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Abstract

The aim of this study is to investigate the existence of infinitely many weak solutions for the (p(x), q(x))-
Kirchhoff Neumann problem described by the following equation :

−
(
a1 + a2

∫
Ω

1

p(x)
|∇u|p(x)dx

)
∆p(·)u−

(
b1 + b2

∫
Ω

1

q(x)
|∇u|q(x)dx

)
∆q(·)u

+λ(x)
(
|u|p(x)−2u+ |u|q(x)−2u

)
= f1(x, u) + f2(x, u) in Ω,

∂u

∂ν
= 0 on ∂Ω.

By employing a critical point theorem proposed by B. Ricceri, which stems from a more comprehensive variational
principle, we have successfully established the existence of infinitely many weak solutions for the aforementioned
problem.
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AMS Subject Classifications: 35J60, 35D30, 35J20.

1 Introduction

Studying differential equations with double-phase operators is a novel and fascinating subject. It is caused by factors
such as extremely anisotropic materials, Lavrentiev’s phenomenon, and nonlinear elasticity theory (see [43, 44, 45,
46]). In recent years, there has been a surge in interest in the study of double-phase problems, with numerous results
obtained, see for example [6, 8, 10, 26, 29, 30, 34, 35].

By taking into account the fluctuations in the string’s length during vibrations, Kirchhoff’s differential equations,
as outlined by Kirchhoff [27], extend the classical D’Alembert’s wave equation.

r
∂2u

∂t2
−

(
P0

h
+

E

2L

∫ L

0

∣∣∣∣∂u∂x
∣∣∣∣2 dx

)
∂2u

∂x2
= 0, (1.1)

where L, h, E, P0 and r are constants.
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The Kirchhoff equation (1.1) is characterized by the presence of a non-local component
P0

h
+

E

2L

∫ L

0

∣∣∣∣∂u∂x
∣∣∣∣2 dx

which varies depending on average
E

2L

∫ L

0

∣∣∣∣∂u∂x
∣∣∣∣2 of the kinetic energy

1

2

∣∣∣∣∂u∂x
∣∣∣∣2 on the domain [0, L], and as a result,

the equation ceases to be a point-wise identity, (see [3, 4, 5, 7, 20, 25, 38]) for related topics.
The aim of this research is to show the existence of infinitely many weak solutions to the following elliptic

problem involving double phase operators of Kirchhoff type and a Neumann boundary value condition.
−
(
a1 + a2

∫
Ω

1

p(x)
|∇u|p(x)dx

)
∆p(·)u−

(
b1 + b2

∫
Ω

1

q(x)
|∇u|q(x)dx

)
∆q(·)u

+λ(x)
(
|u|p(x)−2u+ |u|q(x)−2u

)
= f1(x, u) + f2(x, u) in Ω,

∂u

∂ν
= 0 on ∂Ω,

(1.2)

where Ω ⊂ RN is a bounded open domain such that his boundary ∂Ω is of class C1, and denoted by ν the outward
unit normal to ∂Ω, p ≡ p(x), q ≡ q(x) ∈ C+(Ω) with

N < p− ≤ p+ < q− ≤ q+ < +∞, (1.3)

and a1, a2, b1, b2 > 0, λ ∈ L∞(Ω) and there is a positive constant λ0 satisfying λ0 ≤ λ(x).
Let f1, f2 : Ω× R 7−→ R are two Carathéodory functions such that for all r > 0, we have

sup
|t|≤r

| f1(x, t) |∈ L1(Ω) and sup
|t|≤r

| f2(x, t) |∈ L1(Ω). (1.4)

It is not surprising that there have been articles dealing with questions related to this type of operator in the
classical Sobolev spaces. We refer the reader to [4, 37, 40] for some examples, where the authors are interested in
the Dirichlet problem.

An important generalization of the p-Laplace operator is the p(·)-Laplace operator. The p(·)-Laplace operator
has more complex nonlinearities than the p-Laplace operator.

In variable exposent Sobolev spaces, A. Crespo-Blanco et all in [11] propose a new type of quasi-linear elliptic
equations controlled by so-called double phase operators with variable exponents. They prove some properties of
the corresponding Musielak-Orlicz Sobolev space and properties of the new double phase operator and show the
existence and uniqueness of elliptic equations corresponding to straight sides with dependence into the slope, see
also [16, 41] for related topics. In this article, we use Kirchhoff-type operators in an elliptic Neumann problem.

To our knowledge, few papers have been studied dealing with the elliptic problem introducing the Kirchhoff-type
operator in the case of the Neumann condition (see [2, 13, 14, 28, 42]). The hypotheses used in this paper, as well as
the results, are quite different from the previous results.

But because of its non-homogeneities and the existence of numerous nonlinear elements, the issue (1.2) has a
more complex structure if either p or q are non constant functions.

Our earlier work inspired us to expand these conclusions within the Musielak-Orlicz-Sobolev space, a more
all-encompassing functional framework that has garnered interest from academics.

The motivation for this work is provided by its physical applications, specifically the issues with equations of the
Kolmogorov-type that arise in the theory of diffusion, theory of non-Newtonian fluids with strongly inhomogeneous
behavior and a high propensity to increase their viscosity in response to shear rate, electro-rheological fluids electric
or magnetic field, and (see references [18, 19, 23, 32, 39]).

We refer to [1, 14, 15, 21, 22, 31] for some more discoveries on elliptic and parabolic problems in Musielak-Orlicz-
Sobolev spaces.

The main obstacle with this type of problem is the setting of Sobolev spaces with double phase exponents and
the fact that there is a Neumann boundary condition that makes the Theorem 1.1 difficult to apply.

We present a crucial result obtained by B. Ricceri in [36], which is necessary to prove our primary findings.

Theorem 1.1 (See [17], Theorem 2.2 ). Consider two Gâteaux differentiable and sequentially weakly lower semi-
continuous functionals Φ1,Φ2 : E −→ R on a reflexive real Banach space E and suppose that Φ2 is continuous with
respect on the norm topology and lim

‖u‖E→∞
Φ2(u) = +∞. For r > inf

E
Φ2, we set

ϕ(r) = inf
u∈Φ−1

2 (]−∞,r[)

Φ1(u)− inf
v∈(Φ−1

2 (]−∞,r[))w
Φ1(v)

r − Φ2(u)
, (1.5)
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where (Φ−1
2 (]−∞, r[))w denoted the adherence of Φ−1

2 (]−∞, r[) with regards to the topology of weak convergence.
Then, the following claims are accurate

(a) If we have r0 > inf
E

Φ2 and u0 ∈ E such that

Φ2(u0) < r0, (1.6)

and
Φ1(u0)− inf

v∈(Φ−1
2 (]−∞,r0[))w

Φ1(v) < r0 − Φ2(u0), (1.7)

then the restriction of Φ1 + Φ2 to Φ−1
2 (]−∞, r0[) admits at least global minimum point.

(b) If we have two sequences (rn)n ⊂
(

inf
E

Φ2,+∞
)

with rn →∞ and (un)n ⊂ E such that for any n

Φ2(un) < rn, (1.8)

and
Φ1(un)− inf

v∈(Φ−1
2 (]−∞,rn[))w

Φ1(v) < rn − Φ2(un), (1.9)

and also we assume
lim inf
‖u‖→+∞

(Φ2(u) + Φ1(u)) = −∞. (1.10)

Consequently, we can find a sequence (vn)n of local minima of Φ2 + Φ1 such that Φ2(vn)→ +∞ as n→∞.

(c) If we have two sequences (rn)n ⊂ (inf
E

Φ2,+∞) with rn → inf
E

Φ2 and (un)n ⊂ E such that for every n, the

conditions (1.8) and (1.9) are met, and also assume that :

The global minimizers of Φ2 are not local minimizers of Φ1 + Φ2. (1.11)

Then, we can find a sequence (vn)n of pairwise different local minimizers of Φ1 + Φ2 such that lim
n→∞

Φ2(vn) =

inf
E

Φ2, and (vn)n weakly converges to a global minimizer of Φ2.

The following describes the structure of this paper : In Section 2, we provide some important background information.
We outline an improvement in Section 3 (see Theorems 3.1 and 3.2) and support its credibility with examples (see
Corollary 3.1 and 3.2).

2 Preliminary results

Consider a smooth bounded open domain Ω ⊂ RN , and let we define

C+(Ω) =
{
z ∈M, z(·) : Ω −→ R : 1 < z− = ess inf

{
z(x) : x ∈ Ω

}
≤ z+ = ess sup

{
z(x) : x ∈ Ω

}
<∞

}
,

here M represents the collection of measurable real functions.
The variable exponent Lebesgue space Lz(·)(Ω) is defined as the set of measurable functions u : Ω 7−→ R satisfying

rz(·)(u) :=

∫
Ω

|u|z(x)dx <∞ endowed with the following norm

‖u‖Lz(·)(Ω) = ‖u‖z(·) = inf
{
σ > 0 : rz(·)(u/σ) ≤ 1

}
,

known as the Luxemburg norm. Then, the space (Lz(·)(Ω), ‖ · ‖z(·)) is a separable reflexive and uniformly convex

Banach space and its dual space is isomorphic to Lz
′(·)(Ω), where

1

z(·)
+

1

z′(·)
= 1.

An crucial instrument for our findings is the following Hölder type inequality∣∣∣∣∫
Ω

u(x)v(x)dx

∣∣∣∣ ≤ ( 1

z−
+

1

(z−)′

)
‖u‖z(·)‖v‖z′(·) ≤ 2‖u‖z(·)‖v‖z′(·), (2.1)

for all u ∈ Lz(·)(Ω) and v ∈ Lz
′(·)(Ω).

The modular function rz(·) is a fundamental element in the study of generalized Lebesgue spaces. Furthermore,
the following result is presented :
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Proposition 2.1 (See [12, 24]). If u ∈ Lz(·)(Ω), we have

(a) ‖u‖z(·) > 1 is true precisely when ‖u‖z
−

z(·) < rz(·)(u) < ‖u‖z
+

z(·),

(b) ‖u‖z(·) < 1 is true precisely when ‖u‖z
+

z(·) < rz(·)(u) < ‖u‖z
−

z(·).

Provided that z1, z2 ∈ C+(Ω) and z1(x) ≤ z2(x) for all x ∈ Ω, we can conclude that the following continuous
embedding holds :

Lz2(·)(Ω) ↪→ Lz1(·)(Ω). (2.2)

The variable exponent Sobolev space is given by

W 1,z(·)(Ω) =
{
u ∈ Lz(·)(Ω) : |∇u| ∈ Lz(·)(Ω)

}
.

The norm for this space is given by the following expression

‖u‖W 1,z(·)(Ω) = ‖u‖1,z(·) = ‖u‖z(·) + ‖∇u‖z(·).

It is worth mentioning that the space (W 1,z(·)(Ω), ‖ · ‖1,z(·)) is a Banach space that is also separable and reflexive.
For additional details on this framework, refer to [12].

Remark 2.1 If z ∈ C+(Ω) and N < z−, then the embedding W 1,z(·)(Ω) ↪→↪→ C0(Ω) is continuous and compact.

Since W 1,z(·)(Ω) is continuously embedded in W 1,z−(Ω).

Then we can set by (1.3)

C1 = sup
u∈W 1,p(·)(Ω)\{0}

‖u‖∞
‖u‖1,p(·)

, (2.3)

and

C2 = sup
u∈W 1,q(·)(Ω)\{0}

‖u‖∞
‖u‖1,q(·)

. (2.4)

Now, we present the Musielak-Orlicz-Sobolev spaces which is employed in the analysis of our main results.
We start by giving the definitions of the Orlicz function and Musielak function.

Definition 2.1 An Orlicz-type function, marked as A ∈ N(Ω), is a function A : R −→ [0,+∞[ that is even,
continuous, and convex, satisfies A(0) = 0 and 0 < A(t) for all t > 0, and also satisfies :

lim
t→0+

A(t)

t
= 0, and lim

t→+∞

A(t)

t
= +∞.

A function A : Ω × R −→ [0,+∞[ is said to be a Musielak function, denoted by A ∈ Φ(Ω), if for each t ≥ 0,
A(·, t) ∈M and for almost every x ∈ Ω, the function A(x, ·) is an Orlicz function.

Let A ∈ Φ(Ω), the Musielak-Orlicz space LA(Ω) is defined by

LA(Ω) :=

{
u ∈M, and there exist σ > 0 such that

∫
Ω

A
(
x,
|u(x)|
σ

)
dx <∞

}
,

having the following norm, recognized as the norm of Luxemburg, given by

‖u‖LA(Ω) := inf

{
σ > 0 :

∫
Ω

A
(
x,
|u(x)|
σ

)
dx ≤ 1

}
.

The space W 1LA(Ω) is given by the following definition :

W 1LA(Ω) :=
{
u ∈ LA(Ω) with |∇u| ∈ LA(Ω)

}
,

equipped with the following norm
‖u‖1,A = ‖u‖A + ‖∇u‖A,

where ‖∇u‖A = ‖|∇u|‖A.



A. Ahmed and M. S. B. Elemine Vall 5

Definition 2.2 1. A function A ∈ Φ(Ω) is said to be fulfilling the ∆2-condition noted (A ∈ ∆2) when there
exists a positive constant k > 0 and a non-negative function b ∈ L1(Ω) such that A(x, 2t) ≤ kA(x, t) + b(x) for
all x ∈ Ω and t ∈ R.

2. A is said to be locally integrable if A(·, t0) ∈ L1(Ω) for every t0 > 0.

The function A′d(x, t) denotes the right-hand derivative of A(x, ·) at t ≥ 0 and is defined as

A′d(x, t) = lim
h→0+

A(x, t+ h)−A(x, t)

h
.

If t < 0, we define A′d(x, t) = −A′d(x,−t). Thus, A(x, t) =

∫ |t|
0

A′d(x, s)ds for all t ∈ R and x ∈ Ω.

Set A∗ : Ω× R −→ [0,+∞[ by

A∗(x, s) = sup
t∈R

(
st−A(x, t)

)
for each s ∈ R and x ∈ Ω.

According to Young’s definition A∗ is known as the complementary function to A. It It is commonly understood
that A∗ meets the criteria for a Musielak function and A also acts as complementary function to A∗.

For the fundamental properties of these spaces, we refer to [9].
We display here some facts that will be used later.

Lemma 2.1 ( See [9]). The following norms are equivalent on W 1LA(Ω)

‖u‖1,A = ‖u‖A + ‖|∇u|‖A,

‖u‖2,A = max
(
‖u‖A, ‖|∇u|‖A

)
.

‖u‖ = inf

{
σ > 0 :

∫
Ω

[
A
(
x,
|u(x)|
σ

)
+A

(
x,
|∇u(x)|

σ

)]
dx ≤ 1

}
,

Lemma 2.2 (See [33]). Suppose A and A∗ are two complementary Musielak functions satisfying the ∆2-condition,
then we have

1 < a∗ ≤
tA′d(x, t)

A(x, t)
≤ a∗ <∞, for any x ∈ Ω, t > 0,

and for some constants a∗, a
∗.

Furthermore, we have

1. If ‖u‖ ≤ 1, ‖u‖a
∗
≤
∫

Ω

[
A(x, |u(x)|) +A(x, |∇u(x)|)

]
dx ≤ ‖u‖a∗ ,

2. If ‖u‖ > 1, ‖u‖a∗ ≤
∫

Ω

[
A(x, |u(x)|) +A(x, |∇u(x)|)

]
dx ≤ ‖u‖a

∗
,

3. If un 7−→ u in W 1LA(Ω), then∫
Ω

[A(x, |un(x)|) +A(x, |∇un(x)|)] dx −→
∫

Ω

[A(x, |u(x)|) +A(x, |∇u(x)|)] dx.

Here and in the sequel, consider p, q ∈ C+(Ω) two variables exponents satisfy (1.3) and the Musielak function :

A(x, t) = tp(x) + tq(x), for all (x, t) ∈ Ω× R∗+. (2.5)

It is clear that A and its complementary function fulfill the ∆2-condition. and set

W 1,p(·),q(·)(Ω) = W 1LA(Ω), (2.6)

possessing the norm ‖u‖1,p(·),q(·) = ‖u‖1,p(·) + ‖u‖1,q(·)

Proposition 2.2 (See [14]). The space W 1,p(·),q(·)(Ω) embeds continuously into W 1,m0(Ω) and compactly into
W 1,m0(Ω) under the hypothesis (1.3), then the following embedding W 1,p(·),q(·)(Ω) ↪→↪→ C0(Ω) is compact and we put

C0 = sup
u∈W 1,p(·),q(·)(Ω)\{0}

‖u‖L∞(Ω)

‖u‖1,p(·),q(·)
. (2.7)
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3 Main results

For u ∈W 1,p(·),q(·)(Ω) we define the following functionals

Jp(x)(u) =

∫
Ω

|∇u|p(x)

p(x)
dx, Jq(x)(u) =

∫
Ω

|∇u|q(x)

q(x)
dx,

J
λ(x)
p(x) (u) =

∫
Ω

λ(x)
1

p(x)
|u|p(x)dx, J

λ(x)
q(x) (u) =

∫
Ω

λ(x)
1

q(x)
|u|q(x)dx,

H(u) =

∫
Ω

F2(x, u)dx, Φ1(u) = −
∫

Ω

F1(x, u)dx,

J(u) = a1Jp(x)(u) +
a2

2

(
Jp(x)(u)

)2
+ b1Jq(x)(u) +

b2
2

(
Jq(x)(u)

)2
+ J

λ(x)
p(x) (u) + J

λ(x)
q(x) (u), (3.1)

and
Φ2(u) = J(u)−H(u), (3.2)

where

F1(x, t) =

∫ t

0

f1(x, ρ)dρ, and F2(x, t) =

∫ t

0

f2(x, ρ)dρ. (3.3)

Definition 3.1 A measurable function u ∈W 1,p(·),q(·)(Ω) is a weak solution of the Neumann elliptic problem (1.2)
if for any v ∈W 1,p(·),q(·)(Ω), one has(

a1 + a2Jp(x)(u)
) ∫

Ω

|∇u|p(x)−2∇u∇vdx+
(
b1 + b2Jq(x)(u)

) ∫
Ω

|∇u|q(x)−2∇u∇vdx

+

∫
Ω

λ(x)
(
|u|p(x)−2uv + |u|q(x)−2uv

)
dx =

∫
Ω

f1(x, u)vdx+

∫
Ω

f2(x, u)vdx. (3.4)

Then, it is easy to verify that the weak solutions u ∈W 1,p(·),q(·)(Ω) of (1.2) are exactly the critical points of Φ1 + Φ2.

Definition 3.2 A function F1(x, t) is said to be of type (S ) if for all compact subset of R noted E, there exists
ς ∈ E such that

F1(x, ς) = sup
t∈E

f1(x, t) for almoste every x ∈ Ω. (3.5)

Lemma 3.1 Assume that (1.3) and (1.4) are satisfied. Then, Φ2,Φ1 ∈ C1(W 1,p(·),q(·)(Ω),R) and their Gâteaux
derivatives are given by

〈Φ′2(u), v〉 =
(
a1 + a2Jp(x)(u)

) ∫
Ω

|∇u|p(x)−2∇u∇vdx+
(
b1 + b2Jq(x)(u)

) ∫
Ω

|∇u|q(x)−2∇u∇vdx

+

∫
Ω

λ(x)
(
|u|p(x)−2uv + |u|q(x)−2uv

)
dx−

∫
Ω

f2(x, u)vdx,

and

〈Φ′1(u), v〉 = −
∫

Ω

f1(x, u)vdx,

for any v, u ∈W 1,p(·),q(·)(Ω).

Proof We divided this prove into two claims, in the first we prove the Gâteaux differetiability of J and the second
focuses on the Gâteaux differentiability of H.
Claim 1: We start by proving that Jp(x) is of class C1(W 1,p(·),q(·)(Ω), R). Fix x ∈ Ω. We define φ : RN → R by

φ(ζ) =
|ζ|p(x)

p(x)
. It is clear that, φ ∈ C1(RN ,R) and ∇φ(ζ) = |ζ|p(x)−2ζ. Thus, for all ζ, ϑ ∈ RN , we have

lim
t→0

φ(ζ + tϑ)− φ(ϑ)

t
= |ζ|p(x)−2ζ · ϑ.



A. Ahmed and M. S. B. Elemine Vall 7

As a consequence, for u, v ∈W 1,p(·),q(·)(Ω), we obtain

lim
t→0

1

p(x)

(
|∇u+ t∇v|p(x) − |∇u|p(x)

t

)
= |∇u|p(x)−2∇u · ∇v. (3.6)

Applying the mean value theorem, there is a θ in the range 0 < |θ| < |t| such that, for all t ∈ R with 0 < |t| < 1:

1

p(x)

∣∣∣∣ |∇u+ t∇v|p(x) − |∇u|p(x)

t

∣∣∣∣
= |∇u+ θ∇v|p(x)−2 (∇u+ θ∇v) · ∇v|

≤ (|∇u|+ |∇v|)p(x)−1 |∇v|.

(3.7)

Since for u, v ∈ W 1,p(·),q(·)(Ω) one has (|∇u| + |∇v|)p(x)−1|∇v| ∈ L1(Ω). Using (3.6) and (3.7) and applying the
dominated convergence theorem, we can conclude that:

lim
t→0

∫
Ω

1

p(x)

(
|∇u+ t∇v|p(x) − |∇u|p(x)

t

)
dx =

∫
Ω

|∇u|p(x)−2∇u∇vdx.

It means that Jp(x) is Gâteaux differentiable and for u, v ∈W 1,p(·),q(·)(Ω), we have

〈J ′p(x)(u), v〉 =

∫
Ω

|∇u|p(x)−2∇u∇vdx.

By similar arguments, we can show that Jq(x), J
λ(x)
p(x) and J

λ(x)
q(x) are Gâteaux differentiables and for any v, u ∈

W 1,p(·),q(·)(Ω) we have

〈J ′q(x)(u), v〉 =

∫
Ω

|∇u|q(x)−2∇u∇vdx.

〈
(
J
λ(x)
p(x)

)′
(u), v〉 =

∫
Ω

λ(x)|u|p(x)−2uvdx.

〈
(
J
λ(x)
q(x)

)′
(u), v〉 =

∫
Ω

λ(x)|u|q(x)−2uvdx.

It follows that J is Gâteaux differentiable and for u, v ∈W 1,p(·),q(·)(Ω), we obtain

〈J ′(u), v〉 =
(
a1 + a2Jp(x)(u)

) ∫
Ω

|∇u|p(x)−2∇u∇vdx+
(
b1 + b2Jq(x)(u)

) ∫
Ω

|∇u|q(x)−2∇u∇vdx

+

∫
Ω

λ(x)
(
|u|p(x)−2uv + |u|q(x)−2uv

)
dx.

Next, we prove that J ′p(x) : W 1,p(·),q(·)(Ω) −→W 1,p(·),q(·)(Ω)∗ is continuous. To this aim we take a sequence (un)n in

W 1,p(·),q(·)(Ω) such that un −→ u in W 1,p(·),q(·)(Ω) as n −→∞. By Lemma 2.2, we have lim
n−→∞

∫
Ω

|∇un−∇u
∣∣p(x)

dx =

0. Therefore, after extracting a sub-sequence, we conclude that

lim
n→∞

∇un = ∇u almost everywhere in Ω, (3.8)

|∇un −∇u|p(x) is dominated by h(x) in L1(Ω). (3.9)

Since

|∇un|p(x) ≤ (|∇u|+ |∇un −∇u|)p(x)

≤ 2p
+−1

(
|∇u|p(x) + |∇un −∇u|p(x)

)
≤ 2p

+−1
(
|∇u|p(x) + h(x)

)
. (3.10)
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For any v ∈W 1,p(·),q(·)(Ω) with ‖v‖1,p(·),q(·) ≤ 1, the Hölder’s inequality gives

∣∣〈J ′p(x)(un)− J ′p(x)(u), v〉
∣∣ =

∣∣∣∣∫
Ω

(
|∇un|p(x)−2∇un − |∇u|p(x)−2∇u

)
· ∇vdx

∣∣∣∣
≤ 2

∥∥∥|∇un|p(x)−2∇un − |∇u|p(x)−2∇u|
∥∥∥
Lp′(·)(Ω)

‖∇v‖Lp(·)(Ω)

≤ 2
∥∥∥|∇un|p(x)−2∇un − |∇u|p(x)−2∇u|

∥∥∥
Lp′(·)(Ω)

.

Hence,

‖J ′p(x)(un)− J ′p(x)(u)‖(W 1,p(·),q(·)(Ω))
∗ ≤ 2

∥∥∥|∇un|p(x)−2∇un − |∇u|p(x)−2∇u|
∥∥∥
Lp′(·)(Ω)

. (3.11)

It follows from (3.8) that ∣∣∣|∇un|p(x)−2∇un − |∇u|p(x)−2∇u
∣∣∣p′(x)

−→ 0 for a.e. x ∈ Ω.

Furthermore, using (3.10), we can deduce that∣∣∣|∇un|p(x)−2∇un − |∇u|p(x)−2∇u
∣∣∣p′(x)

≤ 2p
′(x)−1

(
|∇un|p(x) + |∇u|p(x)

)
≤ 2(p′)+−1

(
|∇un|p(x) + |∇u|p(x)

)
≤ 2(p′)++p+−1

(
|∇u|p(x) + h(x)

)
.

Since 2(p′)++p+−1
(
|∇u|p(x) + h

)
is integrable over Ω, we can apply the dominated convergence theorem to conclude

that ∫
Ω

∣∣∣|∇un|p(x)−2∇un − |∇u|p(x)−2∇u
∣∣∣p′(x)

dx→ 0 as n→∞.

Using Lemma 2.2, we conclude that,∥∥∥|∇un|p(x)−2∇un − |∇u|p(x)−2∇u|
∥∥∥
Lp′(·)(Ω)

→ 0 as n→∞.

Combining this with (3.11), gives

‖J ′p(x)(un)− J ′p(x)(u)‖(W 1,p(·),q(·)(Ω))
∗ −→ 0 as n −→∞.

This completes the proof that J ′p(x) : W 1,p(·),q(·)(Ω) −→
(
W 1,p(·),q(·)(Ω)

)∗
is continuous, and therefore Jp(x) ∈

C1(W 1,p(·),q(·)(Ω),R). By similar arguments we can show that Jq(x), J
λ(x)
p(x) and J

λ(x)
q(x) are of class C1 fromW 1,p(·),q(·)(Ω)

into its dual. Which means that J is of class C1.
Claim 2: We shall prove that H ∈ C1(W 1,p(·),q(·)(Ω),R).

Let u, v ∈W 1,p(·),q(·)(Ω) be arbitrary functions, then

〈H ′(u), v〉 =

∫
Ω

f2(x, u)vdx.

Applying the mean value theorem again, for u, v ∈W 1,p(·),q(·)(Ω) and t ∈ R \ {0}, we obtain

F2(x, u(x) + tv(x))− F2(x, u(x))

t
= v(x)f2(x, u(x) + θv(x)),

for some θ ∈ R with 0 < |θ| < |t|. Therefore,

F2(x, u(x) + tv(x))− F2(x, u(x))

t
−→ v(x)f2(x, u(x)) as t −→ 0 for almost every x ∈ Ω. (3.12)
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Using Proposition 2.2, we see that for |t| < 1 there exists ` = ‖u‖L∞(Ω) + ‖v‖L∞(Ω) > 0 such that∣∣∣∣F2(x, u(x) + tv(x))− F2(x, u(x))

t

∣∣∣∣ = |v(x)||f2(x, u(x) + θv(x))|

≤ |v(x)| sup
|s|≤`
|f2(x, s)|.

(3.13)

From Hölder’s inequality and (1.4) we obtain∫
Ω

v(x) sup
|s|≤`
|f2(x, s)|dx ≤ 2‖v‖L∞(Ω)

∥∥∥∥ sup
|s|≤`
|f2(x, s)|

∥∥∥∥
L1(Ω)

.

Therefore, the dominated convergence theorem together with (3.12) and (3.13) implies that

lim
t→0

∫
Ω

F2(x, u(x) + tv(x))− F2(x, u(x))

t
dx =

∫
Ω

f2(x, u(x))v(x)dx.

That is, H admits a Gâteaux derivative and

〈H ′(u), v〉 =

∫
Ω

f2(x, u(x))v(x)dx.

For the proof of the continuity of H ′ in W 1,p(·),q(·)(Ω) we use Remark 2.2 for a sub-sequence still denoted un to get
un −→ u in C0(Ω). Consequently,

(un)n converges uniformly to u in Ω, (3.14)

k := sup
n∈N
‖un‖L∞(Ω) < +∞. (3.15)

We obtain that for any v ∈W 1,p(·),q(·)(Ω) with ‖u‖1,p(·),q(·) ≤ 1,

|〈H ′(un)−H ′(u), v〉| ≤
∫

Ω

|f2(x, un(x))− f2(x, u(x))||v(x)|dx. (3.16)

Therefore,

|f2(x, un(x))− f2(x, u(x))| ≤ 2
[
|f2(x, un)|+ |f2(x, u)|

]
≤ 2

[
sup
|s|≤k

|f2(x, s)|+ sup
|s|≤k

|f2(x, s)|
]

≤ 4 sup
|s|≤k

|f2(x, s)|.

By (3.16) we have

|〈H ′(un)−H ′(u), v〉| ≤ 4

∫
Ω

sup
|s|≤k

|f2(x, s)||v(x)|dx.

Note that sup
|s|≤k

|f2(x, s)| ∈ L1(Ω). Then, the dominated convergence theorem and (3.14), conclude that

lim
n→∞

∫
Ω

|f2(x, un(x))− f2(x, u(x))||v(x)|dx = 0.

Hence, from (3.16) follows that
lim
n→∞

‖H ′(un)−H ′(u)‖W 1,p(·),q(·)(Ω)∗ = 0.

This completes the proof thatH ′ : W 1,p(·),q(·)(Ω) −→W 1,p(·),q(·)(Ω)∗ is continuous, and thereforeH ∈ C1(W 1,p(·),q(·)(Ω),R).
Similarly as above we are able to illustrate that Φ1 ∈ C1(W 1,p(·),q(·)(Ω),R), and since Φ2 = J −H, the proof is

complete. �
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Lemma 3.2 Assume that (1.3) and (1.4) hold. Then Φ1,Φ2 are sequentially weakly lower semi-continuous.

Proof We divided this prove into two claims, the first concerns the functional J and the second focuses on the
functional H.
Claim 1:
For any u ∈W 1,p(·),q(·)(Ω) we have

J(u) = a1Jp(x)(u) +
a2

2

(
Jp(x)(u)

)2
+ b1Jq(x)(u) +

b2
2

(
Jq(x)(u)

)2
+ J

λ(x)
p(x) (u) + J

λ(x)
q(x) (u).

Consider a sequence (un)n such that (un)n goes to u weakly in W 1,p(·),q(·)(Ω). Then, by the convexity of Jp(x), we
have

Jp(x)(u) ≤ Jp(x)(un) + 〈J ′p(x)(u), u− un〉.

When n goes to infinity, the aforementioned inequality, we can find that Jp(x) is sequentially weakly lower semi-
continuous. Its follows

a1

∫
Ω

1

p(x)
|∇u|p(x)dx ≤ lim inf

n→+∞
a1

∫
Ω

1

p(x)
|∇un|p(x)dx. (3.17)

Similarly, we get

a2

2

(∫
Ω

1

p(x)
|∇u|p(x)dx

)2

≤ lim inf
n→+∞

a2

2

(∫
Ω

1

p(x)
|∇un|p(x)dx

)2

, (3.18)

b1

∫
Ω

1

q(x)
|∇u|q(x)dx ≤ lim inf

n→+∞
b1

∫
Ω

1

q(x)
|∇un|q(x)dx, (3.19)

b1
2

(∫
Ω

1

q(x)
|∇u|q(x)dx

)2

≤ lim inf
n→+∞

b1
2

(∫
Ω

1

q(x)
|∇un|q(x)dx

)2

, (3.20)∫
Ω

λ(x)
1

p(x)
|u|p(x)dx ≤ lim inf

n→+∞

∫
Ω

λ(x)
1

p(x)
|un|p(x)dx, (3.21)

and ∫
Ω

λ(x)
1

q(x)
|u|q(x)dx ≤ lim inf

n→+∞

∫
Ω

λ(x)
1

q(x)
|un|q(x)dx. (3.22)

Which yields

lim inf
n→+∞

J(un) = lim inf
n→+∞

[
a1

∫
Ω

1

p(x)
|∇un|p(x)dx+

a2

2

(∫
Ω

1

p(x)
|∇un|p(x)dx

)2

+ b1

∫
Ω

1

q(x)
|∇un|q(x)dx

+
b2
2

(∫
Ω

1

q(x)
|∇un|q(x)dx

)2

+

∫
Ω

λ(x)
1

p(x)
|un|p(x)dx+

∫
Ω

λ(x)
1

q(x)
|un|q(x)dx

]

≥

[
lim inf
n→+∞

a1

∫
Ω

1

p(x)
|∇un|p(x)dx+ lim inf

n→+∞

a2

2

(∫
Ω

1

p(x)
|∇un|p(x)dx

)2

+ lim inf
n→+∞

b1

∫
Ω

1

q(x)
|∇un|q(x)dx

+ lim inf
n→+∞

b2
2

(∫
Ω

1

q(x)
|∇un|q(x)dx

)2

+ lim inf
n→+∞

∫
Ω

λ(x)
1

p(x)
|un|p(x)dx+ lim inf

n→+∞

∫
Ω

λ(x)
1

q(x)
|un|q(x)dx

]

≥ a1Jp(x)(u) +
a2

2

(
Jp(x)(u)

)2
+ b1Jq(x)(u) +

b2
2

(
Jq(x)(u)

)2
+ J

λ(x)
p(x) (u) + J

λ(x)
q(x) (u)

≥ J(u), (3.23)

which means J is sequentially weakly lower semi-continuous.
Claim 2: Proving that H is weakly-lower semi-continuous.
Proposition 2.2 implies that there exists a sub-sequence of (un)n converging to u uniformly on compact subsets of Ω.
Then,

(un)n converges to u uniformly in Ω,

k := sup
n∈N
‖un‖L∞(Ω) < +∞.
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Thus, almost everywhere in Ω, we have lim
n→∞

F2(x, un(x)) = F2(x, u(x)) and |F2(x, un(x))| ≤ k sup
|s|≤k

|f2(x, s)| for all

n. Since sup
|s|≤k

|f2(x, s)| ∈ L1(Ω) by (1.4). Thus, the dominated convergence theorem gives that lim
n→∞

H(un) = H(u).

The weak semi-continuity of the functional H implies that Φ2 is sequentially weak with lower semi-continuity, which
means that Φ1 is sequentially weakly continuous. �

We will now demonstrate that Φ2 is coercive. For brevity, we will write ci for some positive constant throughout.

Proposition 3.1 Assume that G satisfies exactly one of the following two conditions:

1. There exist τ > 0, 0 < ε <
p+ min(a1, b1, λ0)

2p−−1q+
and θ1, θ2, θ3 ∈ L1(Ω) with θ1 6= 0 and θ2 6= 0 such that

|F2(x, t)| ≤ ε

(
θ1(x)

p+Cp
−

1 ‖θ1‖L1(Ω)

|t|p
−

+
θ2(x)

q+Cq
−

2 ‖θ2‖L1(Ω)

|t|q
−

)
+ θ3(x), (3.24)

for almost all x ∈ Ω and all t ≥ τ .

2. There exist τ > 0, 0 < ε <
p−

q+

λ0

‖λ‖L∞(Ω)
and θ4 ∈ L1(Ω) such that

|F2(x, t)| ≤ ε
(
λ(x)

p(x)
|t|p(x) +

λ(x)

q(x)
|t|q(x)

)
+ θ4(x), (3.25)

for almost all x ∈ Ω and all t ≥ τ .

Then, Φ2 is coercive.

Proof Suppose (3.24) holds. Then, without loss of generality, we have

Φ2(u) = a1Jp(x)(u) +
a2

2

(
Jp(x)(u)

)2
+ b1Jq(x)(u) +

b2
2

(
Jq(x)(u)

)2
+ J

λ(x)
p(x) (u) + J

λ(·)
q(x)(u)−

∫
Ω

F2(x, u)dx

≥ a1

∫
Ω

1

p(x)
|∇u|p(x)dx+ b1

∫
Ω

1

q(x)
|∇u|q(x)dx+

∫
Ω

λ(x)

(
1

p(x)
|u|p(x) +

1

q(x)
|u|q(x)

)
dx

−
∫

Ω

[
εθ1(x)|u|p−

p+Cp
−

1 ‖θ1‖L1(Ω)

+
εθ2(x)|u|q−

q+Cq
−

2 ‖θ2‖L1(Ω)

+ θ3(x)

]
dx

≥ min(a1, b1)

q+

(∫
Ω

|∇u|p(x)dx+

∫
Ω

|∇u|q(x)dx

)
+
λ0

q+

∫
Ω

(
|u|p(x) + |u|q(x)

)
dx

−

‖θ3‖L1(Ω) +
ε‖u‖p

−

L∞(Ω)

p+Cp
−

1

+
ε‖u‖q

−

L∞(Ω)

q+Cq
−

2


≥ min(a1, b1)

q+

(
‖∇u‖p

−

p(·) + ‖∇u‖q
−

q(·) − 2
)

+
λ0

q+

(
‖u‖p

−

p(·) + ‖u‖q
−

q(·) − 2
)

−

‖θ3‖L1(Ω) +
ε‖u‖p

−

1,p(·)

p+
+
ε‖u‖q

−

1,q(·)

q+


≥ min(a1, b1, λ0)

2p−−1q+
‖u‖p

−

1,p(·) +
min(a1, b1, λ0)

2q−−1q+
‖u‖q

−

1,q(·) − ε

‖u‖p−1,p(·)
p+

+
‖u‖q

−

1,q(·)

q+

− c1
≥

(
min(a1, b1, λ0)

2p−−1q+
− ε

p+

)
‖u‖p

−

1,p(·) +

(
min(a1, b1, λ0)

2q−−1q+
− ε

q+

)
‖u‖q

−

1,q(·) − c1

≥ c2

(
‖u‖p

−

1,p(·) + ‖u‖q
−

1,q(·)

)
− c1

≥ c2

(
‖u‖p

−

1,p(·) + ‖u‖p
−

1,q(·) − 1
)
− c3

≥ c2
2p−−1

‖u‖p
−

1,p(·),q(·) − c3. (3.26)
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Under assumption (3.25) by using similar arguments as above, we get

Φ2(u) ≥ min(a1, b1)

q+

(
‖∇u‖p

−

p(·) + ‖∇u‖q
−

q(·) − 2
)

+
λ0

q+

(
‖u‖p

−

p(·) + ‖u‖q
−

q(·) − 2
)

−
∫

Ω

(
ελ(x)

p(x)
|u|p(x) +

ελ(x)

q(x)
|u|q(x) + θ4(x)

)
dx

≥ min(a1, b1)

q+

(
‖∇u‖p

−

p(·) + ‖∇u‖q
−

q(·) − 2
)

+
λ0

q+

(
‖u‖p

−

p(·) + ‖u‖q
−

q(·) − 2
)

−ε
‖λ‖L∞(Ω)

p−

(
‖u‖p

−

p(·) + ‖u‖q
−

q(·) − 2
)
− c4

≥ min(a1, b1)

q+

(
‖∇u‖p

−

p(·) + ‖∇u‖q
−

q(·)

)
+

(
λ0

q+
− ε
‖λ‖L∞(Ω)

p−

)(
‖u‖p

−

p(·) + ‖u‖q
−

q(·)

)
− c5

≥ min

(
min(a1, b1)

q+
,

(
λ0

q+
− ε
‖λ‖L∞(Ω)

p−

))(
‖∇u‖p

−

p(·) + ‖u‖p
−

p(·) + ‖∇u‖q
−

q(·) + ‖u‖q
−

q(·)

)
− c5

≥ c6
2q−−1

(
‖u‖p

−

1,p(·) + ‖u‖q
−

1,q(·)

)
− c5

≥ c6
2q−−1

(
‖u‖p

−

1,p(·) + ‖u‖p
−

1,q(·)

)
− c7

≥ c6
2q−−1 × 2p−−1

‖u‖p
−

1,p(·),q(·) − c7.

(3.27)

Thanks to (3.26)-(3.27) and as a result of the coercivity of Φ2, it follows that there are constants α1 and α2 satisfy:

Φ2(u) ≥ α1‖u‖p
−

1,p(·),q(·) for any ‖u‖1,p(·),q(·) ≥ α2. (3.28)

�

Lemma 3.3 Assume the hypothesis (1.3) and one of the assumptions (3.24) and (3.25). Hence, there are positives
constants δ1, δ2 and δ3 such that

∫
Ω

λ(x)

(
|ς|p(x)

p(x)
+
|ς|q(x)

q(x)

)
dx−

∫
Ω

f2(x, ς)dx ≤ δ1|ς|q
+

+ δ2, for any ς ∈ R. (3.29)

Proof Under the assumptions (1.3) and (3.24) implies

∫
Ω

λ(x)

(
|ς|p(x)

p(x)
+
|ς|q(x)

q(x)

)
dx−

∫
Ω

F2(x, ς)dx

≤ ‖λ‖L∞(Ω)|Ω|
(

1

p−
|ς|p

+

+
1

q−
|ς|q

+

)
+ ε

∫
Ω

θ1(x)

p−Cp
−

1 ‖θ1‖L1(Ω)

|ς|p
+

dx+ ε

∫
Ω

θ2(x)

q−Cq
−

2 ‖θ2‖L1(Ω)

|ς|q
+

dx+

∫
Ω

θ3(x)dx

≤ ‖λ‖L∞(Ω)|Ω|
(

1

p−
|ς|q

+

+
1

p−
|ς|q

+

)
+

ε

p−Cp
−

1

∫
Ω

|ς|q
+

dx+
ε

p−Cq
−

2

∫
Ω

|ς|q
+

dx+ ‖θ3‖L1(Ω)

≤

(
2‖λ‖L∞(Ω)|Ω|

p−
+
ε|Ω|
p−

(
1

Cp
−

1

+
1

Cq
−

2

))
|ς|q

+

+ ‖θ3‖L1(Ω), for sufficiently large ς.

Then, we have (3.29) for δ1 =

(
2‖λ‖L∞(Ω)|Ω|

p−
+
ε|Ω|
p−

(
1

Cp
−

1

+
1

Cq
−

2

))
and δ2 = ‖θ3‖L1(Ω).



A. Ahmed and M. S. B. Elemine Vall 13

On the other hand, assumptions (1.3) and (3.25) implies∫
Ω

λ(x)

(
1

p(x)
|ς|p(x) +

1

q(x)
|ς|q(x)

)
dx−

∫
Ω

F2(x, ς)dx

≤ ‖λ‖L∞(Ω)|Ω|
(

1

p−
|ς|q

+

+
1

p−
|ς|q

+

)
+ ε

∫
Ω

λ(x)

(
1

p(x)
|t|p(x) +

1

q(x)
|t|q(x)

)
dx+

∫
Ω

θ4(x)dx

≤
2‖λ‖L∞(Ω)|Ω|

p−
|ς|q

+

+
2ε‖λ‖L∞(Ω)|Ω|

p−
|ς|q

+

+ ‖θ4‖L1(Ω)

≤
2(1 + ε)‖λ‖L∞(Ω)|Ω|

p−
|ς|q

+

+ ‖θ4‖L1(Ω), for ς large enough.

Therefore, we establish (3.29) with δ1 and δ2 being
2(1 + ε)‖λ‖L∞(Ω)|Ω|

p−
and ‖θ4‖L1(Ω), respectively, for ς sufficiently

large. �

The following theorem is our first main result.

Theorem 3.1 Assuming that (1.3) and (1.4) are satisfied, and either (3.24) or (3.25) hold, and that F satisfies
condition (3.5). Additionally, we assume that F1 satisfies the following condition∫

Ω

λ(x)

(
1

p(x)
|ς|p(x) +

1

q(x)
|ς|q(x)

)
dx−

∫
Ω

(
F2(x, ς) + F1(x, ς)

)
dx = −∞. (3.30)

Moreover, there exist positive sequences (an)n and (bn)n such that

lim
n→∞

bn = +∞, lim
n→∞

aq
+

n

bp
−
n

= 0. (3.31)

Finally, we assume the existence of a positive integrable function with ‖h‖L1(Ω) = 1 and some positive constants
δ1, δ2, δ3 > 0 such that

F1(x, an) + h(x)

(
α1

(
bn
C0

)p−
− δ1|an|q

+

− δ2

)
≥ sup
t∈[an,bn]

F1(x, t), (3.32)

F1(x,−an) + h(x)

(
α1

(
bn
C0

)p−
− δ1|an|q

+

− δ2

)
≥ sup
t∈[−bn,−an]

F1(x, t), (3.33)

for any n we have for almost all x in Ω, where α1 is the coercivity constant defined in (3.28),

δ1 =

(
2‖λ‖L∞(Ω)|Ω|

p−
+
ε|Ω|
p−

(
1

Cp
−

1

+
1

Cq
−

2

))
and δ2 = ‖θ3‖L1(Ω) if we assume (3.24) and δ1 =

2(1 + ε)‖λ‖L∞(Ω)|Ω|
p−

and δ2 = ‖θ4‖L1(Ω) if we assume (3.25). The last inequalities (3.32) and (3.33) are strict on a non-negligible subset
of Ω.

Then, we can construct a sequence (vn)n of local minima of Φ1 + Φ2 such that lim
n→∞

Φ2(vn) =∞. Consequently,

the problem (1.2) admits an unbounded sequence of weak solutions.

Proof For r > inf
u∈W 1,p(·),q(·)(Ω)

Φ2(u), we define

Θ(r) = inf
{
κ > 0 : Φ−1

1 (]−∞, r[) ⊂ B(0, κ)
}
, (3.34)

where B(0, κ) denoted the ball centered at 0 with radius κ in W 1,p(·),q(·)(Ω) with respect to the norm ‖ · ‖1,p(·),q(·),
and B(0, κ) denote its closure in W 1,p(·),q(·)(Ω). Since Φ2 is coercive, we have Θ(r) ∈]0,+∞[ for all r >

inf
u∈W 1,p(·),q(·)(Ω)

Φ2(u). Owing of (3.28), we have

if Φ2(u) < α1‖u‖p
−

1,p(·),q(·), then ‖u‖1,p(·),q(·) < α2.
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With the help of (3.34), one may observe that Φ−1
2 (]−∞, r[) ⊂ B(0,Θ(r)) yields (Φ−1

2 (]−∞, r[))w ⊂ B(0,Θ(r)).
By using (2.7), we get,

B(0,Θ(r)) ⊂
{
u ∈ C(Ω) : ‖u‖L∞(Ω) ≤ C0Θ(r)

}
,

which yields
inf

v∈(Φ−1
2 (]−∞,r[))w

Φ1(v) ≥ inf
‖v‖1,p(·),q(·)≤Θ(r)

Φ1(v) ≥ inf
‖v‖L∞(Ω)≤C0Θ(r)

Φ1(v). (3.35)

Suppose κ ≥ α1α
p−

2 and let u ∈W 1,p(·),q(·)(Ω) satisfy Φ2(u) < κ. If ‖u‖1,p(·),q(·) ≥ α2, then by (3.28), we have

κ > Φ2(u) ≥ α1‖u‖p
−

1,p(·),q(·),

this shows that ‖u‖1,p(·),q(·) ≤
(
κ

α1

) 1

p−

. If ‖u‖1,p(·),q(·) < α2, it is easy to see that ‖u‖1,p(·),q(·) ≤
(
κ

α1

) 1

p−

. By the

definition of Θ(κ), we have

Θ(κ) ≤
(
κ

α1

) 1

p−

. (3.36)

Since F1(x, ·) satisfies condition (3.5), for each n, there exists ςn ∈ [−an, an] such that

F1(x, ςn) = sup
t∈[−an,an]

F1(x, t) for almost all x in Ω. (3.37)

In order to satisfy (b) of Theorem 1.1, we consider un as the constant function with value ςn and rn = α1

(
bn
C0

)p−
,

which leads to lim
n→∞

rn → +∞. Using (3.36), we conclude that

Θ(rn) ≤ bn
C0

then C0Θ(rn) ≤ bn. (3.38)

By (3.29), one has

mn =

∫
Ω

λ(x)

(
1

p(x)
|ς|p(x) +

1

q(x)
|ς|q(x)

)
dx−

∫
Ω

F2(x, ς)dx ≤ δ1|ς|q
+

+ δ2

≤ δ1|an|q
+

+ δ2.

For n large enough (3.31) can be write

δ1|an|q
+

+ δ2 < α1

(
bn
C0

)p−
= rn,

consequently we find mn < rn which means (1.8) holds. Without loss of generality, we can assume that (1.8) holds
for all n.

From (3.32)-(3.33) and (3.37), we may find the following inequality

F1(x, ςn) + h(x)(rn −mn) ≥ sup
|t|≤bn

F1(x, t) a.e. in Ω, (3.39)

which is strict on a non-negligible subdomain of Ω. Using (3.38) and (3.39), we obtain (1.9) and (1.10) follows
directly from (3.30).

Then, hypotheses of Theorem 1.1 (b) hold true which completes the proof of Theorem 3.1. �

Now, we present an example to illustrate the results cited in the previous theorem.

Corolary 3.1 Let Ω =]0, 1[2 then N = 2 and let p(x) =
5

2
+

1

4
| sin(x + y)|, and q(x) = 3 +

1

2
| cos(x + y)|, then

p− =
5

2
, p+ =

11

4
, q− = 3 and q+ =

7

2
. Consider the functions f2(x, t) =

13

100

(
p−θ1(x)

p+Cp
−

1

|t|p
−−1 +

q−θ2(x)

q+Cq
−

2

|t|q
−−1

)
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where θ1, θ2 ∈ L1(Ω) are positives functions with ‖θ1‖L1(Ω) = ‖θ2‖L1(Ω) = 1, and consider f1(x, t) ≡ α(x)g(t), with

a positive function α ∈ L1(Ω) such that ‖α‖L1(Ω) = 1 and a continuous function g such that g(t) = G′(t) and
G(−t) = G(t). Then, the following nonlinear elliptic double phase Kirchhoff-type problem

−

(
1 + 2

∫
Ω

1(
5
2 + 1

4 | sin(x+ y)|
) |∇u|( 5

2 + 1
4 | sin(x+y)|)dx

)
∆( 5

2 + 1
4 | sin(x+y)|)u

−

(
1 + 2

∫
Ω

1(
3 + 1

2 | cos(x+ y)|
) |∇u|(3+ 1

2 | cos(x+y)|)dx

)
∆(3+ 1

2 | cos(x+y)|)u

+
2 + x2 + y2

1 + x2 + y2

(
|u|(

1
2 + 1

4 | sin(x+y)|)u+ |u|(1+ 1
2 | cos(x+y)|)u

)
= α(x)g(t) +

13

100

(
10 θ1(x)

11C
5
2
1

|t| 32 +
6θ2(x)

7C3
2

|t|2
)

in Ω,

∂u

∂ν
= 0 on ∂Ω,

(3.40)

has a sequence of weak solutions (un)n in W 1,p(·),q(·)(Ω) with unbounded norm.

Proof It is clear that 0 < ε =
13

100
<
p+ min(a1, b1, λ0)

2p−1q+
= 0.27, then (3.24) is satisfied. Furthermore, we have

F1(x, t) = α(x)G(t), and we can choose two positive sequences (an)n and (bn)n such that a1 ≥ 1, b
5
2
n = 2n2a3

n and
an+1 > bn for every n. Define G(an) = a4

n and G(bn) such that

G(an) < G(bn) <

(
α1

( bn
C0

) 5
2 − δ1|an|3 − δ2

)
+G(an), (3.41)

where δ1 =
4

5
|Ω|+ 13

250
|Ω|

(
1

C
5
2
1

+
1

C3
2

)
and δ2 = ‖θ3‖L1(Ω).

Put rn = α1

( bn
C0

)p−
and ςn = an.

Since ∫
Ω

λ(x)

p(x)
|an|p(x)dx+

∫
Ω

λ(x)

q(x)
|an|q(x)dx−

∫
Ω

F2(x, an)dx−
∫

Ω

F1(x, an)dx

≤ δ1|an|q
+

+ δ2 − ‖α‖L1(Ω)a
q++1
n → −∞,

as n→∞, then the conditions (3.30)-(3.31) hold true. Taking h(x) = α(x), then (3.53) implies (3.32)-(3.33).
As a result, all the assumptions of Theorem 3.1 are satisfied, then problem (3.40) has a sequence of weak solutions
(un)n in W 1,p(·),q(·)(Ω) with unbounded norm. �

The second main result is cited in the following theorem.

Theorem 3.2 Assume the assumptions (1.3) and (1.4) and the following hypothesis :

F2(x, t) is non-positive for almost every x ∈ Ω and for all t ∈ R. (3.42)

There exists δ, ε > 0 such that

− F2(x, t) ≤ δ|t|p
−

for almost every x ∈ Ω and for |t| ≤ ε. (3.43)

In addition, assume that the functional F1 satisfies the condition (3.5) and

lim sup
|ς|→0

∫
Ω

F1(x, ς)dx+

∫
Ω

F2(x, ς)dx

|ς|p−
>

∫
Ω

λ(x)

(
1

p(x)
|ς|p(x) +

1

q(x)
|ς|q(x)

)
dx. (3.44)
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Assume that (an)n and (bn)n are positive sequences satisfying

lim
n→∞

bn = 0 and lim
n→∞

ap
−

n

bq
+

n

= 0. (3.45)

Additionally, there exists a positive function h ∈ L1(Ω), where ‖h‖L1(Ω) = 1, such that for every n and all x in Ω,
we obtain

F1(x, an) + h(x)

(
δ3

(
bn
C0

)q+

− δ4ap
−

n

)
≥ sup
t∈[an,bn]

F1(x, t), (3.46)

F1(x,−an) + h(x)

(
δ3

(
bn
C0

)q+

− δ4ap
−

n

)
≥ sup
t∈[−bn,−an]

F1(x, t), (3.47)

with δ3 =
min(a1, b1, λ0)

22q+−2q+
and δ4 =

(
2‖λ‖L∞(Ω)

p−
+ δ

)
|Ω|, the relations (3.46) and (3.47) are strict on a non

negligible subdomain of Ω. Accordingly we can construct a sequence (vn)n of separate local minima of Φ1 + Φ2 where
vn tends to 0 in W 1,p(·),q(·)(Ω). Hence, a sequence of non-zero weak solutions to problem (1.2) exists and converges
strongly to 0 in W 1,p(·),q(·)(Ω).

Proof We now proceed to demonstrate that Theorem 1.1 (c) holds by verifying all the assumptions. Taking into
account the inequality (3.42), for ‖u‖1,p(·),q(·) ≤ 1 one has

Φ2(u) = J(u)−
∫

Ω

F2(x, u)dx

≥ a1Jp(x)(u) +
a2

2

(
Jp(x)(u)

)2
+ b1Jq(x)(u) +

b2
2

(
Jq(x)(u)

)2
+ J

λ(x)
p(x) (u) + J

λ(x)
q(x) (u)

≥ min(a1, b1)

q+

(
‖∇u‖p

+

p(·) + ‖∇u‖q
+

q(·)

)
+
λ0

q+

(
‖u‖p

+

p(·) + ‖u‖q
+

q(·)

)
≥ min(a1, b1, λ0)

2q+−1q+
‖u‖q

+

1,p(·) +
min(a1, b1, λ0)

2q+−1q+
‖u‖q

+

1,q(·)

≥ min(a1, b1, λ0)

22q+−2q+
‖u‖q

+

1,p(·),q(·)

≥ δ3‖u‖q
+

1,p(·),q(·),

with δ3 =
min(a1, b1, λ0)

22q+−2q+
. Consequently, Φ2 is coercive, inf

W 1,p(·),q(·)(Ω)
Φ2 = Φ2(0) = 0 and 0 is the exclusive global

minimizer of Φ2. Owing to (3.44) one has

lim sup
|ς|→0

{
Φ2(ς) + Φ1(ς)

}
= lim sup
|ς|→0

{∫
Ω

λ(x)

(
|ς|p(x)

p(x)
+
|ς|q(x)

q(x)

)
dx−

∫
Ω

F1(x, ς)dx−
∫

Ω

F2(x, ς) dx

}

≤ lim sup
|ς|→0

{∫
Ω

λ(x)

(
|ς|p−

p(x)
+
|ς|p−

q(x)

)
dx−

∫
Ω

F1(x, ς)dx−
∫

Ω

F2(x, ς) dx

}
< 0,

that is, at 0, Φ1 + Φ2 does not reach a local minimum, as a result (1.11) is fulfilled.

Let r be small enough so that if Φ2(u) < r, then ‖u‖1,p(·),q(·) is no greater than

(
r

δ3

) 1

q+

. It follows that Θ(r) is

less than or equal to

(
r

δ3

) 1

q+

.

Now put rn = δ3

(
bn
C0

)q+

If we set u0 and un to be the constant functions ς0 and ςn, respectively, as prescribed

by Theorem 1.1, then
C0Θ(rn) ≤ bn. (3.48)
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The inequalities (3.43) and (1.3) affirm the existence of a sequence (ςn)n ⊂ R such that ςn ∈ [−an, an] such that for
any an small enough,

mn =

∫
Ω

λ(x)

(
|ςn|p(x)

p(x)
+
|ςn|q(x)

q(x)

)
dx−

∫
Ω

F2(x, ςn)dx

≤ ‖λ‖L∞(Ω)

(
1

p−
|ςn|p

−
+

1

p−
|ςn|p

−
)

+ δ|Ω||ςn|p
−

≤
(

2‖λ‖L∞(Ω)

p−
+ δ

)
|Ω||ςn|p

−

≤ δ4|an|p
−
, (3.49)

where δ4 =

(
2‖λ‖L∞(Ω)

p−
+ δ

)
|Ω|.

If we choose n to be sufficiently large, then it follows from (3.45) that

δ4|an|p
−
< δ3

(
bn
C0

)q+

= rn.

Then (1.8) is obtained.
Because F1(x, ·) satisfies condition (3.5), for any n, we can find ςn ∈ [−an, an] with

F1(x, ςn) = sup
t∈[−an,an]

F1(x, t) a.e. in Ω. (3.50)

Then, thanks to (3.46) and (3.47) we find the following inequality

sup
|t|≤bn

F1(x, t) ≤ F1(x, ςn) + h(x)(rn −mn)a.e. in Ω, (3.51)

which is strict on a non negligible subset of Ω. Then, the inequality (1.9) acquires immediately from (3.48) and
(3.51). Consequently, Theorem 1.1 (c) holds, since the necessary hypotheses have been fulfilled.

As a result, we can conclude that a sequence (vn)n of separate local minima of Φ1 + Φ2 exists, and satisfies
lim

n 7→+∞
Φ2(vn) = 0. This means that lim

n 7→+∞
‖vn‖1,p(·),q(·) = 0, thereby completing the proof. �

We introduce now an example to illustrate the results cited in the second theorem.

Corolary 3.2 For N ≥ 1 we set Ω =

{
x ∈ RN :

N∑
i=1

x2
i < 1

}
and let p(x) = N + 1 +

1

2

N∑
i=1

x2
i , and q(x) =

N + 2 +
1

2N

(
1 +

N∑
i=1

x2
i

) , then p− = N + 1, p+ = N +
3

2
, q− = N + 2 and q+ = N + 2 +

1

2N
. Consider

the functions F2(x, t) = − N + 1

2N(N + 2) + 1


2 +

∣∣∣∣∣sin
(

N∑
i=1

x2
i

)∣∣∣∣∣
N + 1 + 1

2

N∑
i=1

x2
i

|t|p(x) +

2 +

∣∣∣∣∣sin
(

N∑
i=1

x2
i

)∣∣∣∣∣
N + 2 + 1

2N

(
1 +

N∑
i=1

x2
i

) |t|q(x)


and let

f1(x, t) ≡ h(x)g(t), with h ∈ L1(Ω) be a positive function such that ‖h‖L1(Ω) = 1 and g a continuous function with

g(t) = G′(t) and let (an)n and (bn)n are two positives sequences with ap
−

n =
1

n
bq

+

n and bn+1 < an, with G(0) = 0,

G(an) = ap
−+1
n and

G(an) < G(bn) <
(
δ3

( bn
C0

)q+

− δ4|an|p
−
)

+G(an). (3.52)
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Then, the following nonlinear Kirchhoff problem

−
(

1

2
+ 3

∫
Ω

1

p(x)
|∇u|p(x)dx

)
∆p(·)u−

(
1 +

∫
Ω

1

q(x)
|∇u|q(x)dx

)
∆q(·)u

+

(
2 +

∣∣∣∣∣sin
(

N∑
i=1

x2
i

)∣∣∣∣∣
)(
|u|p(x)−2u+ |u|q(x)−2u

)
= h(x)f1(t)− N + 1

2N(N + 2) + 1

(
2 +

∣∣∣∣∣sin
(

N∑
i=1

x2
i

)∣∣∣∣∣
)(
|u|p(x)−2u+ |u|q(x)−2u

)
in Ω,

∂u

∂ν
= 0 on ∂Ω,

(3.53)

has weak solutions formed by a sequence (un)n in W 1,p(·),q(·)(Ω) such that

lim
n→∞

‖un‖1,p(·),q(·) =∞.

Proof Put rn = δ3

( bn
C0

)N+2+ 1
2N

and ςn = an, one has

∫
Ω

F1(x, an)dx+

∫
Ω

F2(x, an)dx−
∫

Ω

(
2 +

∣∣∣∣∣sin
(

N∑
i=1

x2
i

)∣∣∣∣∣
)(

1

p(x)
+

1

q(x)

)
dx|an|q

+

> |an|p
−+1 − |an|p

−
− λ|Ω|

q+
|an|p

−
−→ 0 as n→∞,

therefore (3.42)-(3.44) hold true. Using (3.52) we obtain the conditions (3.46)-(3.47).
Therefore, we can conclude that the assumptions required by Theorem 3.2 are satisfied, thus completing the

proof. �
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[6] V. Ambrosio, V.D. Rădulescu, Fractional double-phase patterns: concentration and multiplicity of solutions, J.
Math. Pures Appl. (9) 142 (2020), 101-145.

[7] A. Arosio and S. Panizzi, On the well-posedness of the Kirchhoff string, Trans. Amer. Math. Soc. 348 (1996),
no. 1, 305-330.
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