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Abstract

The aim of this paper is to investigate the existence and the multiplicity of solutions to
the singular Kirchhoff non-local problem with Hardy and Choquard nonlinearities. The
problem is defined as follows:

M
(∫

R2N

|u(x)− u(y)|p

|x− y|N+sp
dxdy

)
−∆s

pu −α |u|p−2u
|x|sp = λf(x)u−γ

+g(x)
(∫

Ω

up
∗
µ,s(y)

|x− y|µ
dy

)
up

∗
µ,s−1 in Ω,

u > 0, in Ω,
u = 0, in RN \ Ω,

where, Ω ⊂ RN is a bounded domain, s ∈ (0, 1), N > sp, γ ∈ (0, 1), α, λ are two
positive real parameters 0 < µ < N , p∗s = Np

N−sp is the fractional critical Sobolev

exponent, while pµ,s = (Np−µ)
(N−sp) and p∗µ,s =

(
p
2

)
.
(
2N−µ
N−sp

)
denote the critical and up-

per critical exponent in the sense of Hardy Littlewood Sobolev inequality respectively,

M(t) = a + btθ−1, with a > 0, b > 0 and θ ∈
(
1,min{2p∗µ,s/p, p∗µ,s}

)
. Furthermore, f

is a non-negative weight and g is a sign-changing weight. The novelty in this work lies
in the combination of a fractional framework and a singular term with the Hardy and
Choquard nonlinearities. To establish the existence of at least two positive solutions for
the problem, the Nehari manifold approach is employed.

Keywords: Kirchhoff problem, Choquard term, Fractional Sobolev spaces, Hardy
potential, Singularities, Nehari manifolds.
AMS Classification: 35J60, 35R11, 35A15.

1 Introduction

This work is devoted to investigate a Choquard nonlocal problem with Hardy nonlinearity
and a singular term. The problem is described by the following equation:
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M
(∫

R2N

|u(x)− u(y)|p

|x− y|N+sp
dxdy

)
−∆s

pu −α |u|p−2u
|x|sp = λf(x)u−γ

+g(x)
(∫

Ω

up
∗
µ,s(y)

|x− y|µ
dy

)
up

∗
µ,s−1 in Ω,

u > 0, in Ω,
u = 0, in RN \ Ω,

(1.1)

where, Ω ⊂ RN is a bounded domain, s ∈ (0, 1), N > sp, γ ∈ (0, 1), α, λ are two positive
real parameters 0 < µ < N , p∗s = Np

N−sp is the fractional critical Sobolev exponents, while

pµ,s = (Np−µ)
(N−sp) and p∗µ,s =

(
p
2

)
.
(

2N−µ
N−sp

)
denote the critical and upper critical exponent in

the sense of Hardy Littlewood Sobolev inequality respectively, f is a non-negative weight
and g is a sign-changing weight. The continuous function M : R+

0 → R+
0 is defined by

M(t) = a + btθ−1, with a > 0, b > 0 and θ ∈
(
1,min{2p∗µ,s/p, p∗µ,s}

)
, where Ω is a bounded

domain of RN , s ∈ (0, 1), α and λ are positive real parameters, N > sp, γ ∈ (0, 1), 0 < µ < N ,

p∗µ,s =
(
p
2

)
.
(

2N−µ
N−sp

)
is the upper critical exponent in the sense of Hardy-Littlewood-Sobolev

inequality, f is a positive weight and g is a sign-changing function. The operator (−∆)sp is a
nonlocal operator defined as

−∆s
pu(x) := 2 lim

ϵ→0

∫
Ω\Bϵ(x)

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|N+ps
dy, x ∈ Ω,

where Bϵ(x) := {y ∈ Ω : |x−y| < ϵ}.We make the following assumptions regarding the weight
functions f and g in the problem:

(f) Let f : Ω → R be a wieght such that f > 0 a.e. in Ω and f ∈ Lm(Ω), with m := p∗s
p∗s−1+γ

.

(g) Let g : Ω → R be a sign-changing wieght such that g ∈ Lr, with r := p∗s
pµ,s−p∗µ,s

where

pµ,s =
(Np−µ)
(N−sp) is the critical exponent in the sense Hardy-Littlewood-Sobolev inequality.

To handle the Hardy term in equation (1.1), we utilize the fractional Hardy inequality, which
is given as:

µ0

∫
Ω

|ϕ(x)|p

|x|sp
dx ≤

∫∫
R2N

|ϕ(x)− ϕ(y)|p

|x− y|N+sp
dx dy. (1.2)

This inequality allows us to manipulate the Hardy term in the equation. The constant µ0 is
the sharp constant associated with the fractional Hardy inequality. For further details, refer
to the reference [8].

Problem (1.1) corresponds to the Choquard-Pekar equation, which has found significant
applications in various fields such as quantum mechanics, condensed matter physics, and ma-
terial science. For more detailed information on this equation, please refer to the references
[12, 16]. Moreover, these types of problems have been utilized in the modeling of diverse phe-
nomena, including chaotic dynamics, turbulence, financial dynamics, and plasma physics. To
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delve deeper into these applications and explore further references, we recommend consulting
the works [1, 3] and the references provided therein.

In recent years, there has been significant research on the uniqueness, existence, mul-
tiplicity, and regularity of solutions for fractional Choquard problems. For more detailed
information, we recommend referring to the following recent articles: Fiscella and Mishra [6],
Fiscella and Vaira [7], Gao, Yang, and Yang [9], Goyal and Sharma [10], Muruganandam and
Srinivasan [15], Wang, Xiao, and Yang [19], and Yang, Wang, and Wang [20]. These articles,
along with their references, provide extensive insights into the analysis of fractional Choquard
problems.

Fiscella and Mishra [6] focused on investigating the multiplicity of non-positive solutions
using the Nehari approach for problems involving singular and critical nonlinearities with a
Hardy term. Their research contributes to our understanding of the existence of multiple
non-positive solutions in this context.

In [7], Fiscella and Vaira employed variational methods along with an appropriate trunca-
tion argument to establish the existence of two solutions for a critical Kirchhoff-type problem.
Their work demonstrates the existence of multiple solutions in this critical setting.

Goyal and Sharma [10] used a fibering map analysis to show the multiplicity of solutions
to the fractional weighted Choquard Kirchhoff equation with both Hardy and singular non-
linearities. Their research provides insights into the existence of multiple solutions within this
framework.

Furthermore, Wang et al. [19] investigated the multiplicity of non-negative solutions using
the Nehari method. Their work contributes to our understanding of the existence of multiple
non-negative solutions in the context of fractional Choquard problems.

In this paper, our focus is on a specific type of nonlocal Choquard Kirchhoff problem driven
by Hardy and singular nonlinearities, denoted as (1.1). One notable challenge in studying
this problem is that the associated energy functional, which characterizes the solutions, is
not differentiable throughout the entire space. Consequently, the conventional critical point
theory cannot be directly applied to address our problem.

Motivated by the works of Goyal and Sharma [10] and Fiscella and Mishra [6], we adopt
the Nehari-manifold technique as a powerful tool to establish the multiplicity of solutions for
problem (1.1). This approach allows us to overcome the non-differentiability of the energy
functional and explore the existence of multiple solutions.

By employing the Nehari-manifold technique, we aim to provide insights into the existence
and multiplicity of solutions for the considered nonlocal Choquard Kirchhoff problem with
Hardy and singular nonlinearities, as described by (1.1).

To present the main result of this work, we shall introduce the following notations: Let

Λ1 :=
(p+ γ − 1

2p∗µ,s − p

) p+γ−1
2p∗µ,s−p

(da,α(2p∗µ,s − p)

2p∗µ,s + γ − 1

) 2p∗µ,s+γ−1

2p∗µ,s−p
S

2p∗µ,s+γ−1

p∗µ,s−p
1

∥f∥m

( 1

Cg(N,µ)

) p+γ−1
2p∗µ,s−p

, (1.3)
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where Cg(N,µ), S, da,α will be defined in (2.6), (2.7) and (2.12) respectively.

Λ2 :=
S

(θ+1)(2p∗µ,s+γ−1)

2(2p∗µ,s−θ−1)[
Cg(N,µ)

] θ+γ
2p∗µ,s−θ−1

[2√(1 + γ)(2θ + γ − 1)da,αb

2p∗µ,s + γ − 1

] θ+γ
2p∗µ,s−θ−1

×
[2√(2p∗µ,s − 2)(2p∗µ,s − 2θ)da,αb(

2p∗µ,s + γ − 1
)
∥f∥m

]
(1.4)

and
Λ∗ := min{Λ1,Λ2}.

Our main result is the following theorem.

Theorem 1.1. Let N > sp with s ∈ (0, 1), α ∈ (0, aµ0), a > 0, b > 0 and θ ∈
(
1,min{2p∗µ,s/p, p∗µ,s}

)
.

Assume that the assumptions (f), (g) hold. Then, there exists Λ∗, which depends on α, such
that problem (1.1) has at least two non-negative solutions for all λ ∈ (0,Λ∗).

This paper is structured as follows:
Section 2 provides the necessary background information, including basic definitions and

notations that will be used throughout the paper. In Section 3, we introduce and discuss the
application of the Nehari manifold to our specific problem, as described by problem (1.1). This
section presents the key concept and technique used in our analysis. Section 4 is dedicated
to proving important results related to the compactness of the functional energy associated
with our problem. These results are essential for the subsequent analysis and proof. In
Section 5, we establish the existence of a non-negative solution within the Nehari manifold
N+
α,λ, demonstrating the existence of one solution with a specific property. Section 6 focuses

on proving the existence of a non-negative solution within the Nehari manifold N−
α,λ, which

completes the proof of our main results.

2 Preliminaries

In this section, we introduce some fundamental notations and definitions related to fractional
Sobolev spaces and Choquard equations, which will be utilized in the subsequent parts of the
paper.

We begin by defining the fractional Sobolev space W s,p(RN), which consists of functions
u in Lp(RN) satisfying a certain regularity condition. Specifically, we have

W s,p(RN) :=
{
u ∈ Lp(RN) :

u(x)− u(y)

|x− y|
N

p+s

∈ Lp(RN × RN)
}
,

where s ∈ (0, 1) and p is a fixed exponent. The fractional Sobolev space is equipped with the
norm

||u||W s,p(RN ) := ||u||p
Lp(RN )

+
(∫∫

R2N

|u(x)− u(y)|p

|x− y|N+sp
dxdy

)1/p

. (2.5)
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This norm measures the regularity and decay properties of functions in the fractional Sobolev
space.

In our analysis, we will consider the space X0, defined as

X0 =
{
u ∈ W s,p(RN) : u = 0 a.e. in RN \ Ω

}
,

where Ω is a given domain. The norm in X0 is given by

∥u∥X0 =
(∫∫

R2N

|u(x)− u(y)|p

|x− y|N+sp
dxdy

)1/p

= ∥u∥,

which is equivalent to the norm defined in Eq. (2.5). This space allows us to consider functions
that vanish outside the domain Ω.

Now, we state the following important inequality.

Proposition 2.1 (Proposition 2.1 of [15]). For u, v ∈ L
2N

2N−µ (RN). Then, we have∫
RN

∫
RN

|u(x)|q|v(y)|q

|x− y|µ
dxdy ≤

(∫
RN

∫
RN

|u(x)|q|u(y)|q

|x− y|µ
dxdy

) 1
2
(∫

RN

∫
RN

|v(x)|q|v(y)|q

|x− y|b
dxdy

) 1
2
,

where µ ∈ (0, N) and q ∈ [p(2N−µ)
2N

, p∗µ,s].

Thus from Proposition 2.1, we have∫
RN

∫
RN

g(x)|u(x)|p∗µ,s|v(y)|p∗µ,s

|x− y|µ
dxdy ≤ Cg(N,µ)∥u∥

2p∗µ,s

Lp∗s (RN )
(2.6)

where Cg(N,µ) is a suitable constant. Define

S := inf
u∈X0(Ω)\{0}

∫
RN

∫
RN

|u(x)− u(y)|p

|x− y|N+ps
dxdy(∫

RN

|u(x)|
Np

N−spdx
)N−sp

N

. (2.7)

Using eq. (2.6), we define

SC,µ = inf
u∈X0(Ω)\{0}

∥u∥p(∫
Ω

|u(x)|p∗µ,s

(∫
Ω

|u(y)|p∗µ,s

|x− y|µ
dy

)
dx

) p
2p∗µ,s

. (2.8)

To overcome the singularities of u−γ and obtain a non-negative solution for problem (1.1), we
introduce the following modified problem

M
(∫

R2N

|u(x)− u(y)|p

|x− y|N+sp
dxdy

)
(−∆)spu− α

|u|p−2u

|x|sp
= λf(x)(u+)−γ

+ g(x)

(∫
Ω

(u+)p
∗
µ(y)

|x− y|µ
dy

)
(u+)p

∗
µ−1 in Ω,

u > 0 in Ω,

u = 0 in RN \ Ω.

(2.9)
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Here M(t) = a+ btθ−1 and u+ = max{u, 0}. Therefore, we say that u ∈ X0 is a weak solution
of the problem (2.9), if f(x)(u)−γϕ ∈ L1(Ω), and the following equation holds:(

a+ b∥u∥pθ−p
)
⟨u, ϕ⟩ − α

∫
Ω

up−1

|x|sp
ϕ(x) dx (2.10)

− λ

∫
Ω

f(x)(u+)−γϕ(x)dx−
∫
Ω

∫
Ω

g(x)
(u(y)+)p

∗
µ,s

|x− y|µ
(u(x)+)p

∗
µ,s−1ϕ(x) dx dy = 0, (2.11)

for any ϕ ∈ X0, where

⟨u, ϕ⟩ =
∫∫

R2N

|u(x)− u(y)|p−2(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|N+sp
dxdy.

Note that it is straightforward to see that if u > 0 is a solution to problem (2.9), then it is
also a solution to problem (1.1). Note that, it is very simple to see that if u > 0 is a solution
to problem (2.9), then it is also a solution to problem (1.1). Problem (2.9) has a variational
structure, and the functional energy Eα,λ : X0 → R is defined as follows:

Eα,λ(u) :=
a

p
∥u∥p + b

pθ
∥u∥pθ − γ

p
∥u+∥pH − λ

1− γ

∫
Ω

f(x)(u+)1−γ

− 1

p∗µ,s

∫
Ω

∫
Ω

g(x)(u+(y))p
∗
µ,s(u+(x))p

∗
µ,s

|x− y|µ
dx dy.

Here, for all u ∈ X0 we denote

∥u∥pH :=

∫
Ω

|u(x)|p

|x|sp
dx.

Using the inequality (1.2), it can be seen that for any α ∈ (0, aµ0), the functional energy
Eα,λ is continuous and well-defined. Also, since v+ ≤ |v| and inequality (1.2) yield for any
v ∈ X0 \ {0}, we have

a

∫∫
R2N

|v(x)− v(y)|p

|x− y|N+sp
dx dy − α

∫
Ω

(v+)p

|x|sp
dx ≥ da,α

∫∫
R2N

|v(x)− v(y)|p

|x− y|N+sp
dx dy (2.12)

with da,α =
(
a − α

µ0

)
> 0 for any α ∈ (0, aµ0). Note that, inequality (2.12) guarantees the

positivity of the functional energy.
Now, we recall the following important result.

Lemma 2.2. ([18, Lemma 1.32]) Let p ∈ (1,∞), N ≥ 3, and {uk} be a bounded sequence in
Lp(RN). If uk → u a.e in RN as k → ∞. Hence, uk ⇀ u weakly in Lp(RN).

3 Fibering map analysis

To analyze problem (1.1) and address the fact that the energy functional Eα,λ is not bounded
below onX0, we can employ a minimization method called the Nehari manifold. This approach
enables us to identify critical points of the energy functional Eα,λ.
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Let us define the Nehari set for problem (1.1) as follows:

Nα,λ :=
{
u ∈ X0 : ⟨Eα,λ(u), u⟩ = 0

}
=

{
u ∈ X0 : a∥u∥p + b∥u∥pθ − α∥u+∥pH − λ

∫
Ω

f(x)(u+)1−γ dx

−
∫
Ω

∫
Ω

g(x)(u+(y))p
∗
µ,s(u+(x))p

∗
µ,s

|x− y|µ
dx dy = 0

}
.

Now, we define the fibering map Φu : [0,∞) → R as Φu(t) = Eα,λ(tu). Specifically, for u ∈ X0,
we define

ϕu(t) =
a

p
tp∥u∥p + b

pθ
tpθ∥u∥pθ − α

p
tp∥u+∥pH

− λt1−γ

1− γ

∫
Ω

f(x)(u+)1−γ dx− t2p
∗
µ,s

2p∗µ,s

∫
Ω

∫
Ω

g(x)(u+(y))p
∗
µ,s(u+(x))p

∗
µ,s

|x− y|µ
dx dy,

so that

ϕ′
u(t) = atp−1∥u∥p + btpθ−1∥u∥pθ − αtp−1∥u+∥pH (3.13)

− λt−γ
∫
Ω

f(x)(u+)1−γ dx− t2p
∗
µ,s−1

∫
Ω

∫
Ω

g(x)(u+(y))p
∗
µ,s(u+(x))p

∗
µ,s

|x− y|µ
dx dy, (3.14)

and

ϕ′′
u(t) = a

(
p− 1

)
tp−2∥u∥p + b

(
pθ − 1

)
tpθ−2∥u∥pθ (3.15)

− α
(
p− 1

)
tp−2∥u+∥pH + λγt−γ−1

∫
Ω

f(x)(u+)1−γ dx (3.16)

−
(
2p∗µ,s − 1

)
t2p

∗
µ,s−2

∫
Ω

∫
Ω

g(x)(u+(y))p
∗
µ,s(u+(x))p

∗
µ,s

|x− y|µ
dx dy. (3.17)

It is evident that the Nehari manifold is closely related to the function Φu. In particular,
u ∈ Nα,λ if and only if ϕ′

u(1) = 0. Therefore, we decompose the manifold Nα,λ into three parts
corresponding to local minima, local maxima, and points of inflection as follows:

N±
α,λ := {u ∈ Nα,λ : ϕ

′′
u(1) ≷ 0}, N 0

α,λ := {u ∈ Nα,λ : ϕ
′′
u(1) = 0}.

To handle the sign-changing weight g, we introduce the sets:

g+ :=
{
u ∈ X0 :

∫
Ω

∫
Ω

g(x)(u+(y))p
∗
µ,s(u+(x))p

∗
µ,s

|x− y|µ
dx dy > 0

}
,

g− :=
{
u ∈ X0 :

∫
Ω

∫
Ω

g(x)(u+(y))p
∗
µ,s(u+(x))p

∗
µ,s

|x− y|µ
dx dy ≤ 0

}
.

We now present a crucial lemma that provides important properties of the Nehari manifold
and establishes existence and uniqueness results for critical points of the energy functional.
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Lemma 3.1. Let α ∈ (0, aµ0). Then, the following holds:

(1) Let u ∈ g+. Then, there exist positive constants Λ1 > 0 and a unique tmax := tmax(u) > 0,
t+ = t+(u) > 0 and t− = t−(u) > 0 with t+ < tmax < t− such that the following
conditions are satisfied for any λ ∈ (0,Λ1):

– t+u ∈ N+
α,λ,

– t−u ∈ N−
α,λ,

– Eα,λ(t
+u) = min

0≤t≤t−
Eα,λ(tu),

– Eα,λ(t
−u) = max

t≥tmax

Eα,λ(tu).

(2) Let u ∈ g−, α ∈ (0, aµ0) and λ > 0. Then, there exists a unique positive constant t∗ such
that the following conditions are satisfied:

– t∗u ∈ N+
α,λ,

– Eα,λ(t
∗u) = inft>0Eα,λ(tu).

Proof. Fix u ∈ X0. We define Ψu : R+ → R as follows

Ψu(t) = atp−2p∗µ,s∥u∥p + btpθ−2p∗µ,s∥u∥pθ − αtp−2p∗µ,s∥u+∥pH − λt1−γ−2p∗µ,s

∫
Ω

f(x)(u+)1−γ dx.

(3.18)

We observe that tu ∈ Nα,λ if and only if t satisfies the equation:

Ψu(t) =

∫
Ω

∫
Ω

g(x)(u+(y))p
∗
µ,s(u+(x))p

∗
µ,s

|x− y|µ
dx dy.

From Equation (3.18), it is evident that lim
t→0+

Ψu(t) = −∞ and lim
t→∞

Ψu(t) = 0. Moreover, by

differentiating Ψu(t) using Equation (3.18), where Ψ′
u(t) denotes the derivative, we find that:

Ψ′
u(t) =

(
p− 2p∗µ,s

)
tp−2p∗µ,s−1

(
a∥u∥p − α∥u+∥pH

)
+ b

(
pθ − 2p∗µ,s

)
tpθ−2p∗µ,s−1∥u∥pθ (3.19)

− λ
(
1− γ − 2p∗µ,s

)
t−γ−2p∗µ,s

∫
Ω

f(x)(u+)1−γ dx. (3.20)

Given that 0 < γ < 1 < pθ < 2p∗µ,s, we can deduce that

lim
t→0+

Ψ
′

u(t) > 0 and lim
t→∞

Ψ′
u(t) < 0.

Hence, there exists a unique tmax = tmax(u) > 0 such that Ψu(t) is decreasing in (tmax,∞),
increasing in (0, tmax), and Ψ′u(tmax) = 0. We can estimate Ψu(tmax) from below as follows

Ψu(tmax) = max
t>0

Ψu(t) = max
t>0

(
btpθ−2p∗µ,s∥u∥pθ +Ψu(t)

)
> max

t>0
Ψu(t),
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where Ψu(t) is given by

Ψu(t) = tp−2p∗µ,s

(
a∥u∥p − α∥u+∥pH

)
− λt1−γ−2p∗µ,s

∫
Ω

f(x)(u+)1−γ dx.

Using the inequality in Equation (1.2), we can infer that for u ∈ X0, for any α ∈ (0, aµ0), the
functional Ψu(t) is bounded from below by

max
t>0

Ψu(t) ≥ ϕu(t),

with

ϕu(t) = da,α∥u∥ptp−2p∗µ,s − λt1−γ−2p∗µ,s

∫
Ω

f(x)(u+)1−γ dx.

Hence, we have

max
t>0

ϕu(t) =
(p+ γ − 1

2p∗µ,s − p

)( 2p∗µ,s − p

2p∗µ,s + γ − 1

) 2p∗µ,s+γ−1

p+γ−1

(
da,α∥u∥p

) 2p∗µ,s+γ−1

p+γ−1

(
λ
∫
Ω
f(x)(u+)1−γ dx

) 2p∗µ,s−p

p+γ−1

.

Hence, using assumption (f) and Eq. (2.8) combine with Hölder inequality, we obtain

Ψu(tmax)

≥
(p+ γ − 1

2p∗µ,s − p

)(da,α(2p∗µ,s − p)

2p∗µ,s + γ − 1

) 2p∗µ,s+γ−1

p+γ−1
λ

p−2p∗µ,s
p+γ−1

(
∥f∥m

) p−2p∗µ,s
p+γ−1

S
(1−γ)(2p∗µ,s−p)

p(p+γ−1) ∥u∥2p∗µ,s > 0.

Now, according to the behavior of g, we split the proof in two cases

Case 1: Let u ∈ g+. Since∫
RN

∫
RN

|u(x)|p∗µ,s|v(y)|p∗µ,s

|x− y|µ
dxdy ≤ Cg(N,µ)S

−
2p∗b,s

p ∥u∥2p∗b,s (3.21)

where S is a positive constant, we can choose

λ < Λ1 :=
(p+ γ − 1

2p∗µ,s − p

) p+γ−1
2p∗µ,s−p

(da,α(2p∗µ,s − p)

2p∗µ,s + γ − 1

) (2p∗µ,s+γ−1)

(2p∗µ,s−p)
S

(2p∗µ,s+γ−1)

p∗µ,s−p
1

∥f∥m

( 1

Cg(N,µ)

) p+γ−1
2p∗µ,s−p

,

to guarantee the existence of a unique t+ := t+(u) < tmax and t− := t−(u) > tmax satisfying

Ψu(t
+) =

∫
Ω

∫
Ω

g(x)(u+(x))p
∗
µ,s(u+(y))p

∗
µ,s

|x− y|µ
dx dy = Ψu(t

−),

which implies t+u, t−u ∈ Nα,λ. Furthermore, from the equation ϕ′′
tu(1) = t2p

∗µ,s+1Ψ′
u(t), we

conclude that Ψ′
u(t

+) > 0 and Ψ′
u(t

−) < 0. Thus, we can deduce that t−u ∈ N−
α,λ and

t+u ∈ N+
α,λ. Now, assuming

ϕ′
u(t) = t2p

∗
µ,s−1

(
Ψu(t)−

∫
Ω

∫
Ω

g(x)(u+(y))p
∗
µ,s(u+(x))p

∗
µ,s

|x− y|µ
dx dy

)
.
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We obtain that for all t ∈ [0, t+), ϕ′
u(t) < 0, and for all t ∈ (t+, t−), ϕ′

u(t) > 0. Consequently,

Eα,λ(t
+u) = min

0≤t≤t−
Eα,λ(tu).

Similarly, for all t ∈ [t+, t−), ϕ′
u(t) > 0, ϕ′

u(t
−) = 0, and for all t ∈ (t−,∞), ϕ′

u(t) < 0. Hence,

Eα,λ(t
−u) = max

t≥tmax

Eα,λ(tu).

Case 2: Consider u ∈ g−. By utilizing the fact that lim
t→0+

Ψu(t) = −∞, we can conclude the

existence of a unique t∗ > 0 satisfying

Ψu(t
∗) =

∫
Ω

∫
Ω

g(x)(u+(y))p
∗
µ,s(u+(x))p

∗
µ,s

|x− y|µ
dx dy for all λ > 0.

Since u ∈ g−, it follows that Ψ′
u(t

) > 0 and Ψu(t
) < 0. By repeating the same calculations as in

Case 1, we obtain ϕ′′
tu(1) = t2p

∗
µ,s+1Ψ′

u(t), where Ψ′
u(t

) > 0. Consequently, we have t∗u ∈ N+
α,λ.

Thus, we have completed the proof of Lemma 3.1.

We now demonstrate the uniqueness of the trivial solution in a specific parameter range.

Lemma 3.2. Consider α ∈ (0, aµ0). Then, there exists a positive constant Λ2 such that for
all λ ∈ (0,Λ2), we have N 0

α,λ = 0.

Proof. We proceed by contradiction, assuming the existence of u ∈ N 0
α,λ\{0} for all λ ∈ (0,Λ2).

We consider two cases.

Case 1: If

∫
Ω

∫
Ω

g(x)(u+(y))p
∗
µ,s(u+(x))p

∗
µ,s

|x− y|µ
dx dy = 0, using Eq. (3.13), we have

a∥u∥p + b∥u∥pθ − α∥u+∥pH − λ

∫
Ω

f(x)(u+)1−γ dx = 0. (3.22)

Now, since pθ ≥ 1 > 1− γ and considering α ∈ (0, aµ0) with Eq. (2.12), we obtain

0 = (1 + γ)[a∥u∥p − α∥u+∥pH ] + b(pθ + γ − 1)∥u∥pθ

≥ da,α(1 + γ)∥u∥p + b(pθ + γ − 1)∥u∥pθ > 0,

which leads to a contradiction.

Case 2: If

∫
Ω

∫
Ω

g(x)(u+(y))p
∗
µ,s(u+(x))p

∗
µ,s

|x− y|µ
dx dy ̸= 0, we can use Eq. (3.13) and Eq. (3.15),

with t = 1, with t = 1 to obtain the following equations

(2p∗µ,s − p)[a∥u∥p − α∥u+∥pH ] + b(2p∗µ,s − pθ)∥u∥pθ

− λ(2p∗µ,s + γ − 1)

∫
Ω

f(x)(u+)1−γ dx = 0,
(3.23)

(1 + γ)
[
a∥u∥p − α∥u+∥pH

]
+ b(pθ + γ − 1)∥u∥pθ

− (2p∗µ,s + γ − 1)

∫
Ω

∫
Ω

g(x)(u+(y))p
∗
µ,s(u+(x))p

∗
µ,s

|x− y|µ
dx dy = 0.

(3.24)
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We define Jα,λ : Nα,λ → R as

Jα,λ :=
(1 + α)[a∥u∥p − α∥u+∥pH ] + b

(
pθ + γ − 1

)
∥u∥pθ

(2p∗µ,s + γ − 1)

−
∫
Ω

∫
Ω

g(x)(u+(y))p
∗
µ,s(u+(x))p

∗
µ,s

|x− y|µ
dx dy.

Using Eq. (3.24), we find that Jα,λ = 0 for all u ∈ N 0
α,λ. However, by assuming condition (g),

Eqs. (3.21), (2.12), and the inequality (c+ d) ≥ 2
√
cd for any c, d ≥ 0, we can deduce that

Jα,λ ≥
2
√
(1 + γ)(pθ + γ − 1)da,αb∥u∥θ+1

(2p∗µ,s + γ − 1)
− Cg(N,µ)S

−
2p∗µ,s

p ∥u∥2p
∗
µ,s ,

= ∥u∥2p
∗
µ,s

[2√(1 + γ)(pθ + γ − 1)da,αb

(2p∗µ,s + γ − 1)∥u∥2p∗µ,s−θ−1
− Cg(N,µ)S

−
2p∗µ,s

p

]
.

Now using Eq. (2.12), assumption (f) and Hölder inequality in Eq. (3.23), we can obtain the
following expression

∥u∥ ≤
[ λ(2p∗µ,s + γ − 1)∥f∥mS

−(1−γ)
p

2
√

(2p∗µ,s − p)(2p∗µ,s − pθ)da,αb

] 1
θ+γ

.

Thus, we obtain

λ < Λ2 :=
S

(θ+1)(2p∗µ,s+γ−1)

2(2p∗µ,s−θ−1)

[Cg(N,µ)]
θ+γ

2p∗µ,s−θ−1

[2√(1 + γ)(pθ + γ − 1)da,αb

2p∗µ,s + γ − 1

] θ+γ
2p∗µ,s−θ−1

×
[2√(2p∗µ,s − p)(2p∗µ,s − pθ)da,αb

(2p∗µ,s + γ − 1)∥f∥m

]
.

Hence, for all u ∈ N 0
α,λ \ {0}, Jα,λ(u) > 0, which leads to the desired contradiction. This

completes the proof of Lemma 3.2.

The following lemma establishes the existence of a gap structure in Nα,λ, demonstrating
the presence of distinct magnitudes within the solution space.

Lemma 3.3. Consider α ∈ (0, aµ0) and λ ∈ (0,Λ2). Then, there exists a gap structure in
Nα,λ such that

∥U∥ > A0 > A1 > ∥u∥,

for every u ∈ N+
α,λ and U ∈ N−

α,λ, where

A0 :=
[ 2

√
(1 + γ)(pθ + γ − 1)da,αb

(2p∗µ,s + γ − 1)Cg(N,µ)S
−p∗µ,s

] 1
2p∗µ,s−θ−1

and A1 :=
[ λ(2p∗µ,s + γ − 1)S

−(1−γ)
p ∥f∥m

2
√
(2p∗µ,s − p)(2p∗µ,s − pθ)da,αb

] 1
θ+γ

.
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Proof. If u ∈ N+
α,λ ⊂ Nα,λ, we can utilize assumption (f) and combine Equation (2.8) with

the Hölder inequality to obtain the following inequality(
2p∗µ,s − p

)[
a∥u∥p − α∥u+∥pH

]
+ b

(
2p∗µ,s − pθ

)
∥u∥pθ

< λ
(
2p∗µ,s + γ − 1

)∫
Ω

f(x)(u+)1−γdx

≤ λ
(
2p∗µ,s + γ − 1

)
∥f∥mS

−(1−γ)
p ∥u∥1−γ.

(3.25)

Combining this inequality with Equation (2.12), we obtain:

∥u∥ <
[ λ(2p∗µ,s + γ − 1)S

−(1−γ)
p ∥f∥m

2
√

(2p∗µ,s − p)(2p∗µ,s − pθ)da,αb

] 1
θ+γ

:= A1.

Now, considering U ∈ N−
α,λ and utilizing assumption (g), we have:

(1 + γ)[a∥U∥p − α∥U+∥pH ] + b
(
pθ + γ − 1

)
∥U∥pθ

< (2p∗µ,s + γ − 1)Cg(N,µ)S
−p∗µ,s∥U∥2p

∗
µ,s .

By this, and Eq. (2.12), we obtain

2
√

(1 + γ)(pθ + γ − 1)da,αb∥U∥θ+1 < (2p∗µ,s + γ − 1)Cg(N,µ)S
−p∗µ,s∥U∥2p

∗
µ,s .

This yields

∥U∥ >
[ 2

√
(1 + γ)(pθ + γ − 1)da,αb

(2p∗µ,s + γ − 1)Cg(N,µ)S
−p∗µ,s

] 1
2p∗µ,s−θ−1

:= A0.

By performing a direct computation, we can verify that A0 > A1 for all λ ∈ (0,Λ2). Hence,
we can conclude that

∥U∥ > A0 > A1 > ∥u∥ for all u ∈ N+
α,λ, U ∈ N−

α,λ.

This completes the proof of Lemma 3.3.

As a direct consequence of the lemma, we can establish the closedness of N−
α,λ in the X0

topology.

Corollary 3.4. For any α ∈ (0, aµ0), the set N−
α,λ is closed in the X0 topology for all λ ∈

(0,Λ2).

Proof. Consider a sequence {uk}k in N−
α,λ, satisfying uk → u in X0. Therefore, u ∈ N−

α,λ∪{0}.
By Lemma 3.3, it follows that

∥u∥ = lim
k→∞

∥uk∥ ≥ A0 > A1 > 0. (3.26)

Hence, inequality (3.26) implies that u is not identically zero. Therefore, u ∈ N−
α,λ. The proof

of Corollary 3.4 is now completed.
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The lemma below demonstrates the existence of a continuous function ξ that ensures the
preservation of the property N±

α,λ under small perturbations.

Lemma 3.5. Let α ∈ (0, aµ0), λ > 0, and u ∈ N±
α,λ. Then, there exists ϵ > 0 and a continuous

function ξ : Bϵ(0) → R+ such that

ξ(v) > 0, ξ(0) = 1 and ξ(v)(u+ v) ∈ N±
α,λ for all v ∈ Bϵ(0),

where Bϵ(0) = {v ∈ X0 : ∥v∥ < ϵ}.

Proof. Here, we provide the proof only for the case where u ∈ N+
α,λ, while the proof for the

case N−
α,λ is similar. Let F : X0 × R+ → R be a function defined as

F (v, z) := z1+γ
(
a∥u+ v∥p − α∥(u+ v)+∥pH

)
+ zpθ−1+γb∥u+ v∥pθ

− λ

∫
Ω

f(x)
(
(u+ v)+

)1−γ
dx

− z2p
∗
µ,s+γ−1

∫
Ω

∫
Ω

g(x)((u+ v)+(y))p
∗
µ,s((u+ v)+(x))p

∗
µ,s

|x− y|µ
dx dy.

Since u ∈ N+
α,λ ⊂ Nα,λ, we obtain

F (0, 1) = a∥u∥p + b∥u∥pθ − α∥u+∥pH − λ

∫
Ω

f(x)(u+)1−γ dx

−
∫
Ω

∫
Ω

g(x)(u+(y))p
∗
µ,s(u+(x))p

∗
µ,s

|x− y|µ
dx dy = 0,

(3.27)

and

∂F

∂z
(0, 1) = (1 + γ)

(
a∥u∥p − α∥u+∥pH

)
+ b

(
pθ − 1 + γ

)
∥u∥pθ

−
(
2p∗µ,s + γ − 1

)∫
Ω

∫
Ω

g(x)(u+(y))p
∗
µ,s(u+(x))p

∗
µ,s

|x− y|µ
dx dy > 0.

(3.28)

Now, applying the Implicit Function Theorem to the map F at the point (0, 1), we obtain
the existence of ϵ > 0 such that for all v ∈ X0 where ||v|| < ϵ, the equation F (v, z) = 0 has
a unique solution z = ξ(v) > 0. Therefore, utilizing Equation (3.27), we find that ξ(0) = 1.
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Furthermore, since F (v, ξ(v)) = 0 for any v ∈ X0 with ||v|| < ϵ, we have

0 = ξ(v)1+γ
(
a∥u+ v∥p − α∥(u+ v)+∥pH

)
+ ξ(v)pθ−1+γb∥u+ v∥pθ

− λ

∫
Ω

f(x)
(
(u+ v)+

)1−γ
dx

− ξ(v)2p
∗
µ,s+γ−1

∫
Ω

∫
Ω

g(x)(u+(y))p
∗
µ,s(u+(x))p

∗
µ,s

|x− y|µ
dx dy

=
1

ξ1−γ(v)

(
a∥ξ(v)(u+ v)∥p − α∥ξ(v)(u+ v)+∥pH − λ

∫
Ω

f(x)
(
ξ(v)(u+ v)+

)1−γ
dx

+ d∥ξ(v)(u+ v)∥pθ

−
∫
Ω

∫
Ω

g(x)
[
(ξ(v)(u+(y))

]p∗µ,s[
(ξ(v)(u+(x))

]p∗µ,s
|x− y|µ

dx dy
)
.

This implies that,

ξ(v)(u+ v) ∈ Nα,λ for every v ∈ X0 ; and ∥v∥ < ϵ.

On the other hand, we can calculate the partial derivative of F with respect to z at the point
(v, ξ(v))

∂F

∂z

∣∣∣
(v,ξ(v))

=
1

ξp−γ(v)

[
(1 + γ)

(
a∥ξ(v)(u+ v)∥p − α∥ξ(v)(u+ v)+∥pH

)
+
(
pθ − 1 + γ

)
b∥ξ(v)(u+ v)∥pθ

− (2p∗µ,s + γ − 1)

∫
Ω

∫
Ω

g(x)
[
(ξ(v)(u+(y))

]p∗µ,s
[
(ξ(v)(u+(x))

]p∗µ,s

|x− y|µ
dx dy

]
.

Therefore, by Equation (3.28), we can choose ϵ > 0 satisfying ϵ < ϵ. For any v ∈ X0 with
||v|| < ϵ, we have

(1 + γ)
(
a∥ξ(v)(u+ v)∥p − α∥ξ(v)(u+ v)+∥pH

)
+
(
pθ − 1 + γ)b∥ξ(v)(u+ v)∥pθ

−
(
2p∗µ,s + γ − 1γ)

∫
Ω

∫
Ω

g(x)
[
(ξ(v)(u+(y))

]p∗µ,s
[
(ξ(v)(u+(x))

]p∗µ,s

|x− y|µ
dx dy > 0.

This imply that
ξ(v)(u+ v) ∈ N+

γ,λ for all v ∈ Bϵ(0).

Thus, the proof of Lemma 3.5 is now completed.

Now, we show the boundedness from below and coercivity of the functional energy Eα,λ.
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Lemma 3.6. Consider α ∈ (0, aµ0) and λ > 0. Then, the functional energy Eα,λ is bounded
from below on Nα,λ and coercive.

Proof. Let u ∈ Nα,λ. By assumption (f), Eq. (2.8), and Eq. (2.12), we can combine them
with Hölder’s inequality, noting that pθ < 2p∗µ,s, to obtain

Eα,λ(u) :=
(1
p
− 1

2p∗µ,s

)(
a∥u∥p − α∥u+∥pH

)
+
( 1

pθ
− 1

2p∗µ,s

)
b∥u∥pθ

− λ
( 1

1− γ
− 1

2p∗µ,s

)∫
Ω

f(x)(u+)1−γ dx

≥
(1
p
− 1

2p∗µ,s

)
da,α∥u∥p − λ

( 1

1− γ
− 1

2p∗µ,s

)
∥f∥mS

−(1−γ)
p ∥u∥1−γ.

Since p > 1 − γ, it follows that Eα,λ is coercive on Nα,λ. Now, let us introduce the function
F(t) defined as

F(t) :=
(1
p
− 1

2p∗µ,s

)
da,αt

p
1−γ − λ

( 1

1− γ
− 1

2p∗µ,s

)
∥f∥mS

−(1−γ)
p t.

We can observe that F(t) attains its minimum at

tmin :=
(λ(2p∗µ,s + γ − 1)S

−(1−γ)
p ∥f∥m

(2p∗µ,s − p)da,α

) 1−γ
p−1+γ

.

Therefore, we have

Eα,λ(u) ≥
da,α(2p

∗
µ,s − p)(1− γ − p)

2pp∗µ,s(1− γ)

[(λ(2p∗µ,s + γ − 1)S
−(1−γ)

p ∥f∥m
)

(
(2p∗µ,s − p)da,α

) ] p
(p−1+γ)

> −C,

where C > 0 is a constant. Hence, Eα,λ is bounded below on Nα,λ. This completes the proof
of Lemma 3.6.

4 A compactness result for Eα,λ

In this section, we aim to establish a compactness result for the functional energy Eα,λ. To
do this, we start by defining the quantities

m+
α,λ := inf

u∈N+
α,λ∪{0}

Eα,λ(u) and m−
α,λ := inf

u∈N−
α,λ

Eα,λ(u).

Here, m+
α,λ represents the infimum of the energy functional Eα,λ over the set N+

α,λ ∪ {0}, and
m−
α,λ represents the infimum over N−

α,λ.

Using Lemma 3.2 and Corollary 3.4, we establish that both N+
α,λ∪{0} and N−

α,λ are closed
sets in X0 for λ < Λ2.
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By applying Ekeland’s variational principle to the functional Eα,λ, we can extract a min-
imizing sequence uk from either N+

α,λ ∪ {0} or N−
α,λ. The sequence uk satisfies the following

conditions

m±
α,λ < Eα,λ(uk) < m±

α,λ +
1

k
, and Eα,λ(u) ≥ Eα,λ(uk) +

1

k
∥u− uk∥. (4.29)

Here, m±
α,λ represents the corresponding infimum values defined earlier.

Next, using Lemma 3.6, we can conclude that the sequence {uk}k is bounded in Nα,λ.
Specifically, we have ||uk|| ≤ C1 for all k, where C1 > 0 is a constant.

Therefore, the sequence uk is bounded in Nα,λ, and by the weak compactness of X0, there
exists a weakly convergent subsequence ukj that converges weakly in X0 to some element u0,
i.e.,

uk ⇀ u0 weakly in X0. (4.30)

Now, in order to prove the compactness result for Eα,λ, it is necessary to establish several
intermediate lemmas that will aid in the subsequent proof.

Lemma 4.1. Consider α ∈ (0, aµ0) and λ ∈ (0,Λ1), with Λ1 is define in Lemma 3.1. Consider
{uk}k ⊂ N+

α,λ satisfy Eq. (4.30). Then, the following results hold

(a) If {uk} ⊂ N+
α,λ for every k ∈ N, we have

(1 + γ)
[
a∥uk∥p − α∥u+k ∥

p

H

]
+ b(pθ + γ − 1)∥uk∥pθ

−
(
2p∗µ,s + γ − 1

)∫
Ω

∫
Ω

g(x)(u+(y))p
∗
µ,s(u+(x))p

∗
µ,s

|x− y|µ
dx dy ≥ C2;

(b) If {uk} ⊂ N−
α,λ for every k ∈ N, we have

(1 + γ)
[
a∥uk∥p − α∥u+k ∥

p

H

]
+ b

(
pθ + γ − 1

)
∥uk∥pθ

− (2p∗µ,s + γ − 1)

∫
Ω

∫
Ω

g(x)(u+(y))p
∗
µ,s(u+(x))p

∗
µ,s

|x− y|µ
dx dy ≤ −C2;

where C2 > 0 is a constant.

Proof. We only prove case (a) since case (b) can be proved similarly. Firstly, considering
{uk}k ⊂ N+

α,λ, it is sufficient to prove the following inequality

lim inf
k→∞

[
(2p∗µ,s − p)

(
a∥uk∥p − α∥u+k ∥

p

H

)
+ b(2p∗µ,s − pθ)∥uk∥pθ

]
< λ(2p∗µ,s + γ − 1)

∫
Ω

f(x)(u+0 )
1−γdx.

We proceed by contradiction and assume that

lim inf
k→∞

[
(2p∗µ,s − p)

(
a∥uk∥p − α∥u+k ∥

p

H

)
+ b(2p∗µ,s − pθ)∥uk∥pθ

]
= λ(2p∗µ,s + γ − 1)

∫
Ω

f(x)(u+0 )
1−γ dx.
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Since {uk}k ∈ N+
α,λ, it follows that(

2p∗µ,s − p
)(
a∥uk∥p − α∥u+k ∥

p

H

)
+ b(2p∗µ,s − pθ)∥uk∥pθ < λ

(
2p∗µ,s + γ − 1

)∫
Ω

f(x)(u+k )
1−γdx.

On the other hand, using condition (f) and applying Vitali’s convergence theorem, we obtain

lim
k→∞

∫
Ω

f(x)(u+k )
1−γdx =

∫
Ω

f(x)(u+0 )
1−γ dx.

Hence, we have

lim inf
k→∞

[
(2p∗µ,s − p)

(
a∥uk∥p − α∥u+k ∥

p

H

)
+ b(2p∗µ,s − pθ)∥uk∥pθ

]
≤ lim sup

k→∞

[
(2p∗µ,s − p)

(
a∥uk∥p − α∥u+k ∥

p

H

)
+ b

(
2p∗µ,s − pθ

)
∥uk∥pθ

]
≤ λ

(
2p∗µ,s + γ − 1

)∫
Ω

f(x)(u+0 )
1−γdx,

which implies

lim
k→∞

[
(2p∗µ,s − p)

(
a∥uk∥p − α∥u+k ∥

p

H

)
+ b(2p∗µ,s − pθ)∥uk∥pθ

]
= λ

(
2p∗µ,s + γ − 1

)∫
Ω

f(x)(u+0 )
1−γdx.

(4.31)

Using Equation (4.31), we can find positive constants A > 0 and Aα > 0 such that da,α ≤
Aα ≤ aA for α ∈ (0, aµ0). Equation (2.12) is also referenced, which leads to the following
convergence statements

a∥uk∥p − α∥u+k ∥
p

H → Aα, ∥uk∥p → A as k → ∞.

Using the above results, we can derive the equation

(2p∗µ,s − p)Aα + b(2p∗µ,s − pθ)Aθ = λ(2p∗µ,s + γ − 1)

∫
Ω

f(x)(u+0 )
1−γdx.

Finally, by rearranging terms, we obtain

λ

∫
Ω

f(x)(u+0 )
1−γ dx =

(2p∗µ,s − p)Aα

(2p∗µ,s + γ − 1)
+
b(2p∗µ,s − pθ)Aθ

(2p∗µ,s + γ − 1)
. (4.32)

Now, according to Lemma 3.2, for any λ ∈ (0,Λ1), we have the following inequality

0 ≤
( 1 + γ

2p∗µ,s − p

)( 2p∗µ,s − p

2p∗µ,s + γ − 1

) 2p∗µ,s+γ−1

1+γ

(da,αA)
2p∗µ,s+γ−1

1+γ

(
λ

∫
Ω

f(x)(u+0 )
1−γdx

) p−2p∗µ,s
1+γ

− lim
k→∞

∫
Ω

∫
Ω

g(x)(u+(y))p
∗
µ,s(u+(x))p

∗
µ,s

|x− y|µ
dx dy.

(4.33)
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Considering that {uk}k ⊂ N+
α,λ ⊂ Nα,λ and Eq. (4.32), we obtain

lim
k→∞

∫
Ω

∫
Ω

g(x)(u+(y))p
∗
µ,s(u+(x))p

∗
µ,s

|x− y|µ
dx dy

= Aα

( 1 + γ

2p∗µ,s + γ − 1

)
+ bAθ

( pθ + γ − 1

2p∗µ,s + γ − 1

)
.

Substituting Equation (4.31) into Equation (4.33), and using da,αA ≤ Aα, we obtain

dAθ
( pθ + γ − 1

2p∗µ,s + γ − 1

)
≤ 0,

which leads to the desired contradiction. This completes the proof of Lemma 4.1.

Now, we fix ψ ∈ X0 with ψ ≥ 0. Referring to the constants C1 > 0 introduced in Lemma
4.1 where ∥uk∥ ≤ C1, and recalling the constant C2 > 0, we can deduce the following inequality
for k ∈ N

(1− γ)C1

k
< C2. (4.34)

By utilizing Lemma 3.5, we can establish the existence of a sequence of functions (ξk)k that
satisfies ξk(0) = 1 and ξk(tψ)(uk + tψ) ∈ N±

α,λ for t > 0 small enough. Since uk ∈ Nα,λ and
ξk(tψ)(uk + tψ) ∈ Nα,λ, we can conclude that

a∥uk∥p + b∥uk∥pθ − α∥u+k ∥
p

H − λ

∫
Ω

f(x)(u+k )
1−γ dx

−
∫
Ω

∫
Ω

g(x)(u+k (y))
p∗µ,s(u+k (x))

p∗µ,s

|x− y|µ
dx dy

(4.35)

and

ξ2k(tψ)
(
a∥uk + tψ∥p − α∥(uk + tψ)+∥pH

)
− λξ1−γk (tψ)

∫
Ω

f(x)
(
(uk + tψ)+)

)1−γ
dx+ bξpθk (tψ)∥uk + tψ∥p

− ξ1−γk (tψ)

∫
Ω

∫
Ω

g(x)
(
(uk + tψ)+(y)

)p∗µ,s
(
(uk + tψ)+(x)

)p∗µ,s
|x− y|µ

dx dy = 0.

(4.36)

Now, let us define ξ′k(0) as the derivative of ξk at the point 0 such that ⟨ξ′k(0), ψ⟩ ∈ [−∞,∞]
for every ψ ∈ X0. However, if the derivative of the function ξk does not exist, we can replace

ξ′k(0) with qk(0) = lim
k→∞

ξk(tψ)− 1

tk
for some sequence (tk)k satisfying tk → 0 as k → ∞ and

tk > 0.
In the following lemma, we establish a key property of the sequence ξ′k(0) that will be

crucial for the subsequent analysis.

Lemma 4.2. Consider α ∈ (0, aµ0), λ ∈ (0,Λ1), and suppose {uk}k ⊂ N±
α,λ satisfies Eq.

(4.29) and Eq. (4.30). Then, ⟨ξ′k(0), ψ⟩ is uniformly bounded for any ψ ∈ X0 with ψ ≥ 0.
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Proof. We just prove the case that N+
α,λ. The case N−

α,λ can be done similarly. In view of Eq.
(4.35) and Eq. (4.36), we obtain the following expression

0 = [ξpk(tψ)− 1]
(
c∥uk + tψ∥p − α∥(uk + tψ)+∥pH

)
+
(
a∥uk + tψ∥p − α∥(uk + tψ)+∥pH

)
−

(
a∥uk∥p − α∥u+k ∥

p

H

)
+ b

(
[ξpθk (tψ)− 1]∥uk + tψ∥pθ + ∥uk + tψ∥pθ − ∥uk∥pθ

)
− λ

∫
Ω

f(x)
[(

(uk + tψ)+
)1−γ

− (u+k )
1−γ

]
dx

− λ[ξ1−γk (tψ)− 1]

∫
Ω

f(x)
(
(uk + tψ)+

)1−γ
dx

− [ξpk(tψ)− 1]

∫
Ω

∫
Ω

g(x)((uk + tψ)+(y))p
∗
µ,s((uk + tψ)+(x))p

∗
µ,s

|x− y|µ
dx dy

−
∫
Ω

∫
Ω

g(x)
[((uk + tψ)+(x))

p∗µ,s((uk + tψ)+(y))
p∗µ,s

|x− y|µ

−
(
u+k (x)

)p∗µ,s(u+k (y))p∗µ,s
|x− y|µ

]
dx dy.

Dividing the above equation by t > 0 and taking the limit as t approaches 0+, we obtain

0 = ⟨ξ′

k(0), ψ⟩
[
p
(
a∥uk∥p − γ∥u+k ∥

p

H

)
+ bpθ∥uk∥pθ

− λ(1− γ)

∫
Ω

f(x)
(
(uk)

+
)1−γ

− 2p∗µ,s

∫
Ω

∫
Ω

g(x)(u+k (x))
p∗µ,s(u+k (y))

p∗µ,s

|x− y|µ
dx dy

]
+
(
ap+ pθb∥uk∥pθ−p

)∫
Ω

∫
Ω

|uk(x)− uk(y)|p−2 (uk(x)− uk(y)) (ψ(x)− ψ(y))

|x− y|N+sp
dx dy

− pα

∫
Ω

u+k ψ

|x|sp
dx− 2p∗µ,s

∫
Ω

∫
Ω

g(x)(u+k (x))
p∗µ,s−1

ψ(x)(u+k (y))
p∗µ,s

|x− y|µ
dx dy.

Therefore, using Eq. (4.35), we obtain

0 ≤ ⟨ξ′k(0), ψ⟩
[
(1 + γ)

(
a∥uk∥p − α∥u+k ∥

p

H

)
+ b

(
pθ + γ − 1

)
∥uk∥pθ

−
(
2p∗µ,s − γ + 1

)∫
Ω

∫
Ω

g(x)(u+k (x))
p∗µ,s(u+k (y))

p∗µ,s

|x− y|µ
dx dy

]

+
(
ap+ pθb∥uk∥pθ−p

)∫
Ω

∫
Ω

|uk(x)− uk(y)|p−2(uk(x)− uk(y))(ψ(x)− ψ(y))

|x− y|N+sp
dx dy

− pα

∫
Ω

u+k ψ

|x|sp
dx− 2p∗µ,s

∫
Ω

∫
Ω

g(x)(u+k (x))
p∗µ,s−1

ψ(x)(u+k (y))
p∗µ,s

|x− y|µ
dx dy.
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Using Lemma 4.1 (a) in combination with the fact that the sequence uk is bounded, it follows
that ⟨ξ′k(0), ψ⟩ is bounded from below for every ψ ∈ X0 with ψ ≥ 0. Using Lemma 4.1 (a)
combine with the fact that the sequence {uk} is bounded, it follows that ⟨ξ′k(0), ψ⟩ is bounded
from below for every ψ ∈ X0 with ψ ≥ 0.

Next, we will prove the boundedness of the sequence ⟨ξ′k(0), ψ⟩ from above. Assuming the
contrary, let us suppose that ⟨ξ′k(0), ψ⟩ = ∞. Since this assumption is made, we can consider
the following

∥ξk(tψ)(uk + tψ)− uk∥ ≤ ξk(tψ)∥tψ∥+ |ξk(tψ)− 1|∥uk∥ (4.37)

and ξk(tψ) > ξk(0) = 1 for sufficiently large k. From the definition of ξ′k(0) and Equation
(4.29) with u = ξk(tψ)(uk + tψ) ∈ N+

α,λ, we obtain

|ξk(tψ)− 1|∥uk∥
k

+ ξk(tψ)
∥tψ∥
k

≥ 1

k
∥ξk(tψ)(uk + tψ)− uk∥

≥ Eα,λ(uk)− Eα,λ

(
ξk(tψ)(uk + tψ)

)
=

( 1

1− γ
− 1

p

)[(
a∥(uk + tψ)∥p − α∥

(
(uk + tψ)+

)
∥
p

H

)
−
(
a∥uk∥p − α∥u+k ∥

p

H

)]
+
( 1

1− γ
− 1

pθ

)
b
(
∥uk + tψ∥pθ − ∥uk∥pθ

)
+
( 1

1− γ
− 1

pθ

)
b[ξpθk (tψ)− 1]∥uk + tψ∥pθ

+
( 1

1− γ
− 1

p

)[
ξpk(tψ)− 1

](
a∥uk + tψ∥p − α∥(uk + tψ)+∥pH

)

−
( 1

1− γ
− 1

2p∗µ,s

)[
ξ
2p∗µ,s
k (tψ)− 1

] ∫
Ω

∫
Ω

g(x)
(
(uk)

+(x)
)p∗µ,s

(
(uk)

+(y)
)p∗µ,s

|x− y|µ
dx dy

−
( 1

1− γ
− 1

2p∗µ,s

)
ξ
2p∗µ,s
k (tψ)

∫
Ω

∫
Ω

g(x)
[((uk + tψ)+(x))

p∗µ,s
(
(uk + tψ)+(y)

)p∗µ,s
|x− y|µ

−

(
(uk)

+(x)
)p∗µ,s(

(uk)
+(y)

)p∗µ,s
|x− y|µ

]
dx dy.
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By dividing both sides of the inequality by t > 0 and letting t approach 0, it follows that

⟨ξ′k(0), ψ⟩
∥uk∥
k

+
∥ψ∥
k

≥ 1 + γ

1− γ

(
a

∫∫
R2N

|uk(x)− uk(y)|p−2 (uk(x)− uk(y)) (ψ(x)− ψ(y))

|x− y|N+sp
dx dy − α

∫
Ω

u+k ψ

|x|sp
dx

)
+

1 + γ

1− γ
⟨ξ′k(0), ψ⟩

(
a∥uk∥p − α∥u+k ∥

p

H

)
+
(pθ + γ − 1

1− γ

)
b⟨ξ′k(0), ψ⟩∥uk∥

pθ

+
(2θ + q − 1

1− q

)
d∥uk∥2θ−2

∫∫
R2N

|uk(x)− uk(y)|p−2 (uk(x)− uk(y)) (ψ(x)− ψ(y))

|x− y|N+sp
dx dy

−
(2p∗µ,s + γ − 1)

(1− γ)

∫
Ω

∫
Ω

g(x)
(
u+k (x)

)p∗µ,s−1
ψ(x)

(
u+k (y)

)p∗µ,s
|x− y|µ

−
(2p∗µ,s + γ − 1)

(1− γ)
⟨ξ′k(0), ψ⟩

∫
Ω

∫
Ω

g(x) ((uk)
+(x))

p∗µ,s ((uk)
+(y))

p∗µ,s

|x− y|µ
dx dy.

≥ ⟨ξ′k(0), ψ⟩
(1− γ)

[
(1 + γ)

(
a∥uk∥p − α∥u+k ∥

p

H

)
+
(
pθ + γ − 1

)
b∥uk∥pθ

−
(
2p∗µ,s + γ − 1

)∫
Ω

∫
Ω

g(x) ((uk)
+(x))

p∗µ,s ((uk)
+(y))

p∗µ,s

|x− y|µ
dx dy

]
+
(1 + γ

1− γ

)(
a

∫∫
R2N

|uk(x)− uk(y)|p−2 (uk(x)− uk(y)) (ψ(x)− ψ(y))

|x− y|N+sp
dx dy − γ

∫
Ω

u+k ψ

|x|sp
dx

)
+
(pθ + γ − 1

1− γ

)
b∥uk∥pθ−p

∫∫
R2N

|uk(x)− uk(y)|p−2 (uk(x)− uk(y)) (ψ(x)− ψ(y))

|x− y|N+sp
dx dy

−
(2p∗µ,s + γ − 1)

(1− γ)

∫
Ω

∫
Ω

g(x)
(
u+k (x)

)p∗µ,s−1
ψ(x)

(
u+k (y)

)p∗µ,s
|x− y|µ

.

That is,

∥ψ∥
k

≥ ⟨ξ′k(0), ψ⟩
(1− γ)

[
(1 + γ)

(
a∥uk∥p − µ∥u+k ∥

p

H

)
+
(
pθ + γ − 1

)
b∥uk∥pθ

−
(
2p∗µ,s + γ − 1

)∫
Ω

∫
Ω

g(x) ((uk)
+(x))

p∗µ,s ((uk)
+(y))

p∗µ,s

|x− y|µ
dx dy − (1− γ)

∥uk∥
k

]
+
(1 + γ

1− γ

)(
a

∫∫
R2N

|uk(x)− uk(y)|p−2 (uk(x)− uk(y)) (ψ(x)− ψ(y))

|x− y|N+sp
dx dy − α

∫
Ω

u+k ψ

|x|sp
dx

)
+
(pθ + γ − 1

1− γ

)
b∥uk∥pθ−p

∫∫
R2N

|uk(x)− uk(y)|p−2 (uk(x)− uk(y)) (ψ(x)− ψ(y))

|x− y|N+sp
dx dy

−
(2p∗µ,s + γ − 1)

(1− γ)

∫
Ω

∫
Ω

g(x)
(
u+k (x)

)p∗µ,s−1
ψ(x)

(
u+k (y)

)p∗µ,s

|x− y|µ
.

We arrive at a contradiction with our assumption that ⟨ξ′k(0), ψ⟩ = ∞. By applying Lemma
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3.6 (1) and considering the fact that {uk}k is a bounded sequence, we can conclude that[
(1 + γ)

(
a∥uk∥p − α∥u+k ∥

p

H

)
+
(
pθ + γ − 1

)
b∥uk∥pθ

−
(
2p∗µ,s + γ − 1

)∫
Ω

∫
Ω

g(x)
(
u+k (x)

)p∗µ,s ((uk)
+(y))

p∗µ,s

|x− y|µ
dx dy − (1− γ)

∥uk∥
k

]
≥ C2 − (1− γ)

C1

k
> 0.

By utilizing Equation (4.34), we can deduce that ⟨ξ′k(0), ψ⟩ is uniformly bounded for sufficiently
large k for any ψ ∈ X0 with ψ ≥ 0. This completes the proof of Lemma 4.2.

The following lemma provides important result.

Lemma 4.3. Consider a sequence {uk}k ⊂ N±
α,λ that satisfies Equation (4.29) and Equation

(4.30). Let α ∈ (0, aµ0) and λ ∈ (0,Λ1). For every ψ ∈ X0, as k → ∞, the following hold

f(x)(u+k )
−γψ ∈ L1(Ω),

and(
a+ b∥uk∥pθ−p

)∫∫
R2N

|uk(x)− uk(y)|p−2 (uk(x)− uk(y)) (ψ(x)− ψ(y))

|x− y|N+sp
dx dy

− α

∫
Ω

(u+k )
p−1ψ

|x|sp
dx− λ

∫
Ω

f(x)(u+k )
−γψdx−

∫
Ω

∫
Ω

g(x)
(
u+k (x)

)p∗µ,s−1
ψ(x)

(
u+k (y)

)p∗µ,s
|x− y|µ

dx dy = ok(1).

(4.38)

Proof. Consider ψ ∈ X0 with ψ ≥ 0. Therefore, utilizing Equation (4.29) and Equation (4.37),
we have

[ξk(tψ)− 1]
∥uk∥
k

+ ξk(tψ)
∥tψ∥
k

≥ Eα,λ(uk)− Eα,λ (ξk(tψ)(uk + tψ))

= −(ξpk(tψ)− 1)

p

(
a∥uk∥p − α∥u+k ∥

p

H

)
−

(
ξpk(tψ)− 1

)
pθ

b∥uk∥pθ

− ξpk(tψ)

p

[(
a∥uk + tψ∥p − α∥(uk + tψ)+∥pH

)
−
(
a∥uk∥p − α∥u+k ∥

p

H

)]
− ξpθk (tψ)

pθ
b
[
∥uk + tψ∥pθ − ∥uk∥pθ

]
+
λ
(
ξ1−γk (tψ)− 1

)
1− γ

∫
Ω

f(x)
(
(uk + tψ)+

)1−γ
dx

+
λ

1− γ

∫
Ω

f(x)
[ (

(uk + tψ)+
)1−γ − (

(uk)
+
)1−γ ]

dx

+
ξ
2p∗µ,s
k (tψ)− 1

2p∗µ,s

∫
Ω

∫
Ω

g(x) ((uk + tψ)+(x))
p∗µ,s ((uk + tψ)+(y))

p∗µ,s

|x− y|µ
dx dy
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+
1

2p∗µ,s

∫
Ω

∫
Ω

g(x)

|x− y|µ
[ (

(uk + tψ)+(x)
)p∗µ,s

(
(uk + tψ)+(y)

)p∗µ,s
−

(
(uk)

+(x)
)p∗µ,s ((uk)+(y))p∗µ,s ] dx dy.

By dividing the above equation by t > 0 and letting t approach 0+, it follows that

|⟨ξ′k(0), ψ⟩|
∥uk∥
k

+
∥ψ∥
k

≥ −⟨ξ′k(0), ψ⟩
[ (
a∥uk∥p − α∥u+k ∥

p

H

)
− λ

∫
Ω

f(x)(u+k )
1−γdx+ b∥uk∥pθ

−
∫
Ω

∫
Ω

((uk)
+(x))

p∗µ,s ((uk)
+(y))

p∗µ,s

|x− y|µ
dx dy

]
−

(
a+ b∥uk∥pθ−p

)∫∫
R2N

|uk(x)− uk(y)|p− 2 (uk(x)− uk(y)) (ψ(x)− ψ(y))

|x− y|N+sp
dx dy + α

∫
Ω

(u+k )
p−1ψ

|x|sp
dx

+

∫
Ω

∫
Ω

g(x)
(
u+k (x)

)p∗µ,s−1
ψ(x)

(
u+k (y)

)p∗µ,s

|x|α|x− y|µ
dx dy

+ lim
t→0+

inf
λ

1− γ

∫
Ω

f(x)
[
((uk + tψ)+)

1−γ − (u+k )
1−γ

]
t

dx

= −
(
a+ b∥uk∥pθ−p

)∫∫
R2N

|uk(x)− uk(y)|p−2 (uk(x)− uk(y)) (ψ(x)− ψ(y))

|x− y|N+sp
dx dy + α

∫
Ω

(u+k )
p−1ψ

|x|sp
dx

+

∫
Ω

∫
Ω

(
u+k (x)

)p∗µ,s−1
ψ(x)

(
u+k (y)

)p∗µ,s
|x− y|µ

dx dy

+ lim
t→0+

inf
λ

1− γ

∫
Ω

f(x)
[
((uk + tψ)+)

1−γ − (u+k )
1−γ

]
t

dx. (4.39)

Applying Equation (4.39), we have

lim inf
t→0+

∫
Ω

f(x)
[
((uk + tψ)+)

1−γ − (u+k )
1−γ

]
t

dx <∞.

On the other hand, since f(x)
[
((uk + tψ)+)

1−γ − (u+k )
1−γ

]
≥ 0 and considering the bounded-

ness of the sequence {uk}k in X0, combined with Fatou’s lemma and Lemma 4.1, it follows
that

λ

∫
Ω

f(x)(u+k )
−γψdx

≤ lim
t→0+

inf
λ

1− γ

∫
Ω

f(x)[((uk + tψ)+)
1−γ − (u+k )

1−γ]

t
dx

≤ ⟨ξ′k(0), ψ⟩∥uk∥+ ∥ψ∥
k

−
∫
Ω

∫
Ω

g(x)
(
u+k (x)

)p∗µ,s−1
ψ(x)

(
u+k (y)

)p∗µ,s
|x− y|µ

dx dy

+
(
a+ b∥uk∥pθ−p

)∫∫
R2N

|uk(x)− uk(y)|p−2 (uk(x)− uk(y)) (ψ(x)− ψ(y))

|x− y|N+sp
dx dy − α

∫
Ω

(u+k )
p−1ψ

|x|sp
dx
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≤ C1C3 + ∥ψ∥
k

+
(
a+ b∥uk∥pθ−p

)∫∫
R2N

|uk(x)− uk(y)|p−2 (uk(x)− uk(y)) (ψ(x)− ψ(y))

|x− y|N+sp
dx dy

− α

∫
Ω

(u+k )
p−1ψ

|x|sp
dx−

∫
Ω

∫
Ω

g(x)
(
u+k (x)

)p∗µ,s−1
ψ(x)

(
u+k (y)

)p∗µ,s

|x− y|µ
dx dy,

where C3 > 0 is determined by the boundedness of ⟨ξ′k(0), ψ⟩ and ∥uk∥ ≤ C1. This implies
that as k → ∞,(

a+ b∥uk∥pθ−p
)∫∫

R2N

|uk(x)− uk(y)|p−2 (uk(x)− uk(y)) (ψ(x)− ψ(y))

|x− y|N+sp
dx dy

− α

∫
Ω

(u+k )
p−1ψ

|x|sp
dx−

∫
Ω

f(x)(u+k )
−γψdx

−
∫
Ω

∫
Ω

g(x)
(
u+k (x)

)p∗µ,s−1
ψ(x)

(
u+k (y)

)p∗µ,s
|x− y|µ

dx dy

≥ o(1).

(4.40)

In the following, we aim to prove that Eq. (4.40) holds for arbitrary ψ ∈ X0. Let Ψϵ = u+k +ϵψ
with ϵ > 0. By choosing ψ = Ψ+

ϵ as a test function in Eq. (4.40), we obtain the following as
k → ∞

o(1) ≤
(
a+ b∥uk∥pθ−p

)∫∫
R2N

|uk(x)− uk(y)|p−2 (uk(x)− uk(y)) (Ψ
+
ϵ (x)−Ψ+

ϵ (y))

|x− y|N+sp
dx dy

− α

∫
Ω

(u+k )
p−1Ψ+

ϵ

|x|sp
dx− λ

∫
Ω

f(x)(u+k )
−γΨ+

ϵ dx

−
∫
Ω

∫
Ω

g(x)
(
u+k (x)

)p∗µ,s−1
Ψ+
ϵ

(
u+k (y)

)p∗µ,s

|x− y|µ
dx dy

=
(
a+ b∥uk∥pθ−p

)
×

∫∫
R2N

|uk(x)− uk(y)|p−2 (uk(x)− uk(y)) ((Ψϵ +Ψ−
ϵ )(x)− (Ψϵ +Ψ−

ϵ )(y))

|x− y|N+sp
dx dy

− α

∫
Ω

(u+k )
p−1(Ψϵ +Ψ−

ϵ )

|x|sp
dx− λ

∫
Ω

f(x)(u+k )
−γ(Ψϵ +Ψ−

ϵ )dx

−
∫
Ω

∫
Ω

g(x)
(
u+k (x)

)p∗µ,s−1(
u+k (y)

)p∗µ,s(Ψϵ +Ψ−
ϵ )

|x− y|µ
dx dy.

(4.41)
We notice that by using the following inequality (a− b)(a− − b−) ≤ −(a− − b−)2, we obtain,
for almost every x, y ∈ RN , the following inequality

0 ≤
∫∫

R2N

|u(x)− u(y)|p−2(u(x)− u(y))(u−(x)− u−(y))

|x− y|N+ps
dxdy

≤ −
∫∫

R2N

|u(x)− u(y)|p−2(u−(x)− u−(y))2

|x− y|N+ps
dxdy. (4.42)
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It follows that,∫∫
R2N

|u(x)− u(y)|p−2(u(x)− u(y))
(
u+k (x)− u+k (y)

)
|x− y|N+ps

dxdy ≤
∫∫

R2N

|u(x)− u(y)|p

|x− y|N+ps
dxdy.

(4.43)

Applying Eq. (4.43), we have∫∫
R2N

|uk(x)− uk(y)|p−2 (uk(x)− uk(y)) ((Ψϵ +Ψ−
ϵ )(x)− (Ψϵ +Ψ−

ϵ )(y))

|x− y|N+sp
dx dy

=

∫∫
R2N

|uk(x)− uk(y)|p−2 (uk(x)− uk(y))
(
u+k (x)− u+k (y)

)
|x− y|N+sp

dx dy

+ ϵ

∫∫
R2N

|uk(x)− uk(y)|p−2 (uk(x)− uk(y)) (ψ(x)− ψ(y))

|x− y|N+sp
dx dy

+

∫∫
R2N

|uk(x)− uk(y)|p−2 (uk(x)− uk(y)) (Ψ
−
ϵ (x)−Ψ−

ϵ (y))

|x− y|N+sp
dx dy

≤
∫∫

R2N

|uk(x)− uk(y)|p

|x− y|N+sp
dx dy

+ ϵ

∫∫
R2N

|uk(x)− uk(y)|p−2 (uk(x)− uk(y)) (ψ(x)− ψ(y))

|x− y|N+sp
dx dy

+

∫∫
R2N

|uk(x)− uk(y)|p−2 (uk(x)− uk(y)) (Ψ
−
ϵ (x)−Ψ−

ϵ (y))

|x− y|N+sp
dx dy. (4.44)

Furthermore, we obtain∫
Ω

(u+k )
p−1(Ψϵ +Ψ−

ϵ )

|x|sp
dx =

∫
Ω

|u+k |p

|x|sp
dx+ ϵ

∫
Ω

(u+k )
p−1ψ

|x|sp
dx+

∫
Ω

(u+k )
p−1Ψ−

ϵ

|x|sp
dx

≥
∫
Ω

|u+k |p

|x|sp
dx+ ϵ

∫
Ω

(u+k )
p−1ψ

|x|sp
dx+ ϵ

∫
Ωϵ

(u+k )
p−1ψ

|x|sp
dx,

(4.45)

with Ωϵ = {x ∈ RN : Ψϵ ≤ 0}. Now, by combining Eq. (4.45), Eq. (4.44), and Eq. (4.41), it
follows that as k → ∞

o(1) ≤
[ (
a+ b∥uk∥pθ−p

)
∥uk∥p − α∥u+k ∥

p

H − λ

∫
Ω

f(x)(u+k )
1−γ dx

−
∫
Ω

∫
Ω

g(x)
(
u+k (x)

)p∗µ,s(u+k (y))p∗µ,s

|x− y|µ
dx dy

]
+ ϵ

[ (
a+ b∥uk∥pθ−p

)∫∫
R2N

|uk(x)− uk(y)|p−2 (uk(x)− uk(y)) (ψ(x)− ψ(y))

|x− y|N+sp
dx dy

− α

∫
Ω

(u+k )
p−1ψ

|x|sp
dx− λ

∫
Ω

f(x)(u+k )
−γψdx

−
∫
Ω

∫
Ω

g(x)
(
u+k (x)

)p∗µ,s−1
ψ(x)

(
u+k (y)

)p∗µ,s

|x− y|µ
dx dy

]
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+
(
a+ b∥uk∥pθ−p

)∫∫
R2N

|uk(x)− uk(y)|p−2 (uk(x)− uk(y)) (Ψ
−
ϵ (x)−Ψ−

ϵ (y))

|x− y|N+sp
dx dy

− ϵα

∫
Ωϵ

(u+k )
p−1ψ

|x|sp
dx+ λ

∫
Ωϵ

f(x)(u+k )
−γ(u+k + ϵψ)dx

+

∫
Ω

∫
Ωϵ

g(x)
(
u+k (x)

)p∗µ,s−1
(u+k + ϵψ)(x)

(
u+k (y)

)p∗µ,s
|x− y|µ

dx dy.

Since {uk}k ∈ Nα,λ and f(x) > 0, as k → ∞, it follows that

o(1) ≤ ϵ
[ (
a+ b∥uk∥pθ−p

)∫∫
R2N

|uk(x)− uk(y)|p−2 (uk(x)− uk(y)) (ψ(x)− ψ(y))

|x− y|N+sp
dx dy

− α

∫
Ω

(u+k )
p−1ψ

|x|sp
dx− λ

∫
Ω

f(x)(u+k )
−γψdx

−
∫
Ω

∫
Ω

g(x)
(
u+k (x)

)p∗µ,s−1
ψ(x)

(
u+k (y)

)p∗µ,s
|x− y|µ

dx dy
]

+
(
a+ b∥uk∥pθ−p

) ∫∫
R2N

|uk(x)− uk(y)|p−2 (uk(x)− uk(y)) (Ψ
−
ϵ (x)−Ψ−

ϵ (y))

|x− y|N+sp
dx dy

− ϵα

∫
Ωϵ

(u+k )
p−1ψ

|x|sp
dx

+

∫
Ω

∫
Ωϵ

g(x)
(
u+k (x)

)p∗µ,s−1
(u+k + ϵψ)(x)

(
u+k (y)

)p∗µ,s
|x− y|µ

dx dy.

(4.46)
Now, utilizing the symmetry of the fractional kernel and employing a similar argument as in
Eq. (4.43), we have

|u+k (x)− u+k (y)|
p ≤ |uk(x)− uk(y)|p−2 (uk(x)− uk(y))

(
u+k (x)− u+k (y)

)
,

it follows that∫∫
RN×RN

|uk(x)− uk(y)|p−2 (uk(x)− uk(y)) (Ψ
−
ϵ (x)−Ψ−

ϵ (y))

|x− y|N+sp
dx dy

=

∫∫
Ωϵ×Ωϵ

|uk(x)− uk(y)|p−2 (uk(x)− uk(y)) (Ψ
−
ϵ (x)−Ψ−

ϵ (y))

|x− y|N+sp
dx dy

+ 2

∫∫
Ωϵ×(RN\Ωϵ)

|uk(x)− uk(y)|p−2 (uk(x)− uk(y)) (Ψ
−
ϵ (x)−Ψ−

ϵ (y))

|x− y|N+sp
dx dy

≤ −ϵ
(∫∫

Ωϵ×Ωϵ

|uk(x)− uk(y)|p−2 (uk(x)− uk(y)) (ψ(x)− ψ(y))

|x− y|N+sp
dx dy

+ 2

∫∫
Ωϵ×(RN\Ωϵ)

|uk(x)− uk(y)|p−2 (uk(x)− uk(y)) (ψ(x)− ψ(y))

|x− y|N+sp
dx dy

)
≤ 2ϵ

∫∫
Ωϵ×RN

∣∣ |uk(x)− uk(y)|p−2 (uk(x)− uk(y)) (ψ(x)− ψ(y))

|x− y|N+sp

∣∣ dx dy
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So, by employing the Hölder inequality and considering the fact that the sequence {uk}k is
bounded in X0, we obtain∫∫

Ωϵ×RN

∣∣∣∣ |uk(x)− uk(y)|p−2(uk(x)− uk(y))(ψ(x)− ψ(y))

|x− y|N+sp

∣∣∣∣ dx dy
≤ C

(∫∫
Ωϵ×RN

∣∣ (ψ(x)− ψ(y))

|x− y|(N+sp)/p

∣∣p dx dy)1/p

.

(4.47)

Clearly
(ψ(x)− ψ(y))

|x− y|(N+sp)/p
∈ Lp(R2N). Therefore, for every σ > 0, there exists Rσ sufficiently large

such that ∫∫
(suppψ)×[RN\BRσ ]

∣∣∣ (ψ(x)− ψ(y))

|x− y|(N+sp)/p

∣∣∣p dx dy < σ

p
.

So, utilizing the definition of Ωϵ, it follows that Ωϵ ⊂ suppψ and we have |Ωϵ × BRσ | → 0 as

ϵ → 0+. Now, since
(ψ(x)− ψ(y))

|x− y|(N+sp)/p
∈ Lp(R2N), we can establish the existence of ϵσ > 0 and

δσ > 0 such that for every ϵ ∈ (0, ϵσ], we have

|Ωϵ ×BRσ | < δν and

∫∫
Ωϵ×BRσ

∣∣ (ψ(x)− ψ(y))

|x− y|(N+sp)/p

∣∣p dx dy < σ

p
.

Consequently, for every ϵ ∈ (0, ϵσ], it follows that

lim
ϵ→0+

∫∫
Ωϵ×RN

∣∣∣ (ψ(x)− ψ(y))

|x− y|(N+sp)/p

∣∣∣p dx dy = 0. (4.48)

Hence, by Eq. (4.47), we can conclude that

lim
ϵ→0+

∫∫
Ωϵ×RN

∣∣∣ |uk(x)− uk(y)|p−2(uk(x)− uk(y))(ψ(x)− ψ(y))

|x− y|N+sp

∣∣∣ dx dy = 0.

Next, we proceed to demonstrate that

lim
ϵ→0+

1

ϵ

∫
Ω

∫
Ωϵ

g(x)
(
u+k (x)

)p∗µ,s−1
(u+k + ϵψ)(x)

(
u+k (y)

)p∗µ,s
|x− y|µ

dx dy = 0. (4.49)

To accomplish this, let’s consider∫
Ω

∫
Ωϵ

g(x)
(
u+k (x)

)p∗µ,s−1
(u+k + ϵψ)(x)

(
u+k (y)

)p∗µ,s
|x− y|µ

dx dy

≤
∫
Ω

∫
Ωϵ

g(x)
(
u+k (x)

)p∗µ,s(u+k (y))p∗µ,s

|x− y|µ
dx dy

+ ϵ

∫
Ω

∫
Ωϵ

g(x)
(
u+k (x)

)p∗µ,s−1
ψ(x)

(
u+k (y)

)p∗µ,s
|x− y|µ

dx dy

≤
∫
Ω

∫
Ωϵ

g(x)
(
u+k (x)

)p∗µ,s(u+k (y))p∗µ,s

|x− y|µ
dx dy
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+ ϵ
(∫

Ω

∫
Ωϵ

g(x)
(
u+k (x)

)p∗µ,s−1
ψ(x)

(
u+k (y)

)p∗µ,s−1
ψ(y)

|x− y|µ
dx dy

)1/p

×
( ∫

Ω

∫
Ω

g(x)
(
u+k (x)

)p∗µ,s(u+k (y))p∗µ,s
|x− y|µ

dx dy
)1/p

≤ CCg(N,µ)
(∫

Ωϵ

(
u+k (x)

)p∗s dx)p∗µ,s/p∗s
+ CϵCg(N,µ)

(∫
Ωϵ

(
[u+k (x)]

p∗µ,s−1ψ(x)
)p∗s/p∗µ,s dx

)p∗µ,s/p
∗
s

≤ CCg(N,µ)
(∫

Ωϵ

(
u+k (x)

)p∗s dx)p∗µ,s/p∗s
+ CϵCg(N,µ)

(∫
Ωϵ

(
u+k (x)

)p∗s dx)(p∗µ,s−1)/p∗s
(∫

Ωϵ

|ψ(x)|p∗s dx
)1/p∗s

≤ CCg(N,µ)ϵ
p∗µ,s

(∫
Ωϵ

|ψ(x)|p∗s dx
)p∗µ,s/p∗s

+ C̃ϵCg(N,µ)ϵ
p∗µ,s

(∫
Ωϵ

|ψ(x)|p∗s dx
)p∗µ,s/p∗s

. (4.50)

Hence, dividing Eq. (4.50) by ϵ and taking into account the fact that |Ωϵ| → 0 as ϵ→ 0+, we
can establish the validity of Eq. (4.49). Furthermore, we claim that

lim
ϵ→0

∫
Ωϵ

|u+k |p−2u+k ψ

|x|sp
dx = 0. (4.51)

So, for x ∈ Ωϵ, we have u+k + ϵψ ≤ 0 and ψ(x) ≤ 0. Consequently, utilizing Eq. (1.2), we can
conclude that

0 ≤
∣∣∣ ∫

Ωϵ

|u+k |p−2u+k ψ

|x|sp
dx

∣∣∣ ≤ ∫
Ωϵ

|u+k |p−2u+k |ψ|
|x|sp

dx ≤ ϵ

∫
Ωϵ

|ψ|p

|x|sp
dx ≤ ϵ∥ψ∥pH ≤ ϵ

∥ψ∥p

µ0

from which we establish the validity of Eq. (4.51) as ϵ→ 0.
Then, by dividing Eq. (4.46) by ϵ and utilizing Eq. (4.48), Eq. (4.51), Eq. (4.49), and the

fact that |Ωϵ| → 0 as ϵ→ 0+, we obtain

o(1) ≤
(
a+ b∥uk∥pθ−p

)∫∫
R2N

|uk(x)− uk(y)|p−2 (uk(x)− uk(y)) (ψ(x)− ψ(y))

|x− y|N+sp
dx dy

− α

∫
Ω

|u+k |p−2u+k ψ

|x|sp
dx− λ

∫
Ω

f(x)(u+k )
−γψdx

−
∫
Ω

∫
Ω

g(x)
(
u+k (x)

)p∗µ,s−1(
u+k (y)

)p∗µ,sψ(x)
|x− y|µ

dx dy.

This proves Eq. (4.40). Since ψ is arbitrary, we can conclude that Eq. (4.38) holds for any
ψ ∈ X0. The proof of Lemma 4.3 is now complete.
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To demonstrate the compactness property of the functional energy Eα,λ, we define

cα,λ : =
(1
p
− 1

2p∗µ,s

)
a

p∗µ,s
p∗µ,s−pS

− p
p∗µ,s−p

C,µ ||g||
− p

p∗µ,s−p

r

− λ
pθ

pθ−1+γ

( pθ − 1 + γ

p∗µ,s(1− γ)pθ

)[(p∗µ,s + γ − 1)||f ||mS
− γ−1

p∗µ,s

] pθ
pθ−1+γ

[
b(p∗µ,s − pθ)

] 1−γ
pθ−1+γ

. (4.52)

The following lemma provides conditions under which a subsequence of the sequence ukk
converges strongly to a limit in the function space X0.

Lemma 4.4. Consider a sequence {uk}k ⊂ N±
α,λ with Eα,λ(uk) → c < cα,λ ans let λ ∈ (0,Λ1),

α ∈ (0, aγ0). Then, the sequence {uk}k has a subsequence that converges strongly to u0 in X0.

Proof. Considering Eq. (4.30), we can deduce the boundedness of the sequence ukk in X0.
Furthermore, we can establish the boundedness of the sequence {u−k }k in X0. By substituting
ψ = u−k into Eq. (4.38) as k → ∞, we obtain

lim
k→∞

(
a+ b∥uk∥pθ−p

)∫∫
R2N

|uk(x)− uk(y)|p−2 (uk(x)− uk(y))
(
u−k (x)− u−k (y)

)
|x− y|N+sp

dx dy = 0.

Therefore, using Eq. (4.42), we have ∥u−k ∥ → 0 as k → ∞. Hence, {uk}k is a positive sequence.
By applying Lemma 2.2 in conjunction with Eq. (1.2), we can establish the existence of a
subsequence, which we still denote as {uk}k, satisfying

uk ⇀ u0 weakly in Lp
∗
s(Ω), ∥uk∥ → ν

uk → u0 in Lp(Ω) for any p ∈ (1, p∗s)

uk ⇀ u0 in Lp
∗
s(Ω, |x|−sp), ∥uk∥H → l

uk → u0 a.e. in Ω uk ≤ h a. e. in Ω,

(4.53)

as k → ∞, where h ∈ Lp(Ω) and p ∈ [1, p∗s). Therefore, since the sequence {uk}k is positive,
we have u0 ≥ 0. Now, let’s consider the case where ν = 0 in Eq. (4.53). In this case, we can
deduce that lim

k→∞
uk = 0 in X0.

Now, let’s suppose that ν > 0. Then, by utilizing Lemma 2.3 in [9], Lemma 2.4 in [14],
and Lemma 3.2 in [17], we can conclude that

∥uk∥p = ∥uk − u0∥p + ∥u0∥p + o(1), (4.54)

∥uk∥pH = ∥uk − u0∥pH + ∥u0∥pH + o(1), (4.55)∫
Ω

∫
Ω

g(x)(uk(x))
p∗µ,s(uk(y))

p∗µ,s

|x− y|µ
dx dy

=

∫
Ω

∫
Ω

g(x)((uk − u0)(x))
p∗µ,s(uk − u0)(y))

p∗µ,s

|x− y|µ
dx dy

+

∫
Ω

∫
Ω

g(x)(u0(x))
p∗µ,s(u0(y))

p∗µ,s

|x− y|µ
dx dy + o(1).

(4.56)
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It follows, from Eq. (4.54), Eq. (4.55) and Eq. (4.56), that

o(1) =
(
a+ b∥uk∥pθ−p

)∫∫
R2N

|uk(x)− uk(y)|p−2 (uk(x)− uk(y)) ((uk − u0)(x)− (uk − u0)(y))

|x− y|N+sp
dx dy

− α

∫
Ω

up−1
k (uk − u0)

|x|sp
dx− λ

∫
Ω

f(x)(uk)
−γ(uk − u0)dx

−
∫
Ω

∫
Ω

g(x)(uk(x))
p∗µ,s−1(uk(y))

p∗µ,s

|x− y|µ
(uk − u0) dx dy

=
(
a+ bνpθ−p

) (
νp − ∥u0∥p

)
− α (∥uk∥pH − ∥u0∥pH)

− λ

∫
Ω

f(x)(uk)
−γ(uk − u0)dx−

∫
Ω

∫
Ω

g(x)(uk(x))
p∗µ,s((uk(y))

p∗µ,s

|x− y|µ
dx dy

+

∫
Ω

∫
Ω

g(x)(u0(x))
p∗µ,s(u0(y))

p∗µ,s

|x− y|µ
dx dy + o(1)

=
(
a+ bνpθ−p

)
∥uk − u0∥p − α∥uk − u0∥pH − λ

∫
Ω

f(x)(uk)
−γ(uk − u0)dx

−
∫
Ω

∫
Ω

g(x)((uk(x)− u0(x)))
p∗µ,s((uk(y)− u0(y)))

p∗µ,s

|x− y|µ
dx dy + o(1).

Hence, we obtain(
a+ bνpθ−p

)
lim
k→∞

∥uk − u0∥p − α lim
k→∞

∥uk − u0∥pH

= λ lim
k→∞

∫
Ω

f(x)(uk)
−γ(uk − u0)dx

+ lim
k→∞

∫
Ω

∫
Ω

g(x)((uk(x)− u0(x)))
p∗µ,s((uk(y)− u0(y)))

p∗µ,s

|x− y|µ
dx dy.

(4.57)

By Eq. (4.53), we have u1−γk ≤ h1−γ. Then, by applying the Lebesgue dominated convergence
theorem, we can conclude that

lim
k→∞

∫
Ω

f(x)(u+k )
1−γ dx =

∫
Ω

f(x)(u+0 )
1−γ dx.

Therefore, utilizing Lemma 4.3, we have f(x)u−γk u0 ∈ L1(Ω) for every k ∈ N. Now, considering
Fatou’s lemma, we can deduce that∫

Ω

f(x)u1−γ0 dx ≤ lim inf
k→∞

∫
Ω

f(x)u−γk u0dx.

Now, let us denote

lim
k→∞

∫
Ω

∫
Ω

g(x)((uk(x)− u0(x)))
p∗µ,s((uk(y)− u0(y)))

p∗µ,s

|x− y|µ
dx dy = l2p

∗
µ,s . (4.58)
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Hence, by employing Eqs. (4.57)-(4.58), we obtain(
a+ bνpθ−p

)
lim
k→∞

∥uk − u0∥p ≤ l2p
∗
µ,s . (4.59)

Hence, from Eq. (4.59), we obtain l ≥ 0. If l = 0, considering the fact that ν > 0 and
combining Eq. (4.53) with Eq. (4.59), we have lim

k→∞
uk = u0 in X0, which completes the proof

of the theorem. Therefore, let us assume that l > 0. By utilizing Eq. (2.8), we obtain

∥uk − u0∥p + o(1) ≥ ||g||
− p

p∗µ,s
r lpSC,µ. (4.60)

Now, considering Eqs. (4.57)-(4.59) and Eq. (4.60), we have(
a+ bνpθ−p

)
||g||

− p
p∗µ,s

r SC,µ ≤ l2p
∗
µ,s−p. (4.61)

By substituting Eq. (4.61) into Eq. (4.60), we obtain

νp ≥ S
2p∗µ,s

2p∗µ,s−p

C,µ

( a

||g||r

) p
2p∗µ,s−p

. (4.62)

Now, let us define, for any k ∈ N and ϕ ∈ X0

H(uk, ϕ) :=
(
a+ b||uk||pθ−p

)∫∫
R2N

|uk(x)− uk(y)|p−2 (uk(x)− uk(y)) (ϕ(x)− ϕ(y))

|x− y|N+sp
dx dy

− α

∫
Ω

up−1
k ϕ(x)

|x|sp
dx− λ

∫
Ω

f(x)(uk)
−γϕ(x)dx−

∫
Ω

∫
Ω

g(x)(uk(x))
p∗µ,s−1uk(y)

p∗µ,sϕ(x)

|x− y|µ
dx dy.

(4.63)
Therefore, for every k ∈ N, as k → ∞, we obtain

c = Eα,λ(uk)−
1

2p∗µ,s
H(uk, ϕ)

=
(1
p
− 1

2p∗µ,s

)(
a||uk||p − α||uk||pH

)
+
( 1

pθ
− 1

2p∗µ,s

)
b||uk||pθ − λ

(1
γ
− 1

2p∗µ,s

)∫
Ω

f(x)(u+k )
1−γ dx+ o(1)

=
(1
p
− 1

2p∗µ,s

)(
aνp − αlp

)
+
( 1

pθ
− 1

2p∗µ,s

)
b||uk||pθ − λ

(1
γ
− 1

2p∗µ,s

)∫
Ω

f(x)(u+k )
1−γ dx+ o(1)

≥
(1
p
− 1

2p∗µ,s

)
a

p∗µ,s
p∗µ,s−pS

− p
p∗µ,s−p

C,µ ||g||
− p

p∗µ,s−p

r

+ b
( 1

pθ
− 1

2p∗µ,s

)
||uk||pθ − λ

(1
γ
− 1

2p∗µ,s

)
S
− γ−1

p∗µ,s ||f ||m||u+k ||
1−γ + o(1).

(4.64)
Let us denote

Fb(t) = b
( 1

pθ
− 1

2p∗µ,s

)
tpθ − λ

(1
γ
− 1

2p∗µ,s

)
S
− γ−1

p∗µ,s ||f ||qt1−γ.
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Then, by performing a direct calculation, we can establish the existence of a lower bound and
global minima for the function Fb. Specifically, we have

Fb(t) ≥ −λ
pθ

pθ−1+γ

( pθ − 1 + γ

p∗µ,s(1− γ)pθ

)[(p∗µ,s + γ − 1)||f ||mS
− γ−1

p∗µ,s

] pθ
pθ−1+γ

[
b(p∗µ,s − pθ)

] 1−γ
pθ−1+γ

.

By letting k → ∞, we obtain

c ≥
(1
p
− 1

2p∗µ,s

)
a

p∗µ,s
p∗µ,s−pS

− p
p∗µ,s−p

C,µ ||g||
− p

p∗µ,s−p

r

− λ
pθ

pθ−1+γ

( pθ − 1 + γ

p∗µ,s(1− γ)pθ

)[(p∗µ,s + γ − 1)||f ||mS
− γ−1

p∗µ,s

] pθ
pθ−1+γ

[
b(p∗µ,s − pθ)

] 1−γ
pθ−1+γ

.

This contradicts the assumption c < cα,λ. Therefore, we conclude that ν = 0. As a result,
lim
k→∞

uk = u0 in X0. The proof of Lemma 4.4 is now complete.

5 The first solution of the problem (1.1) in N+
α,λ

In this section, our goal is to establish the existence of a solution to the problem (1.1) by
employing a minimization method on the function space N+

α,λ. We now present a lemma
that demonstrates the existence of a negative minimizer for the functional energy Eα,λ in the
function space N+

α,λ.

Lemma 5.1. Let λ be a positive parameter and let α ∈ (0, aµ0). Then, we have

m+
α,λ = inf

u∈N+
α,λ

Eα,λ(u) < 0.

Proof. For u ∈ N+
α,λ ⊂ Nα,λ, we have

Eα,λ(u) =
(1
p
− 1

1− γ

)
[a∥u∥p − α∥u+∥pH ] +

( 1

pθ
− 1

1− γ

)
b∥u∥pθ

−
( 1

2p∗µ,s
− 1

1− γ

)∫
Ω

∫
Ω

g(x)(u+(x))
p∗µ,s(u+(y))

p∗µ,s

|x− y|µ
dx dy

= − 1

2p∗µ,s(1− γ)

[
(1 + γ)[a∥u∥p − α∥u+∥pH ] +

(
pθ + q − 1

)
b∥u∥pθ

−
(
2p∗µ,s + γ − 1

)∫
Ω

∫
Ω

g(x)(u+(x))
p∗µ,s(u+(y))

p∗µ,s

|x− y|µ
dx dy

]
< 0,

since u ∈ N+
α,λ and p∗µ,s > pθ. Therefore, m+

α,λ < 0. The proof of Lemma 5.1 is now completes.
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The following theorem guarantees the existence of a non-negative solution in N+
α,λ for

problem (1.1), given that the assumptions (f) and (g) hold.

Theorem 5.2. Suppose that the assumptions (f) and (g) are fulfilled. Then, problem (1.1)
has a non-negative solution in N+α, λ for every 0 < Λ∗ = min(Λ1,Λ2).

Proof. Let us fix 0 < λ < Λ∗ = min (Λ1,Λ2). According to the variational principle of
Ekeland combined with Lemma 3.2, we obtain the existence of a minimizing sequence {uk}k ⊂
N+
α,λ ∪ {0}, that satisfies Eq. (4.29) and Eq. (4.30). Consequently, we have

Eα,λ(uk) → m+
α,λ < 0 as k → ∞,

which implies {uk}k ⊂ N+
α,λ. Therefore, using Lemma 4.4 with the fact c = m+

α,λ, it follows
that uk → u0 in X0, up to a subsequence. Furthermore, using Eq. (3.28) combined with
Lemma 4.1, we obtain

(1 + γ)
[
a∥u0∥p − α∥u0∥pH

]
+ b

(
pθ + γ − 1

)
∥u0∥pθ

−
(
2p∗µ,s + γ − 1

)∫
Ω

∫
Ω

g(x)
(
u+0 (x)

)p∗µ,s
(
u+0 (y)

)p∗µ,s

|x− y|µ
dx dy > 0,

which implies u0 ∈ N+
α,λ, and m+

α,λ is achieved at u0 by Eα,λ is continuous on X0. Taking
k → ∞, together with Fatou’s Lemma in Eq. (4.38), we deduce that H(u0, ψ) ≥ 0 [where H
is defined in Eq. (4.63)] for ψ ∈ X0 with ψ ≥ 0.

Next, we take ψ = Ψ+
ϵ as a test function, where Ψϵ = u+0 + ϵψ and ψ ∈ X0. By repeating

the steps from Eq. (4.38) to Eq. (4.49) with u0 in the place of uk, we obtain H(u0, ψ) ≥ 0 for
arbitrary ψ ∈ X0. Thus, we have

λf(x)(u+0 )
−γψ ∈ L1(Ω) and u0 ∈ N+

α,λ.

Since 0 ̸∈ N+
α,λ by Lemma 3.2, we have u0 ̸≡ 0. Moreover, by Eq. (2.10) with ψ = u−0 together

with Eq. (4.42), we obtain ∥u−0 ∥ = 0. Hence u0 is positive. By applying the maximum
principle, we can conclude that u0 is a non-negative solution of (1.1). This completes the
proof of Theorem 5.2.

6 The second solution of the problem (1.1) in N−
α,λ

In this section, to prove the existence of a solution in N−
α,λ, we can follow a similar approach as

in the proof of Theorem 5.2. However, in this case, we will consider the space N−
α,λ, which con-

sists of non-negative functions in the Nehari manifold. The following theorem establishes the
existence of a non-negative solution in N−

α,λ for problem (1.1), provided that the assumptions
(f) and (g) are satisfied.

Theorem 6.1. Suppose the assumptions (f) and (g) are satisfied. Then, for 0 < Λ∗ =
min(Λ1,Λ2), problem (1.1) has a non-negative solution in N−

α,λ.
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Proof. We start by observing that N−
α,λ is a closed set in X0. By the variational principle

of Ekeland, we can extract a minimizing sequence {vk}k ⊂ N−
α,λ that satisfies the condition

for infu∈N−
α,λ
Eα,λ(u). Moreover, since the sequence {vk}k is bounded in X0, we can choose a

subsequence such that {vk}k ⇀ v0 in X0. Applying Lemma 4.4, we have that {vk}k → v0 in X0

up to a subsequence. Since, N−
γ,λ is closed, we conclude that v0 ∈ N−

α,λ with Eα,λ(v0) = m−
α,λ.

By repeating the same argument as in Section 5, we haveH(v0, ψ) ≥ 0, so that λf(x)(v+0 )
−γψ ∈

L1(Ω) for all ψ ∈ X0, and v0 belongs to N−
α,λ. Combining this with Lemma 3.2, we deduce

that v0 is a nontrivial solution of problem (1.1).
Finally, by applying the strong maximum principle, we conclude that v0 is a non-negative

solution of problem (1.1). This completes the proof of Theorem 6.1.

7 Proof of Theorem 1.1

Proof. By applying Theorems 5.2 and 6.1, we conclude that problem (1.1) has two non-negative
solutions, denoted as u0 and v0, respectively. Since N+

α,λ ∩ N−
α,λ = ∅, the solutions u0 and v0

must be distinct. This completes the proof of the Theorem 1.1.
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