1 < p < g < oo. Recently, Lu et al. [35] show that the bilinear strongly generalized
fractional integrals fa and their commutator Ta,bl,bz formed by by, by € R/B\M/O(u) and fa on p-
roduct of Lebesgue spaces LP*(u) x LP? (1), product of Morrey spaces M2 () x MP2 () and pro-
duct of generalized Morrey spaces £P1%1(u) x £P2%2(11). More researches about the integral ope-
rators and function spaces on (X, d, 1) can be seen in [13,16,25,29,33,43,46,47,49,50].

It is position to state the organizations of this paper as follows: in section 2, we mainly recall
some necessary notation and notions. In section 3, the authors showed that Te is bounded form
the product of generalized weighted Morrey spaces LF1®¢(u) x LF2:%:¢(11) into weak generalized
weighted Morrey spaces WE,’,’f*Q (1), where ® is a non-negative Lebesgue measurable function

1

defined on (0,00), @ = (w1, ws) € A%(M)v P = (p1,p2), 5= P% + p% for p1,pa € [1,00), and vg =

2 =z ~
[l w;” € RH,(u) for r € (1,00). In section 4, the authors prove that the commutator Tp p, b,
j=1
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generated by bq,bs € RTB\M/O(M) and Ty are bounded from the product of spaces LE-®2(1) x
LP2®-2(11) into spaces WLE®2(11). The strong and weak type boundedness of the Ty and fgybl,bg
on product of spaces LF}®€(y1) x L2:%:¢(1) are established in section 5.

Finally, we make some conventions on notation. Throughout this paper, we always denote b-
y C a positive constant being independent of the main parameters, but it may vary from line to
line. Given any p € [1,00), we denote p’ as its conjugate index, that is, 1/p + 1/p’ = 1. For any

measurable set E, xg denotes its characteristic function,
va(B) = [ va(e)du(a)
E

with & € A%(u) and

1
me(f) = /E f(@)dp(z)

represents the average of the function f on E.

2. Preliminaries

In this section, we recall some necessary notions and notation, including the dominating fu-
nction, the discrete coefficient K 1(3’3))5, the spaces RB/_\M/O( 1), the bilinear -type Calderén-Zygmund
operator and the generalized weighted Morrey space £2;%:¢(11). The following definitions of upper
doubling is from [15].

Definition 2.1. A metric measure space (X, d, u) is said to be upper doubling if y is a Borel m-
easure on X and there exist a dominating function A : X x (0,00) — (0, 00) and a positive cons-
tant C(y), only depending on A, such that, for each z € X', r — A(x,r) is non-decreasing and,
for all z € X and r € (0, c0).

p(B(x,r)) < Ma,r) < CoyA(z,r/2). (2.1)
Remark 2.2. Hytonen [16] showed that there exists another dominating function X such that
A<, C(;\) < Oy and, for all z,y € X with d(z,y) <,
Nz, ) < CoyA(y, 7). (2.2)
Hence, in this paper, we also assume that the A defined as in (2.1) satisfies (2.2).

The following notion of the geometrically doubling is well known in analysis on metric measure

spaces, which can be found in Coifman and Weiss [6].

Definition 2.3. A metric space (X, d) is said to be geometrically doubling if there exists some
Ny € N such that, for any ball B(z,r) C X with z € X and r € (0,00), there exists a finite ball
covering {B(x;, 5)}i of B(x,r) such that the cardinality of this covering is at most No, here i =
1,2,---, No.

Remark 2.4. Let (X, d) be a metric measure. Hytonen [15] showed that the geometrically dou-
bling is equivalent to the following statement: for every e € (0,1), any ball B(z,r) C X with z €
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X and r € (0, 00) contains at most Noe~ ™0 centers of disjoint balls {B(x;,er)};(i =1,2,---), he-

re and in what follows, ng = logy Ny and Nj is as in Definition 2.3.

For any ball B C X', we respectively denote its center and radius by c¢p and rp and, moreover,
for any ¢ € (0,00), we denote the ball B(cg,(rp) by (B. The following definition of discrete co-
efficients K ](3’)7)5, which is more close to the quantity K g introduced by Tolsa in [44], is from [1].

Definition 2.5. For any p € (1,00) and any two balls B, S with B C S, define

N "
~ : 1(p"B)
ROy=14 3 AZB) (2.3)
k=—log, 2] e, pFrp)

Here and hereafter, for any a € R, |a] represents the largest integer smaller than or equal to a,
(»)
and N j(gp )S is the smallest integer satisfying pN 5s rg > rg. Moreover, more properties on the coe-

fficients IN(g))S can be seen Remark 2.8 in [22].

In [15], Hytonen introduced a («, 8)-doubling ball, i.e., let o, 8 € (1,00), a ball B C X is sa-
id to be («, 5)-doubling if pu(aB) < Su(B). The other properties on the («, 8)-doubling ball can
be seen Lemmas 3.2 and 3.3 in [15]. In what follows, let v = log, C(») and ng = log, No, where
Ny is defined as in Definition 2.3. Throughout this article, for any « € (1, 00) and ball B, the s-
mallest (e, B4 )-doubling ball of the form /B with j € N is denoted by B, where

Bo = max{a", a”} + 30™° + 30”. (2.4)
In addition, if there is no special explanation in this paper, we always set a = 6 and simply den-

ote BS by B.
The following definition of the spaces RBMO with discrete coefficient is from [11].

Definition 2.6. Let p € (1,00) and 7y € [1,00). A real-valued function f € L]

long to the space R/B_\M/Opﬁ(/i) if there exist a positive constant C' such that, for any ball B C X

(1) is said to be-

and a number fp,

),
—_— flx)— feldu(z) < C 2.5
5 [ @) = fsldu(x) (25)
and, for any two balls B and S such that B C S,
f5 — fsl < C[RYN]. (2.6)

where fp represents the mean value of functions f over ball B, that is,
1
fs= —/ f(y)du(y).
w(B) Jp

The infimum of the positive constants C satisfying (2.5) and (2.6) is defined to be the R,/B_\I\_/I/Op’,y(/i)

norm of f and simply denoted by || f|| im0 )" Furthermore, Fu et al. [11] showed that the s-
Py

pace R/]g\M/Op,W(u) is independent of choices of p € (1,00) and 7 € [1,00). Hence, in this paper,

—_~—

the space RBMO, () is simply denoted by R/_B\l\_/I/O(u)
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Now we recall the definition of a bilinear #-type Calderén-Zygmund operator in [49].

Definition 2.7. Let 6 be a non-negative and non-decreasing function defined on (0, 00) and sa-

(Algg)lg<1>dt<cm (2.7)

A kernel K(-,-,-) € L{ (X3 \ {(z,z,2) : € X}) is called a bilinear 6-type Calderén-Zygmund
kernel if it satisfies the following conditions:
(i) for all (z,y1,y2) € X x X x X with z #y;, j = 1,2,

tisfy

2 —2
K| < €| S Moy (2.)
j=1
(ii) there exists a constant ¢ € (0,00) such that, for all =, 2, y1,y2 with satisfying cd(y1,y})

<
2%, A

-2

, d(x - }
K(z,y1,92) — K(2',y1,2)| < C8 3 (e d( : 2.9
| K (2,91, y2) (@', y1,92)| <d(x,y1)+ A(z.92) )L 1 (z,d(z,y;)) (2.9)

(iii) there exists a constant ¢ € (0, 00) such that, for all z, y1, ¥}, y2 with satisfying cd(y1, 1) <

d .
2%, )

-2

d(y1, 1)
K - K ! < E . 2.1
‘ ($7y17yz> ($7y1ay2)| = Cg(d(l’ yl) +d (E y2 )‘ LIT d .’L’ yj ( 0)

Let Lg°(u) be the spaces of all L (u) functions with bounded support. A bilinear operator
Ty is called a bilinear O-type Calderén-Zygmund operator with kernels K satisfying (2.8), (2.9)

and (2.10) if for all fi, fo € L°(p) and z € X'\ (Supp(fl) ﬂsupp(fz))
Ty(f1, fo)(z / K(z,y1,y2) f1(y1) f2(y2)dp(y1)dpu(y2)- (2.11)

Given by, by € F{/]?:\I\/I/O(u), the commutator Tg)bth formed by b1, by and T, is defined by

Ty s (f1, f2) (@) = br(@)ba(2) T (f1, fo) () — bi(z)Ty(f1,b2() f2)(2)
— ba(@)To(b1() f1, fo) (@) + To(br () f1, b2 () fo) (). (2.12)

Equivalently, the Tgm,bz (f1, f2)(x) can be formally written as
/x? K(x,y1,y2) (bi(z) — b1 (y1)) (b2(z) — b2(y2)) f1(y1) f2(y2)dp(yr)dp(y2).

Also, the commutators fg,bl and fgm are respectively defined by

Top, (f1, f2)(@) = bi(2)To(f1, fo)(z) — To(bs () f1, fo) (z) (2.13)

and

Toba(f1, F2)(@) = ba(@)To(fr. f2)(@) = To(f1,b2() f2) (). (2.14)
The following definition of a multiple AZ(u) weight is from [51].
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Definition 2.8. Let 7 € [1,00), p' = (p1,p2) and % = p% + p% with p1, p2 € [1,00). A multiple-w-
eight & with wy,ws being non-negative p-measurable functions is called an A;}(M) weight if there

exists a positive constant C' such that, for any ball B C X,

u(iB) /Bya(x)du(x)ﬁ [u(iB)/Bw;p;du(m)} K <C, (2.15)

j=1

where
vs(r) = H[wj ()]P/Ps

and, when p; = 1,

[M(TlB) /ngl'fp; (m)du(x)} )

is understood as (infp w;)~! for j € {1,2}.

Remark 2.9. (i) If we take (X, d, u) = (R",|-|,dz) and 7 = 1 in Definition 2.8, then the A[l?(,u)
weight reduces to the multiple weight introduced by Lerner et al. [21].

(ii) From the Holder inequality, it follows that, vz € A3, if & € AL for p= (p1,p2)-

(iif) If we take j = 1 in Definition 2.8, then the multiple weight AZ(u) is just the Af(u) weig-
ht introduced by Hu et al. in [14]. Namely, let 7 € [1,00) and p € (1,00). A non-negative p-me-
asure function w is called an A7 (1) weight if there exists some positive constant C' such that, for
all balls B C X,

Q@méyww@QLJEAyumﬂwmyl<a (216)

And a weight w is called an A7 (u) weight if there exists some positive constant C such that, for

all balls B C X,

1

M(TB)/Bw(x)du(x) < C inf w(y).

As in the classical setting, let AT (u) = U A (n)-
p=1

The following definition of a reverse Holder class is from [17].

Definition 2.10. A weight w is said to belong to the reverse Holder class RH,(p) with r € (1, 00)
if there exists a positive constant C' such that, for any ball B C X,

{M;%quﬂwmw}isc(M;Lqummw)- (217)

Next, we recall the definition of generalized weighted Morrey space introduced in [29].

Definition 2.11. Let g € (1,00), p € [1,00) and w be a weight. Suppose that ® : (0,00) — (0,
o) is an increasing function. Then the generalized weighted Morrey space £P®:¢(u) is defined
by

Lr™e(n) = {f € LD (w,1) £ |l gpvwe ) < 50}
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where

11z = supl@(leB)] [ If@lPatoiut) ) (215)

Also, we denote by W LP:®:2(11) the weak generalized weighted Morrey space of all locally integ-

rable functions satisfying

_1 1
I llw zze ) = Stépiulg@(w(@B))] vtw({z € B:|f(x)] > })". (2.19)
>
Moreover, Lu [29] showed that the norms |- || zp.#.¢(,,) and || - [y zno.(,,) are independent of the

choice of o > 1.

Remark 2.12. (i) If we take w(-) = 1 in (2.18) and (2.19), then the generalized weighted Morrey
space LP®¢(u) and the weak generalized weighted Morrey space W LP;®:¢(u) are just the genera-
lized Morrey space £P®:2(11) and the weak generalized Morrey space W LP'®:¢(p) introduced by
Lu and Tao [32].

(ii) If we take (X, d, ) = (R™,|-],dz) and w = 1 in Definition 2.11, then the generalized wei-
ghted Morrey space £2:%:¢(11) and the weak generalized weighted Morrey space W LP®€(y) are
just the generalized Morrey space £P*®¢(u) and the weak generalized Morrey space W LP®:¢ (1)
introduced in [41].

(iii) If we take ®(¢) = t* 77 with ¢ > 0 and 1 < p < ¢ < oo in (2.18) and (2.19), then the spa-
ces LP%(y) and WLP®€(p) are just the weighted Morrey spaces LP**(w) and the weighted
weak Morrey spaces W LP*f(w) introduced in [50]. Furthermore, when w(-) = 1, then the spaces
L£5%¢(p) and WLE®¢(p) are just the Morrey spaces M (p) and weak Morrey spaces WM ()
introduced by Cao and Zhou in [2].

(iv) When ®(-) = 1, then £7%¢(u) = LP (1) and LP®2(u) = LP>(p).

w

The following definition of an e-weak reverse doubling condition is from [32], also see [12].

Definition 2.13. Let € € (0,00). A dominating function A is said to satisfy e-weak reverse dou-
bling condition if, for all r € (0,2diam (X)) and a € (1, 2diam(X)/r), there exists some number
C(a) € [1,00), depending only on a and X, such that, for all x € X,

Mz, ar) > C(a)\(z,r)

and, moreover,

= 1

k=1

3. Estimate for T, on spaces £P:%%(})

The main theorem of this section is stated as follows:

Theorem 3.1. Let % = p% + p% for p1,p2 € [1,00), 7 € [1,00), D' = (p1,p2), @ = (w1,w2) €

AL(p), v € RH, () with 1 € [1,00), and @ : (0,00) — (0,00) be an increasing function satisfy-
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ing
 D(t) dt P
/ Q—SCﬁ for any r € (0, 00). (3.1)
T t T
Moreover, the mapping t — & 1s almost decreasing: there is a positive constant C' such that
D(t D
¥ < Cﬂ, for all s <t. (3.2)
s

Suppose that Ty defined as in (2.11) is bounded from the product of spaces L*(u) x L*(p) into s-
paces L%"’O(,u). Then there exists a positive constant C such that, for any f € Effi"t”g(u), 1=1,2,

||T9(f1> fZ)HWLﬁf“’(u) < CHfl Hggl‘q’v@(u) Hf2||y:}2-,<l>,9(u)-
To prove Theorem 3.1, we need the following lemmas introduced in [14, 38, 42], respectively.

Lemma 3.2. Suppose that ¢ : (0,00) — (0,00) is a function and satisfies

/oo l/i(t)% < CyY(s), forall s> 0.

Then there exists a positive constant € such that, for all s > 0, the following equation

/oo w(t)te% < Cu(s)st

holds. In particular, for every & < 1, there exists a positive constant C' such that, for all s > 0,
el ¢
WL < cs).
S

Lemma 3.3. Let o,p € [1,00), w € A} (), and T € [50,00). Then there exists a constant Cy €
[1,00) such that, for any (6, Bs)-doubling ball B and any p-measurable set E C B,

ot [“(E)r < :Eg. (3.3)

1(B)
Lemma 3.4. A weight w € RH,.() for some r € (1,00) if and only if there exist two positive
constants Cy and k € (0,1) such that, for any ball B and any p-measurable set E C B,

wiB) _ ¢ V(E)r'

D =) (3.4)

*Lu(B)
Also, we need to establish the following lemma on the operator Ty being modified from [28,51].

Lemma 3.5. Let 7 € [1,00), = (p1,p2), & = (w1,w2) € A%(n), vz € RH, (1) with r € [1,00)
and % = p% + p% forp1,p2 € [1,00). Suppose that Ty defined as in (2.11) is bounded from product
of spaces L' (1) x LY () into spaces Lz>°(y). Then there exists some positive constant C' such t-
hat, for all f; € LY (1), i = 1,2,

1To(f1; f2)llLz.e= ) < CllfallLz gl f2llLzz (o)

Lemma 3.6. Letp € [1,00), w € Ap(p) and @ : (0,00) — (0,00) be an increasing function satis-
fying (3.1). Assume that the mapping t — ®(t)/t satisfies (3.2). Then there exists a positive co-
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nstant C' such that, for any ball B C X,

S P(w(ﬁfB))F B C[@MBDF

—~ | w(6'B) w(B)

Remark 3.7. By applying Lemma 3.2 and a way similar to that used in the Lemma 2.8 in [5],
it is easy to show that Lemma 3.6 holds. Hence, to avoid the repeatability, we do not state the

process of proof.

Proof of Theorem 3.1. Without loss of generality, we may assume that ¢ = 6 in (2.18)
and (2.19). And let B = B(cp,rp) be a fixed doubling ball centered at cg € X with its radius
rp > 0. Represent functions f;(i = 1,2) as

fi=[r+1° = fixes + fixa\on. (3.5)

Then, write

1T (f1, fz)HWﬁg,D«b,g(M)

= supsup(@(v(6B))] s ({x € B: [Ty fu, f2) (@) > 1)~

< S%pigg[ﬂI)(Vo(ﬁB))]‘%tVa({fv € B:|Ty(f1, f3) ()] > t/4})

+sup igg[@@a(ﬁB»r%m({x € B:|Ty(f1, f5°)(x)| > t/4})

+s%pigg[q)(mz(fiB))]_%tVa({I € B |T(f7°, 1)) > t/4})”

+ supsupl@(vs (6B))) v ({w € B [Ty(f7%. £57)(@)] > t/4)

=D, + Dy + D3+ Dy.

D=
S

=

S

From (2.15), Remark 2.9 (ii), (2.18), (3.2) and L = -+ + -, it then follows that

_1
D, < CS%P[‘D(V&(GB))] » | fixesllLey gl f2xesll L2z (u)

_1

< Ol gy e | ol gy SUPIR(a (6B)] 5 (2001 (6B))] ¥ [ (wa(6)] 7=

L 1
P1 P2

P(w1(6B))
O(w]* (6B)wi* (6B))
o l ws(6B)
B BB

71 (6B)wy? (6B)

D(w2(6B))

B(w!" (6B)w* (6B))

< C”fl Hgf}llvq”@(u) ||f2||[;522*‘1’=9(u) Slép

1

P2

w1 (6B
scnﬁ|£gl,«»,g(m||f2||552f,g(,0sup[ L
5 Lol (6B (6B)

< Cllflngll"i’v?(u)||f2||5522*‘1’v@(u)-

To estimate Dy, we first consider |Tp(fL, f5°)(x)| for & € B. By applying (2.1), (2.8), (2.15),
(2.18), (2.20), the Holder inequality and Lemma 2.6, we have

To(f1, £5°) ()]
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| f2(y2)]
= C/ (o) ldutan {Z/k+1B\ 6% B) CB,d(CB,w))]QdM(yZ)}

<o [ i) g ([ gt vianen)

3 1 11
" { Z m /6k+1]3 |f2(y2)|[w2(y2)} P2 P2 d,u(yQ)}

k=1

< Clfill oy o[22 (6 6B))]77 u(2 x 6B)[w1 (6B)] { ;

) | f2(y2) [P w2 (y2)dpu(y2) g [wa (y2)] P2dpu(y2) =
(L. (L i)

< Ol full gy 0y 1oL 10, [ (1 (6 X 6B)]F (2 x 6B)[er (6B)] 77

{ Z 2 X 6/€+1B) <I>(w2(6 % 6k+1B))]P12[w2(6k+1B)]PI2}

- 03761‘7“3

CB,6k’I“B ]

1 1
w1 623 b1 w1 62B b1
< C”lecPl*‘P*g ||f2||z:”2""’9(u)[ 1(62B) } L}1 6B)

w(2 x 6*+1B) [®(wy (6542 B)) o »(6+2B) A
(Sl )
p(2 x 6L B) [®(ws(65+2B)) ] 72 u(6++2B)
(Bt }

CB76k7“B WQ(6k+2B) <6k+1B)

1
<I)(w1 62 P1 = 6k+28))
< Ol gzl olezymeq | e 2 M‘“—“B)

o) )

2 P
further, from (3.2), (3.4), vz = [ w;” and % = p% + p%, it follows that
j=1

< Ol ggeqll elezyme |

D=

supsup|® (3 (68))] v ({x € B+ ITo(f1, £5°)(x)| > t/4})

[ ws(B) 17 [®(wi(6B))]7F [@(wa(65))] 7
< Uizl 0 9 | 50om]) | o)) | a6
[@(wi(68))] 77 [@(w2(6B))] 72
< Olllegyoeq 12l czgo-eq sp _@(V~<GB)>} [@%(63))}
(w1 (6B) P w (6B) 5z
< Ol gzyeg 1ol zg oo sup | 6B)] [v;(GB)}

< OllflHggllyq’*@(u)||f2||5522“1’v9(u)'
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With an argument similar to that used in the estimate for Do, it is easy to obtain that

Ds < Cllfull gy el foll ravio-

Now we turn Dy. For any = € B, applying (2.1), (2.8), (2.16), (2.18), the Holder inequality,
(2.20), (3.3) and Lemma 3.6, we obtain

To(f3°, £5°)(@)]

[ ()22 (y2)]
C/Xz Aa, d(z,y1)) + Az, d(z, y2))]2d“(y1)dﬂ(y2)

1 oo
( W /6k+ 1(y2)ldnlys ) (ZZ_; Acp, 6'rp) /gmB |f2(y2)|du(y2))

c{ !

IN

IN
Q

NERANE

IN

1 MCB?GICTB)(/GWB |f1(y1)|p1w1(y1)du(y1)> g

X </6’°“B[w1 1 dun)) N }

{ i e, 6'rp) (/6i+13 |f2(y2)p2w1(y2)du(y2)) pz

LS 6k+1B k41 1 ft 1 a1
< C”flHLTI@‘Q(M)”f?HLZ%’q’ o Z b\ CB,Gk’I"B (UJ1(6 X 6 B))]Pl [W1(2 % 6 B)} n

o~
Il

B,6Z’I"B

L 1
}OO: ®(w (6*+2B)) 171 [ wi(6*+2B) 171
- C”fl|L511,@,g(“)”f2|L522'¢’Q(u){ { w1 (6-12B) w1 (2 x 6F+1B)

k=1
LR )

i @(wl(GB))} o {@(wl(ﬁB))} *

{i A C()MB (e (6 x 67 B))) 7% [un (2 ¢ 6”1B)]_”12}

< Ol fill o ol oy [

w1 (GB) WQ(GB)
2 2
further, by applying (3.2), (3.4), vg = [] wf’ and zla = p% + p%’ we deduce
j=1

S

Dy = supsup[®(v3(6B))] rtvs ({w € B : |Ty(fi°, £5°)(@)] > /4})

B t>0
v (B) y[ (wl(GB))]pl|: (w2(63))rlz

< Cllfill gy gy 121230, 10 {

2wa©B)) [Ta6B) | |[Tao)
(W1(6B)) p1 (I)(w (63)) }%
<C”h”LﬁT(P’g(ﬂ)”fQHLﬁ%“‘*@(u)S%p{ (V*(GB))} [ (uj(esB))]
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) )

< Ol el ez 530 |

< C”fl”Lgllv‘I’vg(M)||f2||LfJ22*‘I’vQ(M)'

Which, combining the estimates for D1, D5 and D3, yields the desired results. Hence, the proof of
Theorem 3.1 is finished. O

4. Estimate for Tgybl,bQ on spaces LP%¢(y)

The main theorem of this section is stated as follows:

Theorem 4.1. Let by, by € R/é\l\_/I/O(u), 7 € [L,00), p= (p1,p2), & = (w1,w2) € AL(n), vs €
RH,(p) with r € (1,00), % = p% + p% for p1,p2 € [1,00), and @ : (0,00) — (0,00) be an increas-
ing function satisfying (3.1) and (3.2). Suppose that Ty defined as in (2.11) is bounded from pro-
duct of spaces L* (1) x L' (1) into space Lz:°° (). Then there exists some positive constant C' su-

ch that, for all f € Ef,’i_"b’g(u), 1=1,2,
T 00 1o F2) oy < Oyt 102 sty 1l ey e o 2l gz e

To prove the above theorem, we need to recall the following lemmas on the maximal operators
N and M, ¢ introduced in [12].

Lemma 4.2. (i) Let p € (1,00), s € (1,p) and ¢ € [5,00). The following mazximal operators de-
fined, respectively, by setting, for all f € L{ (1) and z € X,

1

1 S
Macf(e) = sup (M@B) [ 1w du(y)> , (4.1)

1
N — — d
f(z) o BSlilI;ublingM(B) /B |f(y)du(y)

and

Mef@) = swp —s [ 1 lany (4.2

are bounded on spaces LP(u) and also bounded from spaces L (i) into spaces L1°°(y).
(ii) For all f € LL (1), it holds true that |f(z)| < Nf(x) for p-a.e. x € X.

Lemma 4.3. Let g € [1,00), ¢ € [59,0),
(p1,p2) with p1,ps € [1,00) and 5 = - +

(1,00) and M be defined as in (4.1). For p=
&= (w,ws) € Ag(,u), vg € RH,(u), the operators
) x LE2 (1) into spaces LE:>(ju).

s €
1
P2’
M ¢ is bounded from product of spaces LP! (p

The following lemma on the operators Te,bl,bz is sightly modified from [25,49,51].

Lemma 4.4. Let by, bQER,/B—\l\_/[/C)( ), 1<s<oo,;—1%1+p%for1§p1,pg<ooand5<<,§1

< 00 with g1 <. Assume that Ty defined as in (2.11) is bounded from product of spaces L () x



Estimates for bilinear ©-type Calderon-Zygmund operators and their commutators on NGWMS 13

LY (1) to spaces L2>°(11), and X satisfies the e-weak reverse doubling condition. Then there exis-
ts some positive constant C' such that, for any § € (0,1), v € (6,%), x € X, f; € LPi(n), i = 1,2,

Mcﬂ,é (fe,bLbQ (f1s fQ))(‘T) < C‘|b1||RWO(#)HbQHREM/O(#)MC,’Y(TG(fh f2))(z)
+ Cllballggizo (0 Ms o (To.s (f1, £2)) (2)
+ Cllb2ll gmxr0 o Msr (To.a (f1, £2)) ()

+ Clb1ll 55570 () 1021 iB310 () ME 108 L).p0 (F15 F2) (),

ME §(Typ, (fr. f2))(z) < Clloull ggrz0 1y Mo (To (f1, f2)) ()
+ C||b1||R/B\I\/I/0(H)ML(10gL),pl (fla fz)(ilf)
and
Mf,(s (Ta1b2 (flan))( ) < C||b2||RBMO )Miy’Y(Ta(flva))(x)
+ Cliba |l gg350 0 MLtiog )01 (f1 f2)(2),

where the sharp mazimal function M*(f) is defined by

M) = s s [ 1) = mpn (Dldut) + swp. L]
B

B,S (p,Bp)—doubling

M} 5(f)(@) = [ME(|fI°)(@)]5 for any § € (0,00), and

My (1og 1),p(f1, f2)(2) == SUP H | fill Laog L),p

Ti=1
Lemma 4.5. Let § € (0,1), 0 € [1,00) and ¢ € [50,00). Then, for any p € [1,00) and w € A3,
(), there exits some positive constant C, depending only on 8, such that, for any suitable function

fandte (0,00),

w{r € X : M¢s(f)(z) >t}) <Ct™P <S>uCI?t Pw{z e X :|f(z)] > t}). (4.3)

Also, we need to establish the following lemma modified from [24].
Lemma 4.6. Let g € [1,00), 6 € (0,1), w be a weight, f € L, (w) satisfy [, f(z)w(x)du(z) =0
when ||u]| = p(X) < co. Assume that inf{1, N5} € WLE:®2(y) for some p satisfying 1 < p < oo.

Then there exists some positive constant C' being independent of f, such that,
||N6(f)HW£g=‘I”9(,L) < CHMﬁ,é(f)HWLg’q’vg(py (4~4)
where N(f)(x) = [N(|f|°)(@)]5.
2 2

Proof of Theorem 4.1. By applying (3.2), vz = [] wfj and Lemmas 4.3, 4.4, 4.5 and 4.6,
j=1

we have

HTg’bl’b?(‘fl’f2)||W[,f,’¢’9(/L)
< ||N5(T6,b1,b2(f17f2))HW££v¢,e(#) < C||M£76(T6,b1,b2(f17f2))HW£5,¢,g(#)
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1
< Cstép iug[q)(l/oj((;B))]Ptl/@‘ ({zeB: |M£75(T9’b1’b2(f1, f2)(@)] > t})
>

=

< C'supsup[®(vz(6B))] 7t
B t>0

X I/L;,'({.’L' €eB: Cllbl”R?leO(y)HbQHR/BxM/O(H)M

ey (To(f1, f2))(x) > t/4})%
+ Cslép §1>1P[¢>(Va(63))]ptl/w ({zeB: C||b1||RBMo )Mc,’y (To,p, (f1, f2)) (@) > t/4})%
+ C'sup sup|[®(vz
B t>0

(6B)]» tvs ({2 € B : Cllball o M (Tos (1. f2)) () > t/4})
+ Csupsup[®(v3(6B))] 7t
B t>0

10

=

X Vg (‘{ZL’ € B CHblHRBMO ||b2||RBMO( )ML(IOgL) P1 (f17 f2) ) > t/4})
< Ol o122l P SUpI@(va(6B)] 31 sup 7!

>C't

V@({I € B :|Ty(f1, fo)(x)| > L})%
RBMO () SUP S SUP[ ®(v3(6B))]7t sup t

wg({z € B [Top, (fr, fo)(@)] > })”
>Ct
+ Cllball i 5P SUDI@ (v (6B))] 1t sup ¢~

s({z € B: [Ty, (f1, f2)(x)] > })”
1 >C't
+ Clbll 3570 (1) 122 6B (1 )supbup[ (vs(6B))]»

+ Clib |l e

D=

xvg({w € B: Mpaogr),p (f1, f2)(x) > t})
< 1 g0 P2 o S SPGB smp

T

>C't
s({z € B |To(fr, f2)(x)] > 1})7
+ Ol | 5370 ) Sup sgp@(vua(fiB))ﬁt s>u£tt‘1 s({z € B+ [Ns(Ty, (1. f2)) ()] > 1}) 7
+ Clb2ll gm0 ) Sups sup[@(vﬁ(fiB))ﬁt silgtt* s({z € B:|Ns(Top,(f1, f2)) ()] > 1})
+ Cb1 || ismre

1
wmvoo 12l EBito )Sgpigg@(vw(%))]?

1

x vg({z € B Mp(og1),p, (f1, f2)(x) > t})”
_1 _

< C||b1||RBMO(H)||b2||RBMO( )supsup[@(ug(GB))] vt sup ¢t

>C't
o({r € B Ty(fr, L)) > 1})*
RBMO(u )sup sup[q)(u@(GB))]%t S;Ié)tfle ({:L’ € B: |Mg,6 (T97b2 (fl,fz))(:c)\ > L})
+ Cllbal i 5P SUDI@ (v (6B))] 1t sup ¢~

+ Clib |l i3ac

8=

u ({z € B+ |M¢ 5(Top, (f1, f2)) ()] > 1})?
+ ClIb1ll im0 (0 1925370 )Supsup[ ®(v3(6B))]7

X yw({a: € B: MrogL),p1 (f1, f2)(x) > t})

D=
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< Ol o 1 Issrog Supsup{@(va(6B))) Ft sup ¢

X V@({x € B : |Ty(f1, f2)(x)] > L})%

sup bup[ (V@(GB))]%t sup t7 1
>C't

x vz ({z € B+ Cliball 510 (1 Mo (To(f1, f2))(2) > 1/2})

+ C”bl”RBMO( )

=

+ Cll o P sup[@(w(ﬁB))ﬁtLsggtt-lwa
1
x ({zreB: C”bQ”R/B‘M/O(M)ML(logL),pl (f1, f2)(z) > ¢/2})7
+ Cllba | sere

T« -1
RBMO (1 )WPSUP[‘I’(Vw(f")B))]Pthugtt L

=

x v ({z € B : Clbtliggizo 0 Mo (To(f1, f2)) (@) > 1/2})

1 _
+Clbal o PSP (s (6B)F  sup 71

=

X Vg ({I €B: CHblHR/B\M/O(H)ML(log L),p1 (flva)(x) > L/Q})

1
+ C||b b sup sup|®(vz(6B))|»t
191 1| 55570 12l 55370 ) up t>1g[ (v3(6B))]

y@({x € B: Mpaog L),p, (f1, f2)(2) > t}>

sup bup[@(u;, (63))]7%25 sup t 1y
1>C't

=

< C”bl”RBMO(u)H 2||RBMO( )

X V@‘({l‘ € B : |Ty(f1, f2)(x)] > L})%

162 s3r supsup[fb(uw(6B))]%t sup t~ 't sup . tw
RBMO(1) RBMO() 1>Ct w>Cu

+ C|b1 || s

=

x vg({z € B:|Ty(f1, f2))(x)| > w})

+ Clb1 || s sup sup[q)( (GB))ﬁt sup t 1y

RBMO (1) 6 2||RBMO( ) >Ct

X Vg ({x € B: ML(logL) p1 (fl,fz)(l') > L})%

1
+ C|by 2 sup sup[®(vg(6B))]#t sup t 1 sup ¢ lw
|| HRBMO || ||RBMO() B t>0[ (w( ))] i o>

=

X vg({z € B:|Tp(f1, f2))(x)| > w})

1 _
+ C||b1||RBMO(M)Hb2||RBMO( )sup sup[@(ug,(GB))}vt sup t7 1

>C't

-

X vg({x € B: MpgogL),p, (f1, f2)(x) > 1})"

1
+ C||b b sup sup|®(vz(6B))|»t
10150 102 i g ST SUPIB (6B

x vg({z € B : Mp(og 1),p, (1, f2)(2) > t})%

< CUo1 it o 102 st Ml ezy oo 12l ez e

+ C|by || s sup sup[ O(v5(6B))] 7t sup t L

RBMO (1) 152 ”RBMO(H) >Ct

X I/@‘({l‘ €B: ML(logL),pl (fl,fg)(.%‘) > L})%

15
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— l S 71
+ 10 o 192 o PSP (s (6B))F  sup 7

x vg({z € B: Mpgog ) o, (f1, f2)(2) > 1})”
+C||b1HR/BTw/0(H)||b2||R’BM/c)(M)S‘épfgp[ (v5(6B))]7t

D=

VQ({.’L’ €B: ML(logL),pl (flan)(x) > t}>

< O sz I Issrog Supsup{@(va(0B))) F sup ¢

X V@({x € B : |Ty(f1, f2)(x)] > L})%

L -1, & -1
+ Cllbrll 350 1021 B350, )bupbup[q’(vw(ﬁB))]Pt?;lgtt v sup 1w

=

xvg({z € B: |Ty(f1, f2))(z)| > =})

5 -1
+ Cllbrll gz g 102 gz ) Sup sup[® (v (6B))] 7t sup 5

x vz ({z € B: Mpgogr)p (f1, f2)(z) > L})%
1

1
+ C||by o sup sup|[®(vz(6B))]»t sup t~1¢ sup ¢ lw
|| HRBMO || ||RBMO() B t>0[ (W( ))] s o>

xva({z € B:|Ty(fr, £2))(@)] > =})”
+ Clol ggio 162 | iiito ) P SUPI® (va (6B)] ¢ sup ™"

>C't
1

X vg({z € B: Mp(og 1),p, (f1, f2)(x) > })”
+ Cl|b b sup sup|®(v5(6B vt
Il 12 i 51 S00(2(056)
vs({z € B: Mpgog 1), (f1, f2)(2) > t})7

< C”bl ||R/1§F/I/O(u) ||b2||R/]§M/O(u) Hfl ||£p11,<1>,9(u) ||f2HL522)<I)MQ(H)

L -1
+ Ol oo 12 o P SRR/ (6B)] P sup 17

3 =

xvg({z € B: CM ¢, (f1, f2(2)) > 1})
+C||b1HRBMO(N)II 2IIRBMO(“) supsup[ (vs(6B))]7t

xvs({z € B: CMy ¢, (fr. folx)) > 1) 7

< Ol 51000 1P 0 11 22 -0 L2 5

where we use the following fact introduced in [25]

Mo 1),p, (f15 f2)(2) < CMs ¢, (f1, f2(2)).

Which is our desired result. Hence, we complete the proof of Theorem 4.1. O

5. Estimate for Bfg and Bfe,bhbg on spaces LP%¢(p)

The main results of this section are stated as follows:
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Theorem 5.1. Let p1,p2 € [1,00) and p with satisfying % = pil + p%, ® : (0,00) = (0,00) be an
increasing function satisfying (3.1), and the mapping t — ®(t)/t satisfy (3.2). Suppose that Ty
defined as in (2.11) is bounded from the product of spaces L*(p) x L*(p) into spaces L2 (y).
Then there exits some positive constant C such that, for all f; € LP#®2(u), i = 1,2,

||T9(f1> f2)||W[:Pv‘1>«Q(M) < CHfl ||[:m,‘1>,9(;4) Hf2||gp2y<l>,g(u).

Theorem 5.2. Let by, bs € R/B\M/O(u), % = p% + p% with p1,p2 € [1,00), @ : (0,00) — (0,00) be
an increasing function satisfying (3.1), and the mapping t — ®(t)/t satisfy (3.2). Suppose that
Ty defined as in (2.11) is bounded from the product of spaces L' (1) x L*(p) into spaces L%"X’(,u).

Then there exists some positive constant C such that, for all f; € LPH®C(pn), i = 1,2,
||T0,bl,b2 (f1, f2)||W£Pv‘1’vg(p,) <l ”RWO(;L) ||b2||Rﬁ/O(#) /1 ”ﬁpl’q”g(ﬂ) 1f2 HEW*(I”Q(#)’

Remark 5.3. By applying Definition 2.11 and Lemmas 3.3 and 3.4 in [33], it is easy to show
that Theorems 5.1 and 5.2 hold. Thus, in this paper, we omit the process of proofs.

Also, with a way similar to that used in the estimates for Theorems 1.1 and 1.4 in [33], it is
easy to obtain the strong type results for the Ty and T@bhbz on product of spaces £P1®:¢(p) x
L% (1) for py,pa € (1,00).

Theorem 5.4. Let p1,ps € [1,00) and p with satisfying % = p% + p%, ®: (0,00) = (0,00) be an
increasing function satisfying (3.1), and the mapping t — ®(t)/t satisfy (3.2). Suppose that Ty
defined as in (2.11) is bounded from the product of spaces L'(p) x L*(u) into spaces L%’“(u).
Then there exits some positive constant C such that, for all f; € LP#®€(u), i = 1,2,

1Ty (f1, f2)llereequy < Cllfillzoreeull f2ll zoaieie -

Theorem 5.5. Let by, by € RTB\l\/I/O(u), % = p% + p% with p1,p2 € [1,00), @ : (0,00) = (0,00) be
an increasing function satisfying (3.1), and the mapping t — ®(t)/t satisfy (3.2). Suppose that
Ty defined as in (2.11) is bounded from the product of spaces L' (1) x L' (1) into spaces Lz (p).

Then there exists some positive constant C such that, for all f; € LPH®2(u), i = 1,2,

[ To,61,6: (15 F)ll ooy < Cllorll ggigo o 102l gmizo g 11 eovme o [ Foll 2oz ) -
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