For EDITORS

For READERS

All Issues

Vol.15, 2025
Vol.14, 2024
Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 14, Number 5, 2024, Pages -                                                                DOI:10.11948/JAAC-2023-0457
Traveling fronts of a real supercritical quintic Ginzburg-Landau equation coupled by a slow diffusion mode
Qun Bin,Wentao Huang,Jing Li,Shi Liang
Keywords:Quintic Ginzburg-Landau equation  Traveling front solution  Heteroclinic solution  Geometric singular perturbation theory  Melnikov function.
Abstract:
      In this paper, we investigate the existence of traveling front solutions for a class of quintic Ginzburg-Landau equations coupled with a slow diffusion mode. By employing the theory of geometric singular perturbations, we turn the problem into a geometric perturbation problem. We demonstrate the intersection property of the critical manifold and further validate the existence of heteroclinic orbits by computing the zeros of the Melnikov function on the critical manifold. The results demonstrate that under certain parameters, there is 1 or 2 heteroclinic solutions, confirming the existence of traveling front solutions for the considered quintic Ginzburg-Landau equation coupled with a slow diffusion mode.
PDF      Download reader