For EDITORS

For READERS

All Issues

Vol.15, 2025
Vol.14, 2024
Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 14, Number 5, 2024, Pages -                                                                DOI:10.11948/JAAC-2023-0242
Universal approach to the Takesaki-Takai $\gamma $-duality for crossed products
Mykola Ivanovich Yaremenko
Keywords:Takai Duality, $\gamma $-duality, Wigner function, \textbf{\textit{$C^{*} $}}-algebra, Pontryagin duality, induced representation, cross product
Abstract:
      In this article, we generalize and simplify the proof of the Takesaki-Takai $\gamma $-duality theorem. Assume a morphism \textbf{\textit{$\omega \; :\; G\to Aut\left({\rm A}\right)$}} is a projective representation of the locally compact Abel group \textbf{\textit{$G$}} in \textbf{\textit{$Aut\left({\rm A}\right)$}}, mapping $\gamma \; :\; G\to G$ is continuous, and $\left({\rm A},\; G,\; \omega \right)$ is a dynamic system then there exists isomorphism \[\Upsilon \; :\; Env_{\hat{\omega }} {}^{\gamma } \left(L^{1} \left(\hat{G},\; Env_{\omega } {}^{\gamma } \left(L^{1} \left(G,\; {\rm A}\right)\right)\right)\right)\to {\rm A}\otimes LK\left(L^{2} \left(G\right)\right) \] which is the equivariant for the double dual action \[\hat{\hat{\omega }}\; :\; G\to Aut\left(Env_{\hat{\omega }} {}^{\gamma } \left(L^{1} \left(\hat{G},\; Env_{\omega } {}^{\gamma } \left(L^{1} \left(G,\; {\rm A}\right)\right)\right)\right)\right).\] These results deepen our understanding of the representation theory and are especially interesting given their possible applications to problems of the quantum theory.
PDF      Download reader