Volume 14, Number 4, 2024, Pages - DOI:10.11948/JAAC-2023-0449 |
Multiplicity of Weak Solutions for a $(p(x), q(x))$-Kirchhoff Equation with Neumann Boundary Conditions |
Ahmed Ahmed,Mohamed Saad Bouh ELEMINE VALL |
Keywords:Nonlinear elliptic equations, Weak solutions to PDEs, Ricceri |
Abstract: |
The aim of this study is to investigate the existence of infinitely many weak solutions for the $(p(x), q(x))$-Kirchhoff Neumann problem described by the following equation :
\begin{equation*}
\left\{\begin{array}{ll}
-\left(a_{1}+a_{2}\int_{\Omega}\frac{1}{p(x)}|\nabla u|^{p(x)}dx\right)\Delta_{p(\cdot)}u-\left(b_{1}+b_{2}\int_{\Omega}\frac{1}{q(x)}|\nabla u|^{q(x)}dx\right)\Delta_{q(\cdot)}u\+\lambda(x)\Big(|u|^{p(x)-2} u+|u|^{q(x)-2} u\Big)= f_1(x,u)+f_2(x,u) &\mbox{ in } \Omega, \\frac{\partial u}{\partial \nu} =0 \quad &\mbox{on} \quad \partial\Omega.\end{array}\right.
\end{equation*}
By employing a critical point theorem proposed by B. Ricceri, which stems from a more comprehensive variational principle, we have successfully established the existence of infinitely many weak solutions for the aforementioned problem. |
PDF Download reader
|
|
|
|