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Abstract
The aim of this paper is to investigate the existence and the multiplicity of solutions to
the singular Kirchhoff non-local problem with Hardy and Choquard nonlinearities. The
problem is defined as follows:
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where, Q@ C R” is a bounded domain, s € (0,1), N > sp, v € (0,1), a, X are two

positive real parameters 0 < p < N, pi = N]\i’; - is the fractional critical Sobolev
exponent, while p, s = ((%p_ ;z ; and py, o = (%)(?\,Ni _Sg ) denote the critical and up-

per critical exponent in the sense of Hardy Littlewood Sobolev inequality respectively,
M(t) = a+bt?1, witha > 0,0 > 0 and 6 € <1,min{2pzvs/p,pzvs}). Furthermore, f
is a non-negative weight and ¢ is a sign-changing weight. The novelty in this work lies
in the combination of a fractional framework and a singular term with the Hardy and
Choquard nonlinearities. To establish the existence of at least two positive solutions for
the problem, the Nehari manifold approach is employed.
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1 Introduction

This work is devoted to investigate a Choquard nonlocal problem with Hardy nonlinearity
and a singular term. The problem is described by the following equation:
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where, Q C RY is a bounded domain, s € (0,1), N > sp, v € (0,1), o, A are two positive

real parameters 0 < p < N, pi = NNTZ;p is the fractional critical Sobolev exponents, while

Pus = ((]]\\f,p SZ) and pj = <§>(%H> denote the critical and upper critical exponent in

the sense of Hardy Littlewood Sobolev inequality respectively, f is a non-negative weight
and ¢ is a sign-changing weight. The continuous function M : R — R{ is defined by
M(t) = a+bt’1 witha > 0,b > 0 and § € (1,min{2p;7s/p,pzvs}), where () is a bounded
domain of RY, s € (0,1), a and X are positive real parameters, N > sp, v € (0,1),0 < u < N,
Dps = (g) . (%{—;g) is the upper critical exponent in the sense of Hardy-Littlewood-Sobolev

inequality, f is a positive weight and g is a sign-changing function. The operator (=A)? is a
nonlocal operator defined as
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where B.(z) :={y € Q : |x—y| < ¢}. We make the following assumptions regarding the weight
functions f and ¢ in the problem:

(f) Let f:Q — R be a wieght such that f > 0 a.e. in Q and f € L™(Q), with m := p*fiw.

(g) Let g : 2 — R be a sign-changing wieght such that g € L", with r := Pi_ where

Pu,s—Ppu,s
Duys = % is the critical exponent in the sense Hardy-Littlewood-Sobolev inequality.

To handle the Hardy term in equation (1.1), we utilize the fractional Hardy inequality, which

is given as:
()" / / [6(z) = o)
dz dy. 1.2
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This inequality allows us to manipulate the Hardy term in the equation. The constant pg is
the sharp constant associated with the fractional Hardy inequality. For further details, refer
to the reference [8].

Problem (1.1) corresponds to the Choquard-Pekar equation, which has found significant
applications in various fields such as quantum mechanics, condensed matter physics, and ma-
terial science. For more detailed information on this equation, please refer to the references
[12, 16]. Moreover, these types of problems have been utilized in the modeling of diverse phe-
nomena, including chaotic dynamics, turbulence, financial dynamics, and plasma physics. To




delve deeper into these applications and explore further references, we recommend consulting
the works [1, 3] and the references provided therein.

In recent years, there has been significant research on the uniqueness, existence, mul-
tiplicity, and regularity of solutions for fractional Choquard problems. For more detailed
information, we recommend referring to the following recent articles: Fiscella and Mishra [6],
Fiscella and Vaira [7], Gao, Yang, and Yang [9], Goyal and Sharma [10], Muruganandam and
Srinivasan [15], Wang, Xiao, and Yang [19], and Yang, Wang, and Wang [20]. These articles,
along with their references, provide extensive insights into the analysis of fractional Choquard
problems.

Fiscella and Mishra [6] focused on investigating the multiplicity of non-positive solutions
using the Nehari approach for problems involving singular and critical nonlinearities with a
Hardy term. Their research contributes to our understanding of the existence of multiple
non-positive solutions in this context.

In [7], Fiscella and Vaira employed variational methods along with an appropriate trunca-
tion argument to establish the existence of two solutions for a critical Kirchhoff-type problem.
Their work demonstrates the existence of multiple solutions in this critical setting.

Goyal and Sharma [10] used a fibering map analysis to show the multiplicity of solutions
to the fractional weighted Choquard Kirchhoff equation with both Hardy and singular non-
linearities. Their research provides insights into the existence of multiple solutions within this
framework.

Furthermore, Wang et al. [19] investigated the multiplicity of non-negative solutions using
the Nehari method. Their work contributes to our understanding of the existence of multiple
non-negative solutions in the context of fractional Choquard problems.

In this paper, our focus is on a specific type of nonlocal Choquard Kirchhoff problem driven
by Hardy and singular nonlinearities, denoted as (1.1). One notable challenge in studying
this problem is that the associated energy functional, which characterizes the solutions, is
not differentiable throughout the entire space. Consequently, the conventional critical point
theory cannot be directly applied to address our problem.

Motivated by the works of Goyal and Sharma [10] and Fiscella and Mishra [6], we adopt
the Nehari-manifold technique as a powerful tool to establish the multiplicity of solutions for
problem (1.1). This approach allows us to overcome the non-differentiability of the energy
functional and explore the existence of multiple solutions.

By employing the Nehari-manifold technique, we aim to provide insights into the existence
and multiplicity of solutions for the considered nonlocal Choquard Kirchhoff problem with
Hardy and singular nonlinearities, as described by (1.1).

To present the main result of this work, we shall introduce the following notations: Let
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where Cy(N, p), S, dy o will be defined in (2.6), (2.7) and (2.12) respectively.
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Our main result is the following theorem.

Theorem 1.1. Let N > sp with s € (0,1), a € (0,ap),a > 0,b> 0 andf € <1,min{2pzjs/p,pz7s}).

Assume that the assumptions (f), (g) hold. Then, there exists A, which depends on a, such
that problem (1.1) has at least two non-negative solutions for all A € (0, A,).

This paper is structured as follows:

Section 2 provides the necessary background information, including basic definitions and
notations that will be used throughout the paper. In Section 3, we introduce and discuss the
application of the Nehari manifold to our specific problem, as described by problem (1.1). This
section presents the key concept and technique used in our analysis. Section 4 is dedicated
to proving important results related to the compactness of the functional energy associated
with our problem. These results are essential for the subsequent analysis and proof. In
Section 5, we establish the existence of a non-negative solution within the Nehari manifold
N (j ,» demonstrating the existence of one solution with a specific property. Section 6 focuses
on proving the existence of a non-negative solution within the Nehari manifold N s Which
completes the proof of our main results.

2 Preliminaries

In this section, we introduce some fundamental notations and definitions related to fractional
Sobolev spaces and Choquard equations, which will be utilized in the subsequent parts of the

paper.
We begin by defining the fractional Sobolev space W*P(R¥Y), which consists of functions

u in LP(RY) satisfying a certain regularity condition. Specifically, we have

u(z) — u(y)

WeP(RY) = {u e LP(RV) \
|z — y|P+s

e PRV x RN)},

where s € (0,1) and p is a fixed exponent. The fractional Sobolev space is equipped with the

norm
y)P 1/p
lalbwesceny = ullen, + ([ 2 ) ™ 25)



This norm measures the regularity and decay properties of functions in the fractional Sobolev
space.
In our analysis, we will consider the space Xy, defined as

Xo = {uE WHP(RY) :u =0 a.e. inRN\Q},

where (2 is a given domain. The norm in XO is given by

1/p
lullv, = ([, i dody) " = .

which is equivalent to the norm defined in Eq. (2.5). This space allows us to consider functions
that vanish outside the domain 2.
Now, we state the following important inequality.

Proposition 2.1 (Proposition 2.1 of [15]). For u, v € L7 # (RN). Then, we have
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Thus from Proposition 2.1, we have
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where C, (N, 1) is a suitable constant. Define
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To overcome the singularities of ©~7 and obtain a non-negative solution for problem (1.1), we
introduce the following modified problem

Using eq. (2.6), we define
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Here M(t) = a +bt’~! and u™ = max{u, 0}. Therefore, we say that u € X, is a weak solution
of the problem (2.9), if f(z)(u)™"¢ € L*(Q), and the following equation holds:

(a+wawy%¢»- §§¢@Mx (2.10)
- [y o [ [ oo G ey i o asay =0, @y

for any ¢ € X,, where

u() [P~ (u(z) — u(y))((z) — ¢(y))
(u,p) = //RQN dxdy.

|z —y| Ve

Note that it is straightforward to see that if u > 0 is a solution to problem (2.9), then it is
also a solution to problem (1.1). Note that, it is very simple to see that if u > 0 is a solution
to problem (2.9), then it is also a solution to problem (1.1). Problem (2.9) has a variational
structure, and the functional energy Ea, At Xo — R is defined as follows:

a 6
Ewww:ymv >l u*W————/f

P s + pu,s
// v (u™ () d dy.
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Here, for all u € X, we denote
Julty = [ B
o |zl*

Using the inequality (1.2), it can be seen that for any o € (0,apup), the functional energy
E,  is continuous and well-defined. Also, since v+ < |v| and inequality (1.2) yield for any
ve Xp\ {O}, we have

o) = oW g - (CADIPN (@) = v, 4 (2.12)
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with d, . = (a — %) > 0 for any a € (0,aug). Note that, inequality (2.12) guarantees the

positivity of the functional energy.
Now, we recall the following important result.

Lemma 2.2. (/18, Lemma 1.32]) Let p € (1,00), N > 3, and {u} be a bounded sequence in
LP(RY). If up — u a.e in RY as k — oco. Hence, up, — u weakly in LP(RY).

3 Fibering map analysis

To analyze problem (1.1) and address the fact that the energy functional E, , is not bounded
below on Xy, we can employ a minimization method called the Nehari manifold. This approach
enables us to identify critical points of the energy functional E,, .



Let us define the Nehari set for problem (1.1) as follows:

Noa = {u € Xo: (Bap(u),u) = O}

= {ue Xo: allulP + bulf - ol |y - A/Qf @)w")™ da

/ / / iﬂ;’(:f*(w))pz’s dz dy = 0}.

Now, we define the fibering map ®,, : [0,00) — R as ®,,(t) = E,\(tu). Specifically, for u € X,
we define
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so that
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It is evident that the Nehari manifold is closely related to the function ®,. In particular,
u € Ny, if and only if ¢/ (1) = 0. Therefore, we decompose the manifold N,  into three parts
corresponding to local minima, local maxima, and points of inflection as follows:

./\/'O:é'f)\ ={ueNyy:n(l) =20}, ./\/3,,\ ={ueN,,:9l(1) =0}

To handle the sign-changing weight g, we introduce the sets:

p#s + Pls
g’ uEXO // (u(z)) dwdy>0},

Ifc —yl*
pus + Pls
g = ueXo // (u(z)) dxdyg()}.
Il’ —yI“

We now present a crucial lemma that provides important properties of the Nehari manifold
and establishes existence and uniqueness results for critical points of the energy functional.



Lemma 3.1. Let a € (0,apu9). Then, the following holds:

(1) Letwu € g*. Then, there exist positive constants Ay > 0 and a unique tyayx = tmax(u) > 0,
tH =1t (u) > 0 and t7 =t~ (u) > 0 with tT < tmax < t~ such that the following
conditions are satisfied for any A € (0,Aq):

— ttu e N,
- tiu 6 NO:)\,

— E,a\(ttu) = Ogliél_Ea,)\(tu),

— B \(tTu) = max E,\(tu).

ti max

(2) Letu € g—, a € (0,aug) and X\ > 0. Then, there ezists a unique positive constant t* such
that the following conditions are satisfied:

- t*u E NC—::)U
— E,a\(t*u) = inf;0 By 5 (tu).

Proof. Fix u € Xy. We define ¥,,: Rt — R as follows

1Iju(t) — atp—QpZ,s UHp + btpe_pr‘vs quG . CYtp_QpZ’S

=265 [ fla)(w) " do.
Q
(3.18)

We observe that tu € N, if and only if ¢ satisfies the equation:

i [ [,

|z — y|~

From Equation (3.18), it is evident that lim U, (t) = —oo and tlim U, (t) = 0. Moreover, by
—00

t—0t+

differentiating W, (¢) using Equation (3.18), where W! (¢) denotes the derivative, we find that:
() = (p— 20, )2 (aljull” = a5, ) +b(p0 — 25, )8R P (3.19)
—»A(l-—'y——2pzﬁ>t_7_2m;s/2]%1j(u+)1_7dx. (3.20)
Given that 0 <y <1 <pb < 2pj, ., we can deduce that
Jim W (t) >0 and lim W, (1) < 0.

Hence, there exists a unique tpax = tmax(u) > 0 such that U, (¢) is decreasing in (¢pax, 00),
increasing in (0, tyax), and Vu(tmax) = 0. We can estimate W, (fyax) from below as follows

\Du(tmax) = Imax \Iju(t) = max (btpe—szys
t>0 t>0

pd | T T
w+%@>%@m,



where W, (t) is given by
qj_u(t> = tp—QP;,s (a”qu . aHu—I—Hi’{) o /\tl_V—QPZ,s / f(x)(qu)l_“f dr.
Q

Using the inequality in Equation (1.2), we can infer that for u € X, for any a € (0, apuy), the
functional W, (t) is bounded from below by

max W, (t) > ¢,(t),

>0
with
8ult) = duglull e — 370 [ f(a) () do
Q
Hence, we have

2p}, s+ —1
p+y—1

(pramdy( Ehamr ) (d
ot —p/\2pr +y—1 ETT
Pps — P Pus T ()\ fQ u+ 1— ’YdiL‘) pty—1

max ¢, (t) =

Hence, using assumption (f) and Eq. (2.8) combine with Holder inequality, we obtain
\Iju (tmax)
213‘,‘ S 1—

. do o (2pF  — 2p}, s+ -1 . p— eyap®
> (p‘tﬁ 1)( ,*( Pp,s p)) p+y—1 /\ﬁolf”m) pty—1 S%HUH%MS > 0.
2pp,,s -p 2pp,,s +v - 1

Now, according to the behavior of g, we split the proof in two cases
Case 1: Let u € g*. Since

()P

pu s 23 .
[ ] dudy < Cy(N, 1)~ 5 ] - (3.21)
RN JRN |$ - y|

where S is a positive constant, we can choose

+~y—1 * (2p},s+7—1) Pt +y—1
N A e (p +7 - 1> B <da,a(2pu,s —p)>(2‘;w o e 1 ( 1 )22;1,)7
2P =D 2+ =1 1F 1l A Co(N, 1)
to guarantee the existence of a unique t* 1= t7(u) < tiymax and t= 1=t~ (u) > tyax satisfying
VPhos (uF Pp,s
o0y = [ [ DRI gy — ),
|$ —yl

which implies t*u,t"u € N, . Furthermore, from the equation ¢f, (1) = 2 »sT1! (), we
conclude that W/ (t7) > 0 and W/ (t7) < 0. Thus, we can deduce that t"u € N \ and

t*u € N,. Now, assuming

@, (1) = 12! / / p)Pie (@)l dy).

I:L‘ -y~
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We obtain that for all t € [0,t7), ¢/ (t) <0, and for all t € (t*,¢7), ¢,,(t) > 0. Consequently,
E, \ttu) = min E, \(tu).
AtTu) = min Eq(tu)

Similarly, for all t € [t7,t7), ¢, (t) >0, ¢, (t7) =0, and for all ¢t € (¢7,00), ¢,(t) < 0. Hence,
Eo\(t7u) = max E,\(tu).

Z tmax

Case 2: Consider u € g~. By utilizing the fact that lim ¥, (t) = —oo, we can conclude the

t—0+
existence of a unique t* > 0 satlsfylng

pus + Pli,s
// (u? ()" drdy for all A > 0.

Ix —ylr

Since u € g~, it follows that ¥/ () > 0 and ¥,,(#) < 0. By repeating the same calculations as in
Case 1, we obtain ¢f, (1) = t*ist1W] (¢), where W, (t) > 0. Consequently, we have t*u € N .
Thus, we have completed the proof of Lemma 3.1. O

We now demonstrate the uniqueness of the trivial solution in a specific parameter range.

Lemma 3.2. Consider o € (0,apg). Then, there exists a positive constant Ay such that for
all X € (0,Az), we have N, = 0.

Proof. We proceed by contradiction, assuming the existence of u € N7 ,\{0} for all A € (0, A).
We consider two cases

pMé + p;,s
Case 1: If / / | |<5 (z)) dx dy = 0, using Eq. (3.13), we have
r—y
allul” + bllul”” — aflut|} - A/ fx)(u™)' =7 dz = 0. (3.22)
Q

Now, since pf > 1 > 1 — v and considering a € (0, app) with Eq. (2.12), we obtain

0= (L+7)allull” — alu|5] + b8+ — 1) ul”
> dao(1+)|ull” + b(p0 +~ = Dul”” >0,
which leads to a contradiction
)P (u ()
Case 2: If dx dy # 0, we can use Eq. (3.13) and Eq. (3.15),

|z —y|»
with t =1, Wlth t = 1 to obtain the following equations

(@5, — Plallull’ — allu* 7] + b(2p, . — p6) ]
A+ D) [ F@)) T de =0,
Q
ﬂ+7HMWW—aWﬁW]+MM+w—1WMW

))Pis (ut Ppi,s 3.24
—(2p st — / / (u?(z)) dx dy = 0. (3.24)

|x -y~

(3.23)
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We define J, y: Nyx — R as

(1 + o)allu]” — aflu™|}] + b(p9 +7 - 1) [l
(2p, +7—1)

[,

Using Eq. (3.24), we find that J, » = 0 for all u € N ,. However, by assuming condition (g),
Eqs. (3.21), (2.12), and the inequality (¢ + d) > 2v/cd for any ¢,d > 0, we can deduce that

O{

2/ (T + ) (pf + 7 — 1)dyo||u) "
2ps+v—1)

_ HU/HQPZ’S [2\/(1 +7)<p9 + v 1)da,ocb _C (N /_L)SQPIT:’S] ‘
(2055 +7 = D7t

Ja,)\ Z C ( )

Now using Eq. (2.12), assumption (f) and Holder inequality in Eq. (3.23), we can obtain the
following expression

_1

(
/\(2pz,s + Y= ]')Hf”ms :| 0+~
2\/ (2p s —p)(2p;, s — PO)daob

Jull < |

Thus, we obtain

(04+1)(2p}, o +7—1)
S @ [Ml T el s
—0—1 2p:175 + fy - 1

2¢ 2,0 =~ D)2 — PO)duab
[ 2pys +7 = DI ]

Hence, for all uw € N7, \ {0}, Jox(u) > 0, which leads to the desired contradiction. This
completes the proof of Lemma 3.2. O

)\<A2i:

The following lemma establishes the existence of a gap structure in N, ,, demonstrating
the presence of distinct magnitudes within the solution space.

Lemma 3.3. Consider o € (0,ap) and X € (0,Aq). Then, there exists a gap structure in
Na such that
IUN > Ao > Ay > [ul],

for every u € N, and U € N, where

4 [ 2\/(1 +7) (P + v — 1)daob 157501
© T L@py, + v = 1)Cy (N, i) S P

] 9+7
2\/ 2pms —p) 2pu7s — pO)dy b
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Proof. If u € N, +/\ C N, we can utilize assumption (f) and combine Equation (2.8) with

the Holder 1nequahty to obtain the following inequality
(207 = p) |allul” = alle 15| + (20} = p0)
< )\<2va5 +v— 1) / f(m)(qu)lfvde'
Q

< A2+ = D)IflS™

Combining this inequality with Equation (2.12), we obtain:

fuf < [

} — A,
2\/ Qp#s— 2]9“3 p0)dgy.ab

Now, considering U € N, and utilizing assumption (g), we have:
(14 DU — allU |1 4+ b(p8 + 7 — 1) U]
< (2P} + 7 = DN, ) STk [ U P,

By this, and Eq. (2.12), we obtain

20/ (1 + )8 + 7 = Do ab|[UI™* < (20}, +7 — 1)C,(N, )8 7

This yields

20/ (1+79)(p0 +~ — 1)daob V527

vl > |7 =4,

2p5 o+ — 1)Cy(N, 1) S Pies

(3.25)

By performing a direct computation, we can verify that Ag > A; for all A € (0,As). Hence,

we can conclude that
[U|l > Ag > Ay > |Jul for all u € N7, U € N ;.

This completes the proof of Lemma 3.3.

]

As a direct consequence of the lemma, we can establish the closedness of NV, in the X

topology.

Corollary 3.4. For any o € (0,aug), the set /\/'a_,)\ 1s closed in the Xy topology for all X €

(O,Ag).

Proof. Consider a sequence {uy}y in N, satisfying u,, — u in Xo. Therefore, u € N, U{0}.

By Lemma 3.3, it follows that

ul| = lim [[ur] > Ao > A, > 0.
k—o0

Hence, inequality (3.26) implies that u is not identically zero. Therefore, u € N A

of Corollary 3.4 is now completed.

(3.26)

. The proof

O
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The lemma below demonstrates the existence of a continuous function £ that ensures the
preservation of the property N » under small perturbations.

Lemma 3.5. Let o € (0,aup), A >0, andu € ./\/‘ij. Then, there exists € > 0 and a continuous
function &: B.(0) — RT such that

() >0, £0)=1 and {(v)(u+v) GNi/\ for all v € B.(0),
where B.(0) = {v € Xy : ||v] < €}.

Proof. Here, we provide the proof only for the case where u € N ; y» while the proof for the
case N, is similar. Let F': Xy x RT — R be a function defined as

F(v,2) = 27 (allu+ o] = all(u+ )|l ) + 270w+ ol
—)\/f u+v+)1_7dx
i / o) (o) ()i () @)

|z — y|»

Since u € Nf, C N, ., we obtain

F(0,1) = allul|” + bIIUII”a - a||u+||§1 - A/Qf(ﬂf)(lﬁ)l_” d

p s+ Plis
// e (u ()" dxdy =0,
!x—y!“

(0.1) = (1 + ) (allulP — o) + b(pe 149 Jul”
p#s + Pls
- (2}9;75 +v - / / (u? () dx dy > 0.

Ifc — |~

(3.27)

and

OF

9z (3.28)

Now, applying the Implicit Function Theorem to the map F' at the point (0, 1), we obtain
the existence of € > 0 such that for all v € Xy where ||v|| < €, the equation F(v,z) = 0 has
a unique solution z = &(v) > 0. Therefore, utilizing Equation (3.27), we find that £(0) =
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Furthermore, since F(v,&(v)) = 0 for any v € X, with ||v|| <€, we have
0= €)™ (allu -+ P — ol + 0| ) + €@ bl + o]
- )\/ f(@)((u+0)*) i
2pus+7 1 / / y))Viee (u* () )P dx dy

Ifﬂ -y~

=§11(U)( alls)u+ 0l = al@) -+ o) Iy = [ f@) )+ o)) ds

+ d||€(0) (u + )|

* *

Dis

-/ /gm (@)t )] [ ()] o)

|z — y|#

This implies that,
E(v)(u+v) € N,y for every v € Xg;and v <e

On the other hand, we can calculate the partial derivative of F' with respect to z at the point

(v,€(v))

OF
87:

(v:€(v))

= gp_i(v) (1) (allE@) (w4 0)]” = allg@)(u+v)* 11} )

+ (p0 = 14 9) @) (u + o)

"
,5 Pu,s

e / /Qg<m>[<£<v><u+<y|>i]_y|[:§<v><u+<x>>} .l

Therefore, by Equation (3.28), we can choose € > 0 satisfying ¢ < € For any v € X, with
|v]| < €, we have

E)(u+0)|”

(147 (all@)(u+ )" = allé@)(w+0)*[15) + (p0 = 1+7)b

— /Qg<x>[<g<v><u+<y|>i}_; |[“(£(v)(u+(fr))] iy

This imply that

,S

§(v)(u+v) € Ny forall v e B(0).
Thus, the proof of Lemma 3.5 is now completed. O

Now, we show the boundedness from below and coercivity of the functional energy E, ».
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Lemma 3.6. Consider a € (0,ap) and XA > 0. Then, the functional energy E, \ is bounded
from below on N, and coercive.

Proof. Let u € N, . By assumption (f), Eq. (2.8), and Eq. (2.12), we can combine them
with Holder’s inequality, noting that p# < 2pj, , to obtain

Eonlu) = (+ - i)(auunp—anwnp) + (25 = 3o ol

P2
_)\<__ 1'yd
1=~ 2, /f .
11 1
> (e Y duallull? M~ ) 1S
P 2P L=~ 2pj

Since p > 1 — =, it follows that E, , is coercive on N, . Now, let us introduce the function
F(t) defined as

1 1 P 1 1 (1-y)
F(t) = (———>dmtﬁ —)\< ) 8
0= (5~ 5 ) = )l

We can observe that F(t) attains its minimum at

to. = <)\(2pus+’y_1) )p T
e (2pu7s _p)da,a .

Therefore, we have

Ea)\(u) Z

)

da,0 (2,5 — ) (1 =7 —p) [ <A<2pu S-S
2pps, (1 =) ((2py, — p)da,a)

where C' > 0 is a constant. Hence, E, » is bounded below on N, . This completes the proof
of Lemma 3.6. O]

RIS

4 A compactness result for £, )

In this section, we aim to establish a compactness result for the functional energy E, . To
do this, we start by defining the quantities

mb, = inf  E,x(u) and m_, = inf E,,\(u).

C!,)\ ) ) _
ueN;)\U{O} ueN,

Here, m;“ , represents the infimum of the energy functional E, » over the set N, ; , U{0}, and
my,  represents the infimum over N -

Using Lemma 3.2 and Corollary 3.4, we establish that both AV, J ,U{0} and NV, o are closed
sets in X, for A < A,.
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By applying Ekeland’s variational principle to the functional E, y, we can extract a min-
imizing sequence uy, from either N\ ;r , U{0} or N ,. The sequence uy satisfies the following
conditions

1
mp < Eaa(ug) <mg, + and  Fy\(u) > FEoa(ug) + %Hu — ug|- (4.29)

e
Here, mi ) Tepresents the corresponding infimum values defined earlier.

Next, using Lemma 3.6, we can conclude that the sequence {uy}x is bounded in N, ,.
Specifically, we have ||ug|| < C for all k, where C} > 0 is a constant.

Therefore, the sequence uy is bounded in N, , and by the weak compactness of Xy, there
exists a weakly convergent subsequence uy; that converges weakly in Xy to some element uy,
ie.,
up — up  weakly in Xj. (4.30)

Now, in order to prove the compactness result for £, y, it is necessary to establish several
intermediate lemmas that will aid in the subsequent proof.

Lemma 4.1. Consider a € (0,ap9) and A € (0, A1), with Ay is define in Lemma 3.1. Consider
{ur}r C N, satisfy Eq. (4.30). Then, the following results hold

(a) If {ur} C N;)\ for every k € N, we have
(147 [allun " = oot 5] + b8+ = 1) e |

(247 -1) / /Qg(x)<u+<f£>iﬁ;|<3+<x>>f’fw dudy > Cy

b) If {up} C N, for every k € N, we have
a,\
(1) [allunll” = et 7| + (00 + 7 = 1) ]

where Cy > 0 is a constant.

Proof. We only prove case (a) since case (b) can be proved similarly. Firstly, considering
{ughr, C N ; \» it is sufficient to prove the following inequality

liminf [(2p],, = p) (allull” = alluf %) + b5, — p8) s
<A@+ —1) / F(@) ()1~ da.

We proceed by contradiction and assume that
liminf |20}, = p) (alluwsll” = alluf I7,) + b(2p,, — p0) sl

APty - 1) / £() () d.
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Since {ug}x € N, it follows that

(2070 = ) (allnll” = allaf %) + 80207 = 0l < A2+ 7= 1) [ fa)(ul)' e
Q

On the other hand, using condition (f) and applying Vitali’s convergence theorem, we obtain

i [ @) e = [ fa)) o de

Hence, we have
timin | (25, — p) (alluell” = allug 17 ) + (20}, — p) e

< timsup | (255, = p) (alluell” = allui [5) +b(25. = p0) ]|

k—o0

<A+ -1) [ Fe)) e,
Q
which implies

lim |29}, = ) (allwsll” = allu I7,) + b(2p, — p0) s

k—o00

= (24 -1) [ s s 30

Using Equation (4.31), we can find positive constants A > 0 and A, > 0 such that d,, <
A, < aA for a € (0,ap). Equation (2.12) is also referenced, which leads to the following
convergence statements

allugl]’ — alluf |y = Aas lukl” = A as k— oo
Using the above results, we can derive the equation

(29}, — P)Aa + (20}, — PO) A’ = N2p, , + 7 — 1) /Q Fl@) (wh) ' da.

Finally, by rearranging terms, we obtain

2" —p)As  b(2p*  — pl)A?
/\/ f@)(ud) ™ dr = ( ]1“’8 p) ( ]1“’8 P0) ) (4.32)
(2o +7—-1) @ +7—1)
Now, according to Lemma 3.2, for any A € (0, A;), we have the following inequality
2 * 2PZ’S+’Y*1 p72pz7s
0 < ( 1+~ ) < Phs— D > = (doa ) p“lfj_ / It 1 7da:> Ty
2P — 2p,” + 7 —1 (4.33)

/ / VRN 4 g,
k—>oo ‘x —y|*
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Considering that {uy}, C N, C N, and Eq. (4.32), we obtain

i [ [ A

koo | =yl

) (H_v>+bAe<M>_
“ 2p;‘;75+7—1 2p;5+7—1

Substituting Equation (4.31) into Equation (4.33), and using d, A4 < A,, we obtain

dA9<p€+—7—1> <0
2+ —1/ 7 ’

which leads to the desired contradiction. This completes the proof of Lemma 4.1. O]

Now, we fix v € X with ¢y > 0. Referring to the constants C; > 0 introduced in Lemma
4.1 where ||lug|| < C}, and recalling the constant Cy > 0, we can deduce the following inequality

for ke N
(1—7)Cy
k
By utilizing Lemma 3.5, we can establish the existence of a sequence of functions (&), that
satisfies £;(0) = 1 and & (t0)(ux + tp) € N, for t > 0 small enough. Since uy € N\ and
Ee (1Y) (ug + 1)) € Na.a, we can conclude that

< Oy, (4.34)

al|ui " + Olfur | = afjuf I, — A/ﬂf(fli)(ﬂi)“ dx

[ [y, 439
aJa |z —yl»
and
2(tw) (alue + tll” = al (e + t) 1)
=267 0w) [ 1) (G 007) o4 b )+ e )
9(@) ((un + 0) 7)™ (e + 10) ()™
=& (tY) /Q/Q T— dx dy = 0.

Now, let us define &;.(0) as the derivative of & at the point 0 such that (&}.(0),v) € [—o0, 0]

for every 1 € Xy. However, if the derivative of the function &, does not exist, we can replace

tyY) —1

€4(0) with g;(0) = Jim =1
—00

123
t, > 0.
In the following lemma, we establish a key property of the sequence £ (0) that will be
crucial for the subsequent analysis.

for some sequence (t;)y satisfying tx — 0 as k — oo and

Lemma 4.2. Consider o € (0,ap), X € (0,A1), and suppose {u}r C /\/Ojj)\ satisfies Eq.
(4.29) and Eq. (4.30). Then, (£.(0),4) is uniformly bounded for any i € X, with ¢ > 0.
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Proof. We just prove the case that N (j ,- The case N, o can be done similarly. In view of Eq.
(4.35) and Eq. (4.36), we obtain the following expression

€xt0) — 1] (cllwe + I — ol (e + )|y
+ (allus + 01 = allug + 1) |7
= (alluel” = et I, ) + (168 (0w = s + 10l + g + 367 = )
—A/f W+mp)kq—mplqm
(1)) —1/f (g, + 1)+ de
(&) / / ) (e + t)* >> (o bt @)Y

0

|z =yl
// ((wr + 1) ()P ((ug, + 1) * ()5
[z =y~
(uf (@)™ (uﬁ(y))p“’s] drdy
|z — y| '

Dividing the above equation by ¢ > 0 and taking the limit as ¢ approaches 0", we obtain

0 = (64(0), 0) |p (allunll” = Yt 1) + bpB |

-1 - /f ) ((we) ™) =
_2 * Ij(:y))p;’s drd
Iw—yl“ Y

+(ap+peb||u s [ [ lule) Z o) Za) 00) — 0

’l’ ’N—l-sp

o /I B _2“8// |x_y|ix)(u;(y))pz,s dz dy.

Therefore, using Eq. (4.35), we obtain

0 < (€1(0), v | (1 + %) (allusll” - a||uk 1) +b(p0 + = 1) ]

ZPM T+l // |x—y|uk(y))p;’s dxdy]
+ (ap+p9bHu Hp‘) P // |uk () — uk(y) P~ 2|(Uk( y)|;+1j§(y))(¢($) —¥()) d dy

() (u ()"
| |sp dx—QpMs// |x—y|# dz dy.
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Using Lemma 4.1 (a) in combination with the fact that the sequence uy, is bounded, it follows
that (£,.(0),%) is bounded from below for every ¢ € X, with ¢ > 0. Using Lemma 4.1 (a)
combine with the fact that the sequence {uy} is bounded, it follows that (&;.(0), ) is bounded
from below for every ¢ € X, with ¢» > 0.

Next, we will prove the boundedness of the sequence (£;.(0), ) from above. Assuming the
contrary, let us suppose that (£5.(0), ) = co. Since this assumption is made, we can consider
the following

1€k (t0) (g, + 1) — wpel| < &(t)|[t0]] + |&k(teh) — 1 ||u| (4.37)

and &(t) > &x(0) = 1 for sufficiently large k. From the definition of &;.(0) and Equation
(4.29) with u = &.(tY) (ug, + tY) € N, we obtain

) — 11l g 11

> %nfk@w(uk 1) —
> Eo(u) = Fax (&(t0) (ux + 1))
= (7= = ) [(altw = 00 =l (e +00) )1 ) = (allosl? = all 1)

1=
(1= = o)l + 0017 = )
* (ﬁ‘%) (€87 (¢) — Wl + ¢
(== = ) et = 1] (aln + 001 = -+ 1) 1)

()t )
- // R
. %S ((ug + t)* ()P ((uk + w)*(y))p;’s

(5 5) // ET

((uk)+(x))p“ ()t (y))

Ty } dx dy.
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By dividing both sides of the inequality by ¢ > 0 and letting ¢ approach 0, it follows that

Lo 0) — ) (o) — ) (652) — ¥0) [,
* 1 //R o — ¥ iy [ L)
1f§<sk<> o) (allwl? = aluf ||”)+(p91” D) bled 0). o) s
NEATEU WS // () — s ()7~ |< (o ;&iﬁ( D (W) =) o
<2pﬂs+v—1 / / () (uf ()™
va—yl“
> W[u ) (anuknp "l Hp) (o= 1 )pat”
) () W)
~ (221 [ [ Sl D o dy]
+<1+7 //w () — ug(y) P~ |(;Lk_( )|;+Z§(y))(¢(x)—¢(y))dxdy y rk’z/;dx>
(P2 e // Jui (@) — wi(y ||< (o ;&iﬁ( D) W) =0 4
B 2pus+w—1 / / ) (uf ()"
Ix—yI“ '
That is,
Pl > SO ) altal? = it 1) + (o647 1)l
qus—i—fy—l // |x—y|u(Uk) ()™ da;dy—(l—fy)Hq;:H]
= (@) = wely)lP2 (un(2) — () () = V() ufv
—I—< //RZN |a:— e d$dy—a/Q’;‘spd
. <p9+7 ol // Ju () — ur(y |? _<>|;$< D (W) =) o
(2pus+v—1 // (@) (uf ()"
!w—y!“ '

We arrive at a contradiction with our assumption that (£,.(0),v) = oco. By applying Lemma
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3.6 (1) and considering the fact that {uy}x is a bounded sequence, we can conclude that

[O+VKMWM”—MWMV>+@ﬁ+7—QMMMW

P s D,
" ((uk) " (y)" [ |
2 -1) dzdy — (1) |
(puﬁv // |x_y|u vdy —(1—7)"
By utilizing Equation (4.34), we can deduce that (£},(0), ¢) is uniformly bounded for sufficiently
large k for any 1 € Xy with ¢ > 0. This completes the proof of Lemma 4.2. O

The following lemma provides important result.

Lemma 4.3. Consider a sequence {uy}r C N "\ that satisfies Equation (4.29) and Equation
(4.30). Let o € (0,auo) and X € (0,A1). For every 1 € Xy, as k — oo, the following hold

fl@)(w) "y € LY(Q),

and
<a + b|uy, Hp9 P // Jug () — ug(y) [P~ |(x _( y)|;+7j:(y)) (V(z) —¥(y)) da dy |
o[ M- /f R e

(4.38)

Proof. Consider 1 € X, with ¢» > 0. Therefore, utilizing Equation (4.29) and Equation (4.37),
we have

I w||

Kuw—u””+f@w
> Eoa(ug) — Eon (fk(“/f)(uk + t1)))

1

) bl ||

=—@ﬂ%}19@mmW—am¢m)—ﬁﬁggi——

[(allws+ 017 = oo+ 1) 1) = (aluell” = allst 2]

pet
—i§QWW+wW—wmﬂ

&)
p

O sy
4~1—/f@>a%+WW)”—WWqu“

S () — 1 ((un A+ 190) (@) ((ur + ) (7))
T o, 2}, // |z —y|* el
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1 9(1) + P u + Dis
to L ) @)™ (0 )
— ()" ()" () ()" | ey,

By dividing the above equation by ¢ > 0 and letting ¢ approach 0%, it follows that

AURDIECL

—<s,g<o>,w>[(auukup—aHu*Hp) A @) o + bl

/ / (i) |I_W> ()" e dy|

_ a—i—bHu HPG P // [ug(x) — up(y)|p — 2|x(u_k( ’)N:S;lk(y)) (U(z) —P(y)) dxdy+a/g( —Tzrsplw
// () (uf ()" drdy
!95\ |z —y|»
x U, V1Y ()i
+%wa/ﬂW“+W> <w]w
) [,
/ / af @)™ @ )™
I:v—yI“
A f(:v)[((uwtw)ﬂl‘” - (u;)l—v]
+ tlir(gr inf 1-— y /Q t dx. (439)

Applying Equation (4.39), we have

lim inf/ fia) [ (g + t¢)+)1_7 _ (uz)l—v}

t

dr < 00.

t—0t

On the other hand, since f(x) [ ((ug, + ) H) 7 — (uZ)l_V] > 0 and considering the bounded-

ness of the sequence {uy}; in Xy, combined with Fatou’s lemma and Lemma 4.1, it follows
that

/ £ (o) () b

< lim inf / f uk * t@b _ (UZ)I_W] dx
t—0t -
. (60 ru e () (u ()
: // Ix—yl“ : d dy

+ (a+ bl ") // () — s ()P () — () (B12) =0 W) oo / <;2p o

|z —y| Ve
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< GO (o gy ) // s () — e )P e(2) —a o) (W) = 00)

ok |z — gV

—a/Q “k )P 1¢ // (a: pu,s lw(x)(uz(y))p:"s Ledy,

] !x —yl

where C3 > 0 is determined by the boundedness of (£,(0),¢) and ||ug|| < C;. This implies
that as £ — oo,

(o ) [ 108 = ™ ) ) 000) = 000D o

|z — y[Ver
— M r — ) (uH) " "dx
/Q PR * o ) W* (4.40)
_//g(x)(UZ(x))p”’s_llﬂ(:c)(uZ(y))p“’s d dy
QJo |z — yl»

In the following, we aim to prove that Eq. (4.40) holds for arbitrary ¢ € Xy. Let U, = u} +et)
with € > 0. By choosing ) = ¥ as a test function in Eq. (4.40), we obtain the following as

k — o0

o) < (o o) L) I ) ) (B0 = W)

|z —y| Ve

p 1\I/+
_a/ <Uk|x|sp /f ) U dr
0

// Z“’_W (u +(y))p”dxdy

= (a+ sl P)
// k() — u(y) P2 (ui(z) — u(y)) (Ve + ¥ ) (@) — (Ve + V7)(y)) dz dy

|I— |N+sp
LW, + U
—a/“k> (W + d—)\/f () (O, + U )da
!x\sp
pu,sl + pu,s\Ij \Ij
// (i ()™ (¥ + e)dxdy‘
|z — y|

(4.41)
We notice that by using the following inequality (a — b)(a™ —b~) < —(a~ — b™)?, we obtain,
for almost every z,y € RY, the following inequality

0< / / w2 (@) — ul) @) —w @) gy

|z — y| Nt

/ / |m’p_2(|N ff) - u_(y))dedy. (4.42)
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It follows that,
Jr

//RQN lu(x) — u(y)|P~2( li:)_ |N(+p)s)(Uk(x — dxdy<//R2N |x— |N+ps dxdy
(4.43)

Applying Eq. (4.43), we have
[ 1) =l () = (T V)= (0 T,

|l‘ _ y|N+sp
// lug (2) — ug(y) P72 (ug(x) — ur(y)) (ukz (z) — UZ(Q)) dx dy
R2N ’x - y’NJrSp

ug () — up(y)[P~? (un (@) — wk(y) (W(@) = P(y))
+ 6//RQN dx dy

|5L’ _ |N+sp

|z — y|Ntsp

//w '“"ix-ﬁi dx dy
//w |ug (@) — ur(y) P72 (un(z) — ui(y)) V() —Y(y)) d dy

[ ) = O ) () () 2 V00D o

|$ _ y|N+sp
// (@) = a2 (un(w) — wn) (e (@) = @) 0 (4.44)
R2N |z — y|NFep | |

Furthermore, we obtain

U+ W) utlp p—1 + -1\ —
/Q( |x|5p d _/ ‘ms‘p /Q |$)|spw x-}—/ﬁ(ukﬁdsp € dx
N e wiy-ty
/ / dcc—l—e/ dx
IIIS” Q |z Q. Il’lsp

with Q. = {z € RY : ¥, < 0}. Now, by combining Eq. (4.45), Eq. (4.44), and Eq. (4.41), it
follows that as kK — oo

mmg[@+mmw#ﬁwa—ammz—Aqumgfﬂw

// (uf |m_y|u (1 ()" dz dy]

e[ (a+ bl ) // () = w )P (unl) —ualy)) () = 0D 4 0

|z — y| N

_a/M v [ F@) ) vds
Q Q

||
*’5_1

_//g(x)(u,j(x))p” () (uf (y)™" d:cdy]
QJQ |z —yl»

®
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a+b||u Hpe p // lug(z) — ug(y) P2 (u | k(@) —up(y)) (Vo () — U (y)) dv dy

T |N+8p
p—1
_EO‘/m( |32|sp¢d +)\/ F@)(ul) ™ (uy, + ep)da
// p;}s_ Uk +€¢)( >( (y))pzs dxdy
|z —y| |

Since {ug}r € Nyx and f(z) > 0, as k — oo, it follows that

o(1) < | (a+ bllug]”" ) // s (2) — @2 (ur(2) = u(y)) (W(2) = 0W) 4 0

|z —y|Vrer
p—1
a/ﬂ(“” Y gz —)\/f () "dz

!fc\s”

*

/ / | |<ff«")(u;$ ()™ da dy|
r—y"
£ (a+ bllugl?*?) // s (2) — s )2 () — 9) (V2 (@) W0 0)

|z — y[N+sp
p—1
—ea/ W_¢dx
o lesp

// )" it + ew) (@) (i (y)) ™ dx dy.

|z — y|»

(4.46)
Now, utilizing the symmetry of the fractional kernel and employing a similar argument as in
Eq. (4.43), we have

Juf () = ui () < Jun(x) = w() P72 (un (@) — ue(y)) (g (@) = wd ()
it follows that

// lur () — ur(y) P2 (up (@) — ur(y)) (V7 (2) — ¥ (y)) dz dy

|z — y|Ntsp

[ et DI () = 0 (0) (V@) = V)

|z — y|Ntsp

|z — y|N+sp

o / o) = ) () — o) (Vo) = W)
Qe x (RN\Q,)

< ] )l ) k) () =)

|z — y|Ntsp
Jup(w) — un(y)I"~2 (w () — we(y) (W(x) = ¥ (y)
+ 2//Q @O |z — y|Nrep da:dy)

// ‘Uk —ug(y)|P™ § (ur () — ug(y)) (V(x) — P(y)) ‘ dx dy
Qe XRN

|z — y|Ntsp
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So, by employing the Hélder inequality and considering the fact that the sequence {ug}y is
bounded in X, we obtain

[ [l b o) Z s uola) =) o g

|z — y[V+er
(Y(z) =¥ (y) 1» 1/p
S C(//QEXRN “Qf o y‘(N+sp)/p| dl‘d:g) .

(¥ (z) = ¥(y))

’x — y’(N+3P)/p
such that

(4.47)

Clearly

€ LP(R*). Therefore, for every o > 0, there exists R, sufficiently large
dz dy < g

/ / ((x) — () P
(supp ) x[RN\ BR, | |z — y|(N+sp)/p D

So, utilizing the definition of €, it follows that Q. C suppy and we have |, X Bg_ | — 0 as
(V(z) —¥(y))

|(N+sp)/p

e — 07. Now, since € LP(R*"), we can establish the existence of ¢, > 0 and

[z —y
do > 0 such that for every € € (0, ¢,], we have

(V@) —¥(Y)) v o
Q¢ X Bg,| <4, and//ﬂEXBR }Ix _y|(N+8p)/p{ dx dy < ,

Consequently, for every € € (0, ¢,], it follows that

mm [P

Hence, by Eq. (4.47), we can conclude that

: \U ) — u(y) P (u(2) — w(y)) (W (2) — ¥(y))
lim //Q ><RN A kY b i ‘dxdy = 0.

=0+ |z — y|Ntep

dxdy = 0. (4.48)

Next, we proceed to demonstrate that

lim — / / pM_ (v + eiﬂ)(:c)(uZ(y))p“’s dx dy = 0. (4.49)

e—0t € |z — y|»

To accomplish this, let’s consider

/ / (@) (wf ()" (g + )@ (it W)™

Iw -y~

[ [ ms
Il‘—yl“
p,u,,s 1 =+ pf/.,s
6// 9(z) (uf () () (ug (y)) ddy

Iw -y~

/ / DG CAO) G
|g; —y|
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e / / g() (uf ()" (@) (uf ()™ () )"

|z — y|»

/ / I W)™, )"
!93 — yl

< CCy(N, ) ( / (uf ()" )™

ey [ (it @pie o) ds)
* dx)pil,s/p:

P}.s/Ps

AN
Q
O
=
=
/N
—~
S
=4
S
=

&

*

+ CeCy(N, ,u)(/Q (uz(x))l’ dx) (p,s—1)/p% (/Q ()
< oo, e ( [ o)

« 1/ps
Ps da;)

« P}is/ D% ~ .
v d:c) + CeCy(N, u)ems( /Q ()

*
S

NP/
P dx)p L (4.50)

Hence, dividing Eq. (4.50) by € and taking into account the fact that || — 0 as e — 0T, we
can establish the validity of Eq. (4.49). Furthermore, we claim that

+|p—2,,+
lim/ L e S (4.51)

]

So, for x € Q, we have u + eip <0 and ¢(x) < 0. Consequently, utilizing Eq. (1.2), we can
conclude that

+ p—2,,+ -‘r p—2,,+ p
Ho

B B |

from which we establish the validity of Eq. (4.51) as € — 0.
Then, by dividing Eq. (4.46) by € and utilizing Eq. (4.48), Eq. (4.51), Eq. (4.49), and the
fact that |2| — 0 as e — 0", we obtain

o) < (o o) [ Lle) = I 00(0) —1000) 0) =01

|z —y[VEo

luif [~ ZUZ@b B AT
—o [ B e [ )00
(uf (1) (=)

g(x) uk ) p;’s_ ’
— dz dy.
aJa ‘I — y|~

This proves Eq. (4.40). Since ¢ is arbitrary, we can conclude that Eq. (4.38) holds for any
1 € Xgy. The proof of Lemma 4.3 is now complete. O]
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To demonstrate the compactness property of the functional energy £, », we define

1 1 7,?:’3 ) p*p ) p*P
coxs = (5= g ) S llll
H,S

po

— )\pQ 1+

(4.52)

[b(p;,s - pG)] o

The following lemma provides conditions under which a subsequence of the sequence wuy;,
converges strongly to a limit in the function space Xj.

b1ty (ke 7= DIl 2] 77
<pu,s(1_ )p9> :

Lemma 4.4. Consider a sequence {uy}r C N \ with Eox(ug) = ¢ < can anslet X € (0,Ay),
a € (0,av0). Then, the sequence {ug}y has a subsequence that converges strongly to ug in Xj.

Proof. Considering Eq. (4.30), we can deduce the boundedness of the sequence uy;, in Xj.
Furthermore, we can establish the boundedness of the sequence {u, }x in Xy. By substituting
Y = u,, into Eq. (4.38) as k — oo, we obtain

lim (a N bHukae_p> //RZN Jur (@) = (@)l () — wely)) (g (@) = up (v) - dy = 0.

|z —y|NEop

Therefore, using Eq. (4.42), we have ||u, || = 0 as k — oco. Hence, {uy}, is a positive sequence.
By applying Lemma 2.2 in conjunction with Eq. (1.2), we can establish the existence of a
subsequence, which we still denote as {uy}r, satisfying

up — g weakly in L7 (Q), |jux]| — v
up — ug in LP() for any p € (1, p;

k 0 ' ( ) ype€(1,p;) (4.53)
up = ug in LP(Q, [2[7F), k|l — 1
up — ug a.e. in Q  wu, < ha. e in(Q,

as k — oo, where h € LP(Q) and p € [1,p%). Therefore, since the sequence {uy} is positive,

we have ug > 0. Now, let’s consider the case where v = 0 in Eq. (4.53). In this case, we can
deduce that klirn u = 0 in Xj.
—00

Now, let’s suppose that v > 0. Then, by utilizing Lemma 2.3 in [9], Lemma 2.4 in [14],
and Lemma 3.2 in [17], we can conclude that

[[url|” = lJux = uoll” + [luoll” + o(1), (4.54)

ruku — Yl — wolly + Il + o(1), (4.55)

[, e
— / / 9(@) (= uo) ()" (g, — uo) ()™ dz dy (4.56)

|z — y|~

/ / )" (uo(9))™ dx dy + o(1).

|x -y~
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It follows, from Eq. (4.54), Eq. (4.55) and Eq. (4.56), that

o) = (ot ) [ 100 = P ) ) (0 )2 = (0= )

|z — y[VEop

P* ( UO
—« dr — \ f Y(ug) ™ (ug — up)de
Q ’x‘SP

0 |a:—y|“
= (a+b#77) (V" — [luoll”) — a (fJurlly — |UO||p)
_ 2y ) — z))Pie (g ()
A F) o = wogds — [ [ SO g,
g(@) (ug (@))% (uo(y)) "+
-I—/Q/Q P——r dx dy + o(1)

= (a4 077 s = woll” = = wolly = A [ £ ) e~ uo)da
Q

_ / / 9(@) (g () — wo(@)))"™ ((uy (y) — o))"

|z — y|¥

dx dy + o(1).

Hence, we obtain

(a+bv"P) hm lluk, — uoll” — « hm lug — woll’;
%

i () — ()" ((ue(y) — o(y)))"*
+’“1_>°°/Q/Q |z — y|» dx dy.

By Eq. (4.53), we have u,lg_7 < h'=7. Then, by applying the Lebesgue dominated convergence
theorem, we can conclude that

Jim [ @) e = [ pa)) o de

Therefore, utilizing Lemma 4.3, we have f(z)u, "ug € L*(Q2) for every k € N. Now, considering
Fatou’s lemma, we can deduce that

/f(x Vd$<11m1nf/f z)uy, "ugd.
Q

Now, let us denote

i [ [ 200 = oD PP ) =V i, s

k=0 Jo Ja |z — y|»
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Hence, by employing Eqgs. (4.57)-(4.58), we obtain
(072 Tim flug — o < 273 (4.59)
—00
Hence, from Eq. (4.59), we obtain [ > 0. If [ = 0, considering the fact that v > 0 and

combining Eq. (4.53) with Eq. (4.59), we have klim ur = ug in Xy, which completes the proof
—00
of the theorem. Therefore, let us assume that [ > 0. By utilizing Eq. (2.8), we obtain

lur, — woll” + 0(1) > [|g]|» ™ PSc .. (4.60)

Now, considering Eqs. (4.57)-(4.59) and Eq. (4.60), we have

(@t 0077 llglls ™ Sy < PP, (4.61)

By substituting Eq. (4.61) into Eq. (4.60), we obtain

2pj, s a 2 *,57
VP > ST p<|lg|!r> PR (4.62)

Now, let us define, for any £ € N and ¢ € X

H(up, 6) ::(a + b||uk||p9_19 // [u(2) — ur ()2 (wa(2) — ) (6@) = 6W))

|z — y[Nrep
1 pus—l Pjis
—Oz/uk dx— /f (ug) Tp(x dx—// wr(y)" $(x) dx dy.
o |zl? Ix—yl“
(4.63)
Therefore, for every k € N, as £ — oo, we obtain
= Boa(t) — 5o H(uy, )
C = LaaUg QPZ,S Uk
= (5~ ) (el = lonlt) + (o = g )lll? =75 = ) [ # i)' - of)
p o 2p Y297 Ja
1 1 )( » 1 0 1 1 1—
=(-- av —ozlp>—|—<—— )bu P /\( > f(@) W) dx + o1
(= 2 T ] S o) ) @) (1)
1 1 Pis - P — o
2 (— - )O/’ﬁ,s—pg Pu,s—Pp g Tpuys P
Ty e llgl

1 1 1
+8(55 = gl =35 = )8 Mot + o
i L ey ol 117 + o).

Let us denote

(4.64)

Fy(t) = b(i - L)tf”@ - A(l — )51

fllatt.
po 2p, v 2, l
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Then, by performing a direct calculation, we can establish the existence of a lower bound and
global minima for the function Fy. Specifically, we have

pb

p0— 145\ [t 7= IS 5]
prs(1— 7)190) [b(p;s ) p@)} = .

Fy(t) > —Aﬁ<

By letting k& — oo, we obtain

1 ]‘ p* p —-p ppp
¢ > (- g ) ol
P 2P

1 w8
ph— 141 )[<pi,s+7—1)||fllm5 T

— )\peff-k'y ( 1 6 1—~
ph(1=7)p [b%’s B p@)] -1

This contradicts the assumption ¢ < ¢,,x. Therefore, we conclude that v = 0. As a result,

khm ur = ug in Xy. The proof of Lemma 4.4 is now complete. n
— 00

5 The first solution of the problem (1.1) in ./\/'Oij

In this section, our goal is to establish the existence of a solution to the problem (1.1) by
employing a minimization method on the function space N.,. We now present a lemma
that demonstrates the existence of a negative minimizer for the functional energy E, \ in the
function space N. ;

Lemma 5.1. Let A be a positive parameter and let o € (0,ap0). Then, we have

+
m’°>, = inf FE, < 0.
aX uGNJA 04)\( )

Proof. For u € NS, C Ny, we have

1 1 1 1
Baa(w) = (= - j)[anuup - al!u*Hi’q] - (ﬁ =)l

(5 / / )OO
2pu s 1 - ’.CE - y|“

1
-—— |1 p_ +1|P -1 j24
TR [< )l — ]+ (00 + g~ 1) bl

pu,s + Pls
<2p“5+7—1 // (" () dmdy} <0,

I:E -y~

since u € Nf and p.s > pb. Therefore, m}, < 0. The proof of Lemma 5.1 is now completes.
O
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The following theorem guarantees the existence of a non-negative solution in N Cj ) for
problem (1.1), given that the assumptions (f) and (g) hold.

Theorem 5.2. Suppose that the assumptions (f) and (g) are fulfilled. Then, problem (1.1)
has a non-negative solution in N "o, A for every 0 < Ax = min(Aq, Ag).

Proof. Let us fix 0 < A < A, = min(A;,Ay). According to the variational principle of
Ekeland combined with Lemma 3.2, we obtain the existence of a minimizing sequence {uy}r C
;f/\ U {0}, that satisfies Eq. (4.29) and Eq. (4.30). Consequently, we have

Eox(up) = mf, <0 as k— oo,

which implies {uy}, C N . Therefore, using Lemma 4.4 with the fact ¢ = m ,, it follows
that u, — up in Xo, up to a subsequence. Furthermore, using Eq. (3.28) combined with
Lemma 4.1, we obtain

(14 ) alluoll” = alluolfy] + b(pe + 7= 1) fjuol)”

Puss (o4 (2r)Proos
<2pus+7—1 // (uo (y)) dx dy > 0,

Iw —ylr

which implies ug € N By and ma ) 1s achieved at ug by FE, is continuous on X,. Taking
k — 00, together with Fatou’s Lemma in Eq. (4.38), we deduce that H(ug,) > 0 [where H
is defined in Eq. (4.63)] for ¢ € X, with ¢ > 0.

Next, we take 1 = UT as a test function, where ¥, = uj + € and ¢ € X,. By repeating
the steps from Eq. (4.38) to Eq. (4.49) with u in the place of ug, we obtain H (ug, ) > 0 for
arbitrary ¢ € X,. Thus, we have

M (@) (ug) 7y € LHQ) and ug € N,

Since 0 ¢ N, by Lemma 3.2, we have ug # 0. Moreover, by Eq. (2.10) with ¢ = u; together

with Eq. (4.42), we obtain ||ug || = 0. Hence wg is positive. By applying the maximum
principle, we can conclude that ug is a non-negative solution of (1.1). This completes the
proof of Theorem 5.2. [

6 The second solution of the problem (1.1) in N/ o

In this section, to prove the existence of a solution in NV o We can follow a similar approach as
in the proof of Theorem 5.2. However, in this case, we will consider the space N »» which con-
sists of non-negative functions in the Nehari manifold. The following theorem estabhshes the

existence of a non-negative solution in N  for problem (1.1), provided that the assumptions
(f) and (g) are satisfied.

Theorem 6.1. Suppose the assumptions (f) and (g) are satisfied. Then, for 0 < A, =
min(Ay, Az), problem (1.1) has a non-negative solution in N
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Proof. We start by observing that N a 18 a closed set in Xo. By the variational principle
of Ekeland, we can extract a minimizing sequence {vy}r, C N o that satisfies the condition
for inf, E, x(u). Moreover, since the sequence {vy} is bounded in X, we can choose a
subsequence such that {vj,}; — vo in Xo. Applying Lemma 4.4, we have that {vy,};, — vo in Xo
up to a subsequence. Since, N7, is closed, we conclude that vy € N, with E, x(vo) = m, .
By repeating the same argument as in Section 5, we have H (vg, ) > 0, so that Af(z)(vd) ™ €
L'(Q) for all ¢ € Xy, and vy belongs to N ,. Combining this with Lemma 3.2, we deduce
that vg is a nontrivial solution of problem (1.1).

Finally, by applying the strong maximum principle, we conclude that v, is a non-negative
solution of problem (1.1). This completes the proof of Theorem 6.1. ]

7 Proof of Theorem 1.1

Proof. By applying Theorems 5.2 and 6.1, we conclude that problem (1.1) has two non-negative
solutions, denoted as uy and vy, respectively. Since N ; A ./\/’a_ , = 0, the solutions ug and vy
must be distinct. This completes the proof of the Theorem 1.1. O]
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