For EDITORS

For READERS

All Issues

Vol.15, 2025
Vol.14, 2024
Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 15, Number 1, 2025, Pages -                                                                DOI:10.11948/JAAC-2023-0429
Combined effects of singular and Hardy nonlinearities in fractional Kirchhoff Choquard equation
Kamel Saoudi,Rana Alkhal,Mouna Kratou
Keywords:Kirchhoff problem, Choquard term, fractional Sobolev spaces, Hardy potential, singularities, Nehari manifolds.
Abstract:
      The aim of this paper is to investigate the existence and the multiplicity of solutions to the singular Kirchhoff nonlocal problem with Hardy and Choquard nonlinearities \begin{equation*} \left\{ \begin{array}{ll} M\Big(\displaystyle \int_{\mathbb{R}^{2N}}\frac{|u(x)-u(y)|^{p}}{|x-y|^{N+sp}}dx dy\Big) -\Delta^s_p u&-\alpha \frac{|u|^{p-2}u}{|x|^{sp}}=\lambda f(x) u^{-\gamma}\\&+ g(x) \Big(\displaystyle\int_{\Omega}\frac{u^{p_{\mu,s}^*}(y)}{|x-y|^\mu}dy\Big)u^{p_{\mu,s}^*-1} ~\text{in}~\Omega,\u>0,\;\;\;\;\quad \text{in }\Omega,\u=0,\;\;\;\;\quad \text{in }\mathbb{R}^{N}\setminus \Omega, \end{array} \right. \end{equation*} where, $\Omega\subset \mathbb{R}^N$ is a bounded domain, $s\in (0,1)$, $N>sp$, $\gamma\in (0,1),$ $\alpha,$ $\lambda$ are two positive real parameters $0<\mu0, b>0$ and $\theta\in \Big(1, \min\{ 2p_{\mu,s}^*/p, p_{\mu,s}^*\}\Big),$ $f$ is a non-negative weight and $g$ is a sign-changing weight. The novelty in the current work is the combination of fractional framework and singular term with the Hardy and Choquard nonlinearities. In order to provide the existence of at least two positive solutions to the above problem, we use Nehari manifold approach.
PDF      Download reader