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Abstract. In this paper, we concern the existence of nontrivial ground state
solutions of fractional p-Kirchhoff equation

m (‖u‖p) [(−∆)spu + V (x)|u|p−2u] = f(x, u) inRN ,

‖u‖ =
(∫

R2N
|u(x)−u(y)|p
|x−y|N+ps dxdy +

∫
RN V (x)|u|pdx

) 1
p
,

where m : [0,+∞)→ [0,+∞) is a continuous function, (−∆)sp is the fractional

p-Laplacian operator with 0 < s < 1 < p < ∞, V : RN → [0,+∞) is

a continuous and 1 periodic function and f ∈ C(RN × R) is 1-periodic in

x1, ···, xN . When the nonlinearity f(x, u) has subcritical or critical exponential
growth at ∞ without satisfying the Ambrosetti-Rabinowitz (AR) condition

some existence results for nontrivial ground state solutions are obtained by

using the minimax techniques, Nehari manifold methods combined with the
fractional Moser-Trudinger inequality.

1. Introduction

Let s ∈ (0, 1) and N ≥ 2. In this paper we consider the following fractional
Schrödinger-Kirchhoff type equation

m (‖u‖p) [(−∆)spu+ V (x)|u|p−2u] = f(x, u) inRN , (1.1)

where

‖u‖ =

(
[u]ps,p +

∫
RN

V (x)|u|pdx
) 1
p

, [u]s,p =

(∫
R2N

|u(x)− u(y)|p

|x− y|N+sp
dxdy

) 1
p

, (1.2)

m : R+ → R+ is a continuous function, V : RN → R+ is a periodic potential,
1 < p < +∞, f : RN ×R→ R is continuous and periodic in x1, · · ·, xN , and (−∆)sp
is the nonlinear nonlocal operator which is defined as

(−∆)spu(x) = 2 lim
ε↘0

∫
RN\Bε(x)

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|N+sp
dy, x ∈ RN ,

along functions u ∈ C∞0 (RN ), where Bε(x) = {z ∈ RN : |z − x| < ε} denotes the
ball of RN centered at x ∈ RN and with radius ε > 0.

Recently, equations of the type (1.1) are receiving a lot of attentions, since they
have wide applications in many fields of science, notably in continuum mechanics,
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2 R. PEI

phase transition phenomena, population dynamics, minimal surfaces, and anoma-
lous diffusion, as they are typical outcomes of stochastic stabilization of Lévy pro-
cesses, see [9, 10] and the references therein. In the case of ps < N , in the paper
[8], the authors first gave a detailed discussion on the physical meaning underling
the fractional Kirchhoff model in bounded domain and their applications. In [19],
Xiang et al. dealt with the following class of particular elliptic problem of Kirchhoff
type involving convex-concave nonlinearities:[

a+ b

(∫
R2N

|u(x)− u(y)|
|x− y|N+sp

dxdy

)θ−1
]

(−∆)spu

= λω1(x)|u|q−2u+ ω2(x)|u|r−2u+ h(x) inRN , (1.3)

where a, b ≥ 0, λ > 0 is a real parameter, 0 < s < 1 < p < ∞ with sp < N,
1 < q < p ≤ θp < r < Np

N−sp , ω1, ω2, h are functions which may change sign in RN .

Under some suitable assumptions, they obtained the existence of two nontrivial
solutions by using the Ekeland’s variational principle and mountain pass theorem. A
novelty of that paper is that a may be zero, which means that the above-mentioned
problem is degenerate. In the case of non-degeneration, Pucci et al. in [14] did
similar work for problem (1.3). In [15], Pucci et al. investigated the existence of
entire solutions of the following stationary Kirchhoff type equations driven by the
fractional p-Laplacian operator in RN :

m
(
[u]ps,p

)
(−∆)spu+ V (x)|u|p−2u = λω(x)|u|q−2u− h(x)|u|r−2u, (1.4)

where ps < N with 0 < s < 1, m : R+ → R+ is assumed to be continuous,
1 < q < r < ∞, the weight functions V has positive lower bound, h, ω is non-
negative and locally integrable in RN . They proved multiplicity results for problem
(1.4) by using variational methods and topological degree theory and also obtained
the existence of infinitely many pairs of entire solutions. A distinguished feature
of that paper is still that m(0) may be zero, which means that problem (1.4) is
degenerate. On the study of critical fractional Kirchhoff type problem in the whole
space, we refer to [4, 16, 20].

To the best of our knowledge, most of the works mentioned above on fractional
Kirchhoff type problems involve the nonlinear terms satisfying polynomial growth,
there are only a few paper (see [17, 21]) dealing with the nonlinearity with ex-
ponential growth. Furthermore, we find that these papers mainly investigate the
existence of nontrivial solutions and seldom consider the existence of ground state
solutions.

Inspired by the above works and a very recent paper [23] devoted to the fraction-
al Moser-Trudinger inequality, the purpose of this paper is to establish existence
results of ground state solutions for problem (1.1) with 1 < p ≤ N

s when the non-
linearity f(x, .) has subcritical or critical exponential growth (improved subcritical
polynomial growth) at ∞ and does not satisfy the classical (AR)-condition.

Let us now introduce our results: Suppose that the potential V (x), the nonlin-
earity f(x, u) and nonlocal function m(t) respectively satisfy:

(V1) V ∈ C(RN ) is 1-periodic in x1, · · ·, xN and V (x) > 0.

(H1) f ∈ C(RN × R) is 1-periodic in x1, · · ·, xN .
(H2) lim

t→∞
f(x,t)
|t|2p−2t = +∞ uniformly for x ∈ RN .
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ON GROUND STATE 3

(H3) For each x ∈ RN , f(x,t)
|t|2p−1 is strict increasing for t ∈ R and t 6= 0.

(H4) There exists C0 > 0 such that for all (x, t) ∈ RN × R :

F (x, t) ≤ C0|t|2p + C0|f(x, t)|,

where F (x, t) =
∫ t

0
f(x, s)ds.

(M1) there exists m0 > 0 such that m(t) ≥ m0 for all t ≥ 0 and m(t) is increasing
for t ≥ 0.

(M2) there exist constants a1, a2 > 0 and S0 > 0 such that for some γ ≤ 1 :

m(t) ≤ a1 + a2t
γ , ∀t ≥ S0.

(M3) m(t)
t is non-increasing for t > 0.

A typical example of a function m is given by

m(t) = a∗ + b∗t,

where a∗, b∗ > 0.

Our first main result will be to study problem (1.1) in the improved subcritical
polynomial growth

(SCPI) : lim
t→∞

f(x, t)

|t|p∗−1
= 0

uniformly for all x ∈ RN , where p∗ = Np
N−sp . The condition was first introduced by

Liu and Wang [12]. Note that in this case, Sobolev compact embedding theorem
does not hold owing to the unboundedness of the domain. Our work is to study
problem (1.1) where the nonlinearity f does not satisfy the (AR)-condition:

There exists θ > 2p such that

0 < θF (x, t) ≤ tf(x, t), for anyx ∈ RN , t 6= 0.

By using the mountain pass theorem and its suitable version combined with Nehari
manifold methods, we try to get the ground state solutions to problem (1.1) with
1 < p < N

s .

Theorem 1.1. Let 1 < p < N
s and assume that (V1), (H1)-(H3) and (M1)-(M3)

hold, if f has the improved subcritical polynomial growth on RN (condition (SCPI)),
then problem (1.1) has a ground state, i.e. a nontrivial solution u∗ such that

J (u∗) = inf{J (u) : u 6= 0 and 〈J ′(u), u〉 = 0},
where definition of the functional J appears in the next section.

Remark 1.2. To our knowledge, problem (1.1) is rarely considered by other people
when the nonlinearity f has a polynomial critical growth f(x, t) ∼ |t|p∗−1. Hence,
our result is interesting since we considered the case where the nonlinearity f has
slightly critical growth at infinity.

Now, we are interested in a borderline case of the Sobolev imbedding theorems,
commonly known as Moser-Trudinger case, i.e., ps = N . For our purpose, we have
to introduce a useful work as follows:
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4 R. PEI

Proposition 1.3. (see [23]) Let s ∈ (0, 1) and ps = N. Let W s,p(RN ) be the space
defined as the completion of C∞c (RN ) with respect to the norm

u 7→
(
‖u‖p

Lp(RN )
+ [u]p

W s,p(RN )

) 1
p

= ‖u‖W s,p(RN ),

where

[u]W s,p(RN ) :=

(∫
R2N

|u(x)− u(y)|p

|x− y|N+sp
dxdy

) 1
p

.

Then there exists α∗ > 0 such that

sup

{∫
RN

ΦN,s

(
α|u|

N
N−s

)
dx | u ∈W s,p(RN ), ‖u‖W s,p(RN ) ≤ 1

}
< +∞

for α ∈ [0, α∗] and

sup

{∫
RN

ΦN,s

(
α|u|

N
N−s

)
dx | u ∈W s,p(RN ), ‖u‖W s,p(RN ) ≤ 1

}
= +∞

for α ∈ (α∗s,N ,∞), where ΦN,s(t) = et −
∑jp−2
i=0

ti

i! , jp := min{j ∈ N : j ≥ p} and

α∗s,N := N

(
2(NωN )2Γ(p+ 1)

N !

∞∑
k=0

(N + k − 1)!

k!

1

(N + 2k)p

) s
N−s

.

Here α∗s,N ≥ α∗. When N = 1, we also refer the reader to [18].
Next, we define the subcritical exponential growth and the critical exponential

growth as follows:

(SCE): f has subcritical exponential growth on RN , i.e., lim
t→∞

|f(x,t)|

exp

(
α|t|

N
N−s

) = 0

uniformly on x ∈ RN for all α > 0.
(CG): f has critical exponential growth on RN , i.e., there exists α0 > 0 such

that

lim
t→∞

|f(x, t)|

exp
(
α|t|

N
N−s

) = 0, uniformly onx ∈ RN , ∀α > α0

and

lim
t→∞

|f(x, t)|

exp
(
α|t|

N
N−s

) = +∞, uniformly onx ∈ RN , ∀α < α0.

When ps = N and f has the subcritical exponential growth (SCE), our work
is still to study problem (1.1) where the nonlinearity f does not satisfy the (AR)-
condition (θ > 2p) at infinity. To our knowledge, there are few works to study this
problem for fractional p-Kirchhoff equation defined in the whole space. Hence, our
result is new and our methods are more technical since we successfully used the
above fractional Moser-Trudinger inequality established in whole space. Our result
is as follows:

Theorem 1.4. Let ps = N and assume that (V1), (H1)-(H3) and (M1)-(M3) hold,
if f has the subcritical exponential growth on RN (condition (SCE)), then problem
(1.1) has a ground state solution.
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ON GROUND STATE 5

Remark 1.5. According to the condition (SCE), problem (1.1) is called subcritical
exponential Kirchhoff-type problem defined in the whole space. It seems that there
are few works to study the existence of ground state solutions of this problem at
the present time. Hence, our result is new and interesting.

The study of problem (1.1) is more difficult than in the case of subcritical expo-
nential growth when ps = N and f has the critical exponential growth (CG) since
our Euler-Lagrange functional does not satisfy the compactness condition at all lev-
el anymore. This point is completely similar to the case of the critical polynomial
growth in RN (N ≥ 3) for the standard Laplacian studied by Brezis and Nirenberg
in their pioneering work [2]. For the standard Laplacian problem, the authors [6, 7]
applied the extremal function sequences corresponded to Moser-Trudinger inequal-
ity to regain the compactness of Euler-Lagrange functional at some suitable level.
The idea of choosing the testing functions firstly appeared in [2]. Here, by choosing
particular testing functions for estimating some mountain pass level, we still study
problem (1.1). Our result is as follows:

Theorem 1.6. Let sp = N and assume that (V1), (H1)-(H4) and (M1)-(M3) hold.
Furthermore, assume that

(H5) lim
u→∞

f(x, u) exp(−α0
α∗s,N
α∗
|u|

N
N−s )u ≥ β > m

([
α∗
α0

]N−s
s

)[
α∗
α0

]N−s
s

/(ωNM),

uniformly in (x, u) ∈ RN ×R, where ωN denotes the volume of unit ball in RN and

M = lim
n→∞

N lnn

∫ 1

0

exp
(
Nt

N
N−s lnn− tN lnn

)
dt.

If f has the critical exponential growth on RN (condition (CG)), then problem (1.1)
has a ground state solution.

Remark 1.7. Since Nt
N
N−s −Nt ≥ −Nt for 0 ≤ t ≤ 1, we get

M≥ 1.

Remark 1.8. For fractional Kirchhoff problems with critical Trudinger-Moser non-
linearity defined in bounded domain, Xiang et al. [22] have recently obtained the
existence of a ground state solution with positive energy by using minimax tech-
niques combined with the fractional Moser-Trudinger inequality. However, for frac-
tional p- Kirchhoff problem (1.1) with periodic potential defined in the whole space
involving critical exponential growth, there are few works to consider it. Hence our
result is new and interesting.

The paper is arranged as follows. In Section 2, we introduce some necessary
preliminary knowledge for working space. In Section 3, we prove some lemmas. In
Section 4, we give the proofs of our main results.

2. Preliminaries

In this section, we introduce some preliminary knowledge which will be used in
the sequel.
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6 R. PEI

We first state the variation setting for problem (1.1). Let 1 ≤ r ≤ ∞ and denote
by | · |r the norm of Lr(RN ). Let 0 < s < 1 < p < ∞ be real numbers and define
the fractional Sobolev space

W s,p(RN ) = {u ∈ Lp(RN ) : [u]s,p <∞},

equipped with the following norm

‖u‖s,p =
(
|u|pp + [u]ps,p

) 1
p .

The Gagliardo seminorm is defined for all measurable function u : RN → R by

[u]s,p =

(∫
R2N

|u(x)− u(y)|p

|x− y|N+sp
dxdy

) 1
p

.

It is easy verify that W s,p(RN ) is uniformly convex Banach space. The fractional
Sobolev critical exponent is defined by

p∗ =

{
Np
N−sp , if sp < N,

∞, if sp ≥ N.

Moreover, the fractional Sobolev space W s,p(RN ) ↪→ Lγ(RN ) is continuous for
p ≤ γ ≤ p∗ if sp < N , and W s,p(RN ) ↪→ Lγ(RN ) is continuous for p ≤ γ < ∞ if
sp = N . For a detailed account on the properties of W s,p(RN ) we refer the reader
to [5].

For simplicity, from now on we denote X = W s,p(RN ). Using condition (V1),
we can introduce a new norm ‖ · ‖ on W s,p(RN ) as follow

‖u‖ =

(∫
RN

V (x)|u|pdx+ [u]ps,p

) 1
p

, u ∈ X.

It is well known that the new norm ‖ · ‖ is equivalent to the standard ‖u‖s,p in
X. We rephrase variationally the fractional p-Laplacian as the nonlinear operator
A : X → X∗ defined for all u, ϕ ∈ X by

〈A(u), ϕ〉 =m(‖u‖p)
( ∫

R2N

[
|u(x)− u(y)|p−2(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|N+sp

]
dxdy

+

∫
RN

V (x)|u(x)|p−2uϕdx
)
.

Thus, a weak solution of problem (1.1) is a function u ∈ X such that

〈A(u), ϕ〉 =

∫
RN

f(x, u)ϕdx (2.1)

for all ϕ ∈ X. From condition (SCPI)(or (CG)), it is easy to know that (2.1) is the
Euler-Lagrange equation of the functional

J (u) =
1

p
M(‖u‖p)−

∫
RN

F (x, u)dx,

whereM(t) =
∫ t

0
m(s)ds. Next, we recall some definitions for compactness condition

and a version of mountain pass theorem.
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Definition 2.1. Let ( X, ‖ · ‖X) be a real Banach space with its dual space (X∗, ‖ ·
‖X∗) and J ∈ C1(X,R). For c ∈ R, we say that J satisfies the (C)c condition if
for any sequence {xn} ⊂ X with

J (xn)→ c, ‖J ′(xn)‖X∗(1 + ‖xn‖X)→ 0,

there is a subsequence {xnk} such that {xnk} converges strongly in X.

We have the following version of the mountain pass theorem ( see [1, 3]):

Proposition 2.2. Let X be a real Banach space and suppose that J ∈ C1(X,R)
satisfies the condition

max{J (0),J (u1)} ≤ α < β ≤ inf
‖u‖=ρ

J (u),

for some α < β, ρ > 0 and u1 ∈ X with ‖u1‖ > ρ. Let c ≥ β be characterized by

c = inf
γ∈Γ

max
0≤t≤1

J (γ(t)),

where Γ = {γ ∈ C([0, 1], X), γ(0) = 0, γ(1) = u1} is the set of continuous paths
joining 0 and u1. Then, there exists a (C)c sequence {un} ⊂ X such that

J (un)→ c ≥ β and (1 + ‖un‖)‖J ′(un)‖X∗ → 0 asn→∞.

3. Some lemmas

Lemma 3.1. Let 1 < p < N
s and assume that (M1), (M2), (H1)-(H3) and (SCPI)

hold. Then:

(i) There exist ρ, α > 0 such that J (u) ≥ α for all u ∈ X with ‖ u ‖= ρ,
(ii) There exists φ ∈ X such that J (tφ)→ −∞ as t→ +∞ .

Proof. By (SCPI) and (H1)-(H3), for any ε > 0, there exist A1 = A1(ε), B1 = B1(ε),
p∗ > p1 > p and M large enough such that for all (x, t) ∈ RN × R,

F (x, t) ≤ ε

p1
|t|p1 +A1|t|p

∗
, (3.1)

F (x, t) ≥ M

2p
|t|2p −B1. (3.2)

Using the Sobolev inequality: |u|p1p1 ≤ Kp1‖u‖p1 , and |u|p
∗

p∗ ≤ Kp∗‖u‖p
∗
, from (3.1),

we obtain

J (u) ≥ m0

p
‖u‖p − ε

p1
|u|p1p1 −A1|u|p

∗

p∗

≥ 1

p
m0‖u‖p −

Kp1ε

p1
‖u‖p1 −A1Kp∗‖u‖p

∗
.

So, part (i) holds if we choose ε > 0 and ||u|| = ρ > 0 small enough.

On the other hand, for all t > S0, condition (M2) means that

M(t) ≤

{
a0 + a1t+ a2

γ+1 t
γ+1, if γ 6= −1,

b0 + a1t+ a2 ln t, if γ = −1,
(3.3)
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8 R. PEI

where a0 = M(S0)−(a1S0 + a2
γ+1S

γ+1
0 ) and b0 = M(S0)−(a1S0 +a2 ln(S0)) directly

obtained by integration. Now, choosing nonzero φ ∈ C∞0 (RN ) with ‖φ‖ = 1, by
(3.2) and (3.3), we get

J (tφ) ≤


a0
p + a1

p t
p + a2

pγ+p t
pγ+p − M

2p t
2p|φ|2p2p +B1|supp φ|, if γ 6= −1,

b0
p + a1

p t
p + a2 ln t

p − M
2p t

2p|φ|2p2p +B1|supp φ|, if γ = −1

(3.4)
for all t > S0, where |supp φ| denotes the volume of supp φ and M large enough.
Provided γ ≤ 1, then from (3.4), J (tφ) → −∞, as t → +∞. Thus part (ii)
holds. �

Lemma 3.2. Let ps = N and assume that (M1), (M2), (H1)-(H3) and (SCE) (or
(CG)) hold. Then:

(i) There exist ρ, α > 0 such that J (u) ≥ α for all u ∈ X with ‖ u ‖= ρ,
(ii) There exists φ ∈ X such that J (tφ)→ −∞ as t→ +∞ .

Proof. By (SCE) (or (CG)) and (H1)-(H3), for any ε > 0, there exist A∗1 = A∗1(ε),
M large enough, B∗1 = B∗1(ε), p2 > N

s , κ > 0 and q2 > p2 such that for all

(x, s) ∈ RN × R,

F (x, s) ≤ 1

p2
ε|s|p2 +A∗1ΦN,s

(
κ|s|

N
N−s

)
|s|q2 , (3.5)

F (x, s) ≥ sM

2N
|s| 2Ns −B∗1 . (3.6)

From (3.5), the Hölder inequality, the fractional Moser-Trudinger embedding in-
equality (see proposition 1.3) and the Sobolev embedding inequalities we obtain

J (u) ≥ m0s

N
‖u‖Ns − ε

p2
|u|p2p2 −A1

∫
RN

ΦN,s

(
κ|u|

N
N−s

)
|u|q2dx

≥ sm0

N
‖u‖Ns − Kp2ε

p2
‖u‖p2

−A1

(∫
RN

ΦN,s

(
κr‖u‖

N
N−s

(
|u|
‖u‖

) N
N−s

)
dx

) 1
r (∫

RN
|u|r

′q2dx

) 1
r′

≥ sm0

N
‖u‖Ns − Kp2ε

p2
‖u‖p2 − C‖u‖q2 ,

where r > 1 sufficiently close to 1, ‖u‖ ≤ σ and κrσ
N
N−s ≤ α∗. So, part (i) holds if

we choose ε > 0 and ‖u‖ = ρ > 0 small enough.

On the other hand, by using (3.3) and (3.6), similar to the proof of (ii) of Lemma
3.1, we have

J (tφ)→ −∞, as t→ +∞,
where φ ∈ C∞0 (RN ) with ‖φ‖ = 1. Thus part (ii) holds. �
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ON GROUND STATE 9

Lemma 3.3. Let 1 < p < N
s and assume that (V1), (M1)-(M3) and (H1)-(H3) hold.

If f has the improved subcritical polynomial growth on RN (condition (SCPI)), then
any (C)c sequence of J is bounded.

Proof. Let {un} ⊂ X be a (C)c sequence such that

M(‖un‖p)
p

−
∫
RN

F (x, un)dx→ c, (3.7)

(1 + ‖un‖)
(
〈A(un), ϕ〉 −

∫
RN

f(x, un)ϕdx

)
= o(1)‖ϕ‖, ϕ ∈ X. (3.8)

By the contradiction, assume that ‖un‖ → ∞ and set

vn =
un
‖un‖

.

Then {vn} is bounded. Without loss of generality, we may assume that {vn} con-
verges weakly to v in X, local converges strongly in Lp(RN ) and converges v a.e.
x ∈ RN . Now, we will show that v = 0. Dividing both sides of (3.7) by ‖un‖2p,
from (M2), we get

lim sup
n→∞

∫
RN

F (x, un)

‖un‖2p
dx ≤ a2

p(γ + 1)
. (3.9)

Set
A = {x ∈ RN : v(x) 6= 0}.

Using Hôpital’s rule, it follows from (H2) that

lim
t→∞

F (x, t)

|t|2p
→ +∞. (3.10)

This means
F (x, un)

|un|2p
|vn|2p →∞, x ∈ A.

If |A| is positive, then from (H3), we have

F (x, t) ≥ 0, ∀(x, t) ∈ RN × R,
and ∫

RN

F (x, un)

‖un‖2p
dx ≥

∫
A

F (x, un)

|un|2p
|vn|2pdx→∞,

which contradicts with (3.9).
By conditions (V1), (H1) and v = 0, we can prove that

lim
n→∞

sup
y∈RN

∫
B2(y)

|vn|pdx = 0. (3.11)

Owing to (3.11), applying the Lions’ Lemma [13, Lemma 1.1] we obtain

vn → 0 inLγ(RN ), ∀ γ ∈ (p, p∗). (3.12)

Let tn ∈ [0, 1] such that

J (tnun) = max
t∈[0,1]

J (tun).

For any given R > 0, by (H1), (H3) and (SCPI), there exist C1 > 0 and p∗ > p3 > p
such that

F (x, t) ≤ C1|t|p3 +
1

Rp∗
|t|p
∗
, ∀(x, t) ∈ Ω× R. (3.13)
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10 R. PEI

Also since ‖un‖ → ∞, we get for n large enough:

J (tnun) ≥ J (
R

‖un‖
un) = J (Rvn). (3.14)

Thus, from (3.13), and noting that ‖vn‖ = 1, we have

J (Rvn) ≥ m0R
p − C1R

p3

∫
RN
|vn(x)|p3dx− 1

Rp∗

∫
RN
|Rvn|p

∗
dx. (3.15)

Hence, from (3.12), for large enough R in above formula we get

J (tnun)→∞. (3.16)

Noting that J (0) = 0 and J (un) → c, we can suppose that tn ∈ (0, 1). So from
〈J ′(tnun), tnun〉 = 0, we have

m(tpn‖un‖p)tpn‖un‖p −
∫
RN

f(x, tnun)tnundx = 0. (3.17)

On the other hand, from (3.7) and (3.8), we imply that

1

p
M(‖un‖p)−

1

2p
m(‖un‖p)‖un‖p+

1

2p

∫
RN

(f(x, un)un−2pF (x, un))dx→ c. (3.18)

Now, from (H3) and (M3) , we get respectively

tf(x, t)− 2pF (x, t) is strict increasing for t > 0 and strict decreasing for t < 0

and
1

2
M(t)− 1

4
m(t)t is nondecreasing for t ≥ 0.

Thus, we have

J (tnun) =
1

p
M(‖tnun‖p)−

∫
RN

F (x, tnun)dx

=
1

p
M(‖tnun‖p)−

1

2p
m(‖tnun‖p)

+
1

2p

∫
RN

[f(x, tnun)tnun − 2pF (x, tnun)]dx

≤ 1

p
M(‖un‖p)−

1

2p
m(‖un‖p) +

1

2p

∫
RN

[f(x, un)un − 2pF (x, un)]dx

≤ M,

where M is a positive constant and the last inequality is followed by (3.18). This
leads to a contradiction. �

Lemma 3.4. Let ps = N and assume that (V1), (M1)-(M3) and (H1)-(H3) hold.
If f has the subcritical exponential growth on RN (condition (SCE)), then any (C)c

sequence of J is bounded.

Proof. Let {un} ⊂ X be a (C)c sequence satisfying (3.7) and (3.8). Argue by the
contradiction that ‖un‖ → ∞ and set vn = un

‖un‖ . We can suppose that vn ⇀ v

in X. According to the previous section of proof of Lemma 3.3, we may similarly
show that vn ⇀ 0.
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ON GROUND STATE 11

Using conditions (V1), (H1) and v = 0, we can prove that

lim
n→∞

sup
y∈RN

∫
B2(y)

|vn|pdx = 0. (3.19)

Owing to (3.19), applying the Lions’ Lemma [13, Lemma 1.1] we obtain

vn → 0 inLγ(RN ), ∀ γ ∈
(
N

s
,+∞

)
. (3.20)

Again let tn ∈ [0, 1] such that

J (tnun) = max
t∈[0,1]

J (tun).

For any given R > 0, by (H1), (H3) and (SCE), there exists C2 > 0 such that

F (x, t) ≤ C2|t|2p + ΦN,s

(
α∗

2R
N
N−s
|t|

N
N−s

)
, ∀(x, t) ∈ RN × R. (3.21)

Also since ‖un‖ → ∞, we get for n large enough:

J (tnun) ≥ J (
R

‖un‖
un) = J (Rvn). (3.22)

Thus, from (3.21), and noting that ‖vn‖ = 1, we have

J (Rvn) ≥ m0R
p − C2R

2p

∫
RN
|vn(x)|2pdx−

∫
RN

ΦN,s

(α∗
2
|vn|

N
N−s

)
dx. (3.23)

Hence, from (3.20), for large enough R in above formula we get

J (tnun)→∞. (3.24)

Remained proof is completely similar to the last section of proof of Lemma 3.3. We
omit it here. �

Lemma 3.5. Assume that conditions (M1)-(M2), (H2), (H3) and (H5) hold. If f
has the critical exponential growth on RN (condition (CG)), then

c∗ < M

([
α∗
α0

]N−s
s

)
s

N
,

where c∗ is defined by

c∗ := inf
γ∈Γ

max
0≤t≤1

J (γ(t)),

where Γ = {γ ∈ C([0, 1], X) : γ(0) = 0, J (γ(1)) < 0}.

Proof. In order to get a more precise information about the minimax level c∗, let
us denote by B the unit ball and consider the following sequence of nonnegative
functions:

uε(x) =


| ln ε|N−sN , if |x| ≤ ε,
| ln |x||
| ln ε|

ε
N
, if ε < |x| < 1,

0, if |x| ≥ 1.

Set

ωn(x) =
uεn
‖uεn‖

,
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12 R. PEI

where εn = 1
n . Since ‖ωn‖ = 1, as in the proof of Lemma 3.2, we have that

J (tωn)→ −∞. Consequently,

c∗ ≤ max
t>0
J (tωn), ∀n ∈ N.

Thus it suffices to show that max
t>0
J (tωn) < M

([
α∗
α0

]N−s
s

)
s
N for some n ∈ N.

Suppose by contradiction that this is not the case. So, for all n, this maximum is

larger or equal to M

([
α∗
α0

]N−s
s

)
s
N . Let tn > 0 such that

J (tnωn) = max{J (tωn) : t ≥ 0} ≥M

([
α∗
α0

]N−s
s

)
s

N
. (3.25)

It follows from (H3), (M1) and (3.25) that

t
N
s
n ≥

[
α∗
α0

]N−s
s

. (3.26)

Also at t = tn, we have

m(t
N
s
n )t

N
s −1
n −

∫
RN

f(x, tnωn)ωndx = 0,

which implies that

m(t
N
s
n )t

N
s
n =

∫
RN

f(x, tnωn)tnωndx. (3.27)

Moreover, it follows from (H5) that given ε > 0 there exists Rε > 0 such that

tf(x, t) ≥ (β − ε) exp

(
α0

α∗s,N
α∗
|t|

N
N−s

)
, ∀t ≥ Rε.

So from (3.27), we have

m(t
N
s
n )t

N
s
n =

∫
B1(0)

f(x, tnωn)tnωndx

≥
∫
B 1
n

(0)

f(x,
tn
‖u 1

n
‖

(lnn)
N−s
N )

tn
‖u 1

n
‖

(lnn)
N−s
N dx

≥ (β − ε)
∫
B 1
n

(0)

exp(α0

α∗s,N
α∗

t
N
N−s
n

lnn

‖u 1
n
‖

N
N−s

)dx (for largen)

= (β − ε)ωN (
1

n
)N exp(α0

α∗s,N
α∗

t
N
N−s
n

lnn

‖u 1
n
‖

N
N−s

).

Thus, we imply that, for large n

m(t
N
s
n )t

N
s
n ≥ (β − ε)ωN exp

α0
α∗s,N
α∗

t
N
N−s
n

N‖u 1
n
‖

N
N−s

− 1

N lnn

 , (3.28)

where ωN denotes the volume of the unit ball and ‖u 1
n
‖ → (α∗s,N/N)

N−s
N (see

[23]). Thus, by (3.28), we know that {tn} is bounded. Using (3.26), we have

t
N
s
n →

[
α∗
α0

]N−s
s

. (3.29)
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ON GROUND STATE 13

Let
An = {x ∈ B : tnωn(x) ≥ Rε}, Bn = B \An,

and break the integral in (3.27) into a sum of integrals over An and Bn. Similar to
the proof of (3.28), we have

m

([
α∗
α0

]N−s
s

)[
α∗
α0

]N−s
s

≥ (β−ε) lim
n→∞

∫
B

exp

[
α∗s,Nω

N
N−s
n

]
dx−(β−ε)ωN . (3.30)

The last integral in (3.30), denoted In is evaluated as follows:

In =

{
ωN +NωN lnn

∫ 1

0

exp
(
Nt

N
N−s lnn− tN lnn

)
dt

}
.

So finally from (3.30) we have

m

([
α∗
α0

]N−s
s

)[
α∗
α0

]N−s
s

≥ (β − ε)ωNM,

which implies β ≤ m
([

α∗
α0

]N−s
s

)[
α∗
α0

]N−s
s

/(ωNM). This happens a contradiction

to (H5). �

Lemma 3.6. Let ps = N and assume that (V1), (M1)-(M3) and (H1)-(H3) hold.
If f has the critical exponential growth on RN (condition (CG)), then any (C)c

sequence of J satisfying c < M

([
α∗
α0

]N−s
s

)
s
N is bounded.

Proof. Let {un} ⊂ X be a (C)c sequence satisfying (3.7) and (3.8). Argue by the
contradiction that ‖un‖ → ∞ and set vn = un

‖un‖ . We can suppose that vn ⇀ v

in X. According to the previous section of proof of Lemma 3.3, we may similarly
show that vn ⇀ 0.

From conditions (V1), (H1) and v = 0, we can prove that

lim
n→∞

sup
y∈RN

∫
B2(y)

|vn|pdx = 0. (3.31)

Owing to (3.31), applying the Lions’ Lemma [13, Lemma 1.1] we obtain

vn → 0 inLγ(RN ), ∀ γ ∈
(
N

s
,+∞

)
. (3.32)

Again let tn ∈ [0, 1] such that

J (tnun) = max
t∈[0,1]

J (tun).

Letting R ∈
(

0, [α∗α0
]
N−s
N

)
and taking ε = α∗

R
N
N−s

− α0, by (H1), (H3) and (CG),

there exists C3 > 0 such that

F (x, t) ≤ C3|t|2p + εΦN,s

(
(α0 + ε)|t|

N
N−s

)
, ∀(x, t) ∈ RN × R. (3.33)

Also since ‖un‖ → ∞, we get for n large enough:

J (tnun) ≥ J (
R

‖un‖
un) = J (Rvn). (3.34)
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14 R. PEI

Thus, from (3.33), and noting that ‖vn‖ = 1, we have

J (Rvn) ≥ s

N
M(R

N
s )− C3R

2p

∫
RN
|vn(x)|2pdx− ε

∫
RN

ΦN,s

(
α∗|vn|

N
N−s

)
dx.

(3.35)

Hence, by Proposition 1.3 and (3.32), letting R → [α∗α0
]
N−s
N in (3.35) combining

with (3.34), we get ε→ 0 and

lim inf
n→∞

J (tnun) ≥M

([
α∗
α0

]N−s
s

)
s

N
. (3.36)

Remained proof is completely similar to the last section of proof of Lemma 3.3. We
omit it here. �

4. Proofs of the main results

Proof of Theorem 1.1. By Lemma 3.1 and Proposition 2.2, we know that there
exists a (C)c∗ sequence {un} for the functional J . Here c∗ is defined by

c∗ := inf
γ∈Γ

max
0≤t≤1

J (γ(t)),

where Γ = {γ ∈ C([0, 1], X) : γ(0) = 0, J (γ(1)) < 0}.
For the purpose of finding ground state solutions for problem (1.1), we first

consider the Nehari manifold associated to the functional J , namely,

N := {u ∈ X : 〈J ′(u), u〉 = 0, u 6= 0}

and the number b := inf
u∈N
J (u). We can easily get c∗ ≤ b. In fact, let u ∈ N and

define h : (0,+∞)→ R by h(t) = J (tu) . Then h(t) is differentiable and

h′(t) = 〈J ′(tu), u〉 = m(tp‖u‖p)tp−1‖u‖p −
∫
RN

f(x, tu)udx, ∀t > 0.

Since 〈J ′(u), u〉 = 0, that is, m(‖u‖p)‖u‖p =
∫
RN f(x, u)udx, we have

h′(t) = t2p−1‖u‖2p
[
m(tp‖u‖p)
tp‖u‖p

− m(‖u‖p)
‖u‖p

]
+t2p−1

∫
RN

[
f(x, u)

u2p−1
− f(x, tu)

(tu)2p−1

]
u2pdx.

Observing that h′(1) = 0, from (M3) and (H3), it follows that h′(t) ≥ 0 for 0 < t < 1
and h′(t) ≤ 0 for t > 1. Hence,

J (u) = max
t≥0
J (tu).

Thus, we denote g : [0, 1] → X, g(t) = tt0u, where t0 satisfying J (t0u) < 0, we
have g ∈ Γ and therefore

c∗ ≤ max
t≥0
J (g(t)) ≤ max

t≥0
J (tu).

Since u ∈ N is arbitrary, we have c∗ ≤ b.
Next, we by using Lemma 3.3 know that above the (C)c∗ sequence {un} is

bounded in X. Set

δ = lim
n→∞

sup
y∈RN

∫
B2(y)

|un|pdx. (4.1)
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ON GROUND STATE 15

If δ = 0, using the Lions’ Lemma [13] again,

un → 0 in Lγ(RN ), ∀γ ∈ (p, p∗).

Thus, from (H1), (H3) and (SCPI), we get

lim
n→∞

∫
RN

F (x, un)dx = 0, (4.2)

and

lim
n→∞

∫
RN

f(x, un)undx = 0. (4.3)

Hence, from (3.7) and (3.8), we have c∗ = 0. This is a contradiction. Therefore
δ > 0. Using (4.1), we can choose {zn} ⊂ RN such that∫

B2(zn)

|un|pdx ≥
δ

2
.

It is easy to observe that the number of points in ZN ∩B2(zn) is less than 4N . So
there exists yn ∈ ZN ∩B2(zn), such that∫

B2(yn)

|un|pdx ≥ m > 0. (4.4)

Let ũn = un(·+ yn). Applying conditions (V1) and (H1), we get ‖ũn‖ = ‖un‖ and∫
B2(0)

|ũn|pdx =

∫
B2(yn)

|un|pdx ≥ m > 0. (4.5)

Going if necessary up to a subsequence, we obtain

ũn ⇀ u∗ in X, ũn → u∗ in Lγloc(R
N );

and, from (4.5) we know that u∗ 6= 0. Moreover, from the ZN translation invariance
of the problem, we know that {ũn} is also (C)c∗ sequence of J . Without loss of
generality, we can assume that ‖ũn‖ → ρ0 > 0. Thus for every ϕ ∈ C∞0 (RN ), we
have

m(ρp0)
( ∫

R2N

[
|u∗(x)− u∗(y)|p−2(u∗(x)− u∗(y))(ϕ(x)− ϕ(y))

|x− y|N+sp

]
dxdy

+

∫
RN

V (x)|u∗(x)|p−2u∗ϕdx
)

=

∫
RN

f(x, u∗)ϕdx. (4.6)

Now, we show that ‖u∗‖ = ρ0. Since (M1), argue by contradiction that

m(‖u∗‖p)‖u∗‖p <
∫
RN

f(x, u∗)u∗dx.

Using (M1), (H3) and Sobolev imbedding, we notice that 〈J ′(tu∗), u∗〉 > m0t
p−1‖u∗‖p

−lt2p−1‖u∗‖2p > 0 for t small enough, where l is a positive constant. Then there
exists σ ∈ (0, 1) such that 〈J ′(σu∗), σu∗〉 = 0, i.e., σu∗ ∈ N . Notice that c∗ < b.
From (H3), we can follow that for each x ∈ RN ,

tf(x, t)− 2pF (x, t) is strict increasing for t > 0 and strict decreasing for t < 0.

We also notice that m has similar above properties by (M3). Thus, according to
(M3), (H3), semicontinuity of norm and Fatou’s lemma we get

c∗ ≤ b ≤ J (σu∗) = J (σu∗)− 1

2p
〈J ′(σu∗), σu∗)〉
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16 R. PEI

=
1

p
M(σu∗)− 1

2p
m(‖σu∗‖p)‖σu∗‖p

+
1

2p

∫
RN

[f(x, σu∗)σu∗ − 2pF (x, σu∗)]dx

<
1

p
M(u∗)− 1

2p
m(‖u∗‖p)‖u∗‖p

+
1

2p

∫
RN

[f(x, u∗)u∗ − 2pF (x, u∗)]dx

≤ lim
n→∞

[J (un)− 1

2p
〈J ′(un), un〉] = c∗,

which leads to a contradiction. Hence, we have ‖u∗‖ = ρ0 and u∗ is a nontrivial
ground state solution of problem (1.1). �

Proof of Theorem 1.4. Using Lemma 3.2 and Proposition 2.2, we get that there
exists a (C)c∗ sequence {un} for the functional J . For the purpose of again finding
ground state solutions for problem (1.1), we still consider the Nehari manifold
corresponded to the functional J , namely,

N := {u ∈ X : 〈J ′(u), u〉 = 0, u 6= 0}

and the number b := inf
u∈N
J (u). Similar to the previous section of proof of Theorem

1.1, we can easily get c∗ ≤ b.
Now, by Lemma 3.4, we know that above the (C)c∗ sequence {un} is bounded

in X. Set

δ = lim
n→∞

sup
y∈RN

∫
B2(y)

|un|pdx. (4.7)

If δ = 0, using the Lions’ Lemma [13] again,

un → 0 in Lγ(RN ), ∀γ ∈
(
N

s
,∞
)
.

Thus, by (H1), (H3) and (SCE), we obtain

lim
n→∞

∫
RN

F (x, un)dx = 0, (4.8)

and

lim
n→∞

∫
RN

f(x, un)undx = 0. (4.9)

Hence, from (3.7) and (3.8), we get c∗ = 0. This leads to a contradiction. Therefore
δ > 0. By (4.7), we can choose {zn} ⊂ RN such that∫

B2(zn)

|un|pdx ≥
δ

2
.

It is easy to know that the number of points in ZN ∩ B2(zn) is less than 4N . So
there exists yn ∈ ZN ∩B2(zn), such that∫

B2(yn)

|un|pdx ≥ m1 > 0. (4.10)
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Let ũn = un(·+ yn). Applying conditions (V1) and (H1), we get ‖ũn‖ = ‖un‖ and∫
B2(0)

|ũn|pdx =

∫
B2(yn)

|un|pdx ≥ m1 > 0. (4.11)

Going if necessary up to a subsequence, we obtain

ũn ⇀ u∗ in X, ũn → u∗ in Lγloc(R
N );

and , from (4.11) we know that u∗ 6= 0. Moreover, from the ZN translation invari-
ance of the problem, we know that {ũn} is also (C)c∗ sequence of J . Without loss
of generality, we can assume that ‖ũn‖ → ρ0 > 0. Thus for every ϕ ∈ C∞0 (RN ), we
have

m(ρp0)

∫
R2N

[
|u∗(x)− u∗(y)|p−2(u∗(x)− u∗(y))(ϕ(x)− ϕ(y))

|x− y|N+sp

]
dxdy

+

∫
RN

V (x)|u∗(x)|p−2u∗ϕdx =

∫
RN

f(x, u∗)ϕ. (4.12)

Remained proof is completely similar to the last section of proof of Theorem 1.1.
We omit it here. �

Proof of Theorem 1.6. By Lemmas 3.2, 3.5 and 3.6, then there exists a bounded

(C)c∗ sequence {un} at the level 0 < c∗ < M

([
α∗
α0

]N−s
s

)
s
N . Following the proof of

Theorem 1.4, we only need to prove that δ > 0 in (4.7). In fact by the contradiction
that δ = 0, we also obtain that

un → 0 in Lγ(RN ), ∀γ ∈
(
N

s
,∞
)
.

In addition, by using (H4), similar to the proof of Proposition 5.2 in [11], we get∫
RN

F (x, un)dx→ 0. (4.13)

So from (4.13) and (M1), we have

lim
n→∞

s

N
M(‖un‖

N
s ) = c∗ < M

([
α∗
α0

]N−s
s

)
s

N
. (4.14)

Since f has the critical exponential growth (CG) on RN , from (H3), for any ε > 0,
we can find two constants C4 > 0 and α > α0 such that

|f(x, t)| ≤ ε|t|Ns −1 + C4ΦN,s

(
α|t|

N
N−s

)
, ∀(x, t) ∈ RN × R.

Thus, from the fractional case of the Moser-Trudinger inequality (see Theorem 1.3
in [23]), ∣∣∣∣∫

RN
f(x, un)undx

∣∣∣∣
≤ C4

(∫
RN

ΦN,s

(
kα|un|

N
N−s

)
dx

) 1
k

|un|k′ + ε|un|
N
s
N
s

≤ C4

(∫
RN

ΦN,s

(
kα‖un‖

N
N−s

∣∣∣∣ un‖un‖
∣∣∣∣ N
N−s

)
dx

) 1
k

|un|k′ + ε|un|
N
s
N
s
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≤ C5|un|k′ + ε|un|
N
s
N
s

→ 0,

where k > 1 sufficiently close to 1 and k′ is the dual number of k. Hence, from
above formulas, we get

‖un‖
N
s → 0.

This contradicts with (4.14). The proof is now completed. �
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