For EDITORS

For READERS

All Issues

Vol.15, 2025
Vol.14, 2024
Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 14, Number 5, 2024, Pages -                                                                DOI:10.11948/JAAC-2023-0317
On ground state of fractional $p$-Kirchhoff equation involving subcritical and critical exponential growth
Ruichang Pei
Keywords:Fractional $p$-Kirchhoff equation, ground state, critical exponential growth, variational methods
Abstract:
      In this paper, we concern the existence of nontrivial ground state solutions of fractional $p$-Kirchhoff equation $$\left\{\begin{array}{ll} m\left(\|u\|^p\right) [(-\Delta)_p^su+V(x)|u|^{p-2}u] =f(x,u) \quad\text{in}\, \mathbb{R}^N, \vspace{0.2 cm}\\ \|u\|=\left(\int_{\mathbb{R}^{2N}}\frac{|u(x)-u(y)|^p}{|x-y|^{N+ps}}dxdy +\int_{\mathbb{R}^N}V(x)|u|^pdx\right)^{\frac{1}{p}}, \end{array}\right.$$ where $m:[0,+\infty)\rightarrow [0,+\infty)$ is a continuous function, $(-\Delta)_p^s$ is the fractional $p$-Laplacian operator with $0
PDF      Download reader