Volume 14, Number 5, 2024, Pages - DOI:10.11948/JAAC-2023-0317 |
On ground state of fractional $p$-Kirchhoff equation involving subcritical and critical exponential growth |
Ruichang Pei |
Keywords:Fractional $p$-Kirchhoff equation, ground state, critical exponential growth, variational methods |
Abstract: |
In this paper, we concern the existence of nontrivial ground state solutions of
fractional $p$-Kirchhoff equation
$$\left\{\begin{array}{ll}
m\left(\|u\|^p\right) [(-\Delta)_p^su+V(x)|u|^{p-2}u]
=f(x,u) \quad\text{in}\, \mathbb{R}^N, \vspace{0.2
cm}\\ \|u\|=\left(\int_{\mathbb{R}^{2N}}\frac{|u(x)-u(y)|^p}{|x-y|^{N+ps}}dxdy +\int_{\mathbb{R}^N}V(x)|u|^pdx\right)^{\frac{1}{p}},
\end{array}\right.$$
where $m:[0,+\infty)\rightarrow [0,+\infty)$ is a continuous function, $(-\Delta)_p^s$ is the fractional $p$-Laplacian operator with $0 |
PDF Download reader
|
|
|
|