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UNIVERSAL APPROACH TO THE
TAKESAKI-TAKAI γ-DUALITY

M.I. Yaremenko1,†

Abstract In this article, we generalize and simplify the proof of the Takesaki-
Takai γ-duality theorem. Assume a morphism ω : G → Aut (A) is a projective
representation of the locally compact Abel group G in Aut (A), mapping γ :
G → G is continuous, and (A, G, ω) is a dynamic system then there exists
isomorphism

Υ : Envω̂
γ
(
L1

(
Ĝ, Envω

γ (L1 (G, A)
)))

→ A⊗ LK
(
L2 (G)

)
which is the equivariant for the double dual action

ˆ̂ω : G → Aut
(
Envω̂

γ
(
L1

(
Ĝ, Envω

γ (L1 (G, A)
))))

.

These results deepen our understanding of the representation theory and are
especially interesting given their possible applications to problems of the quan-
tum theory.
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1. Introduction

Let G be a locally compact group, let CC (G) be a space of real-valued function
with compact support.

Definition 1.1. A Radon measure on a locally compact group G is called a
linear form µ on CC (G) such that for any compact set K ⊂ G restriction
of the linear form µ to subspace CC (K) ⊂ CC (G) functions of CC (G)
which support contains in K, is continuous in the topology of uniform
convergence. The value µ (ψ) of the Radon measure µ on the continuous
function ψ ∈ CC (G) with compact support is called a Radon integral of
the function ψ.

As a consequence of the definition, we have that for any compact subset K ⊂ G
there exists a constant c̃ (K) dependent on K such that the equality

|µ (ψ)| ≤ c̃ ∥ψ∥Cc(G)
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holds for all ψ ∈ CC (G).
Let CC

+ (G) be s set of all finite positive continuous functions with compact
supports. We denote by ℘+ (G) the set of all lower semicontinuous positive functions
i.e., all functions ψ such that at every point g0 of its domain satisfy the following
condition

lim
g→g0

inf
g∈G

ψ (g) = ψ (g0) .

Definition 1.2. Let µ be positive Radon measure on G, then the upper
integral µ∗ (ψ) of a function ψ ∈ ℘+ (G) is defined by

µ∗ (ψ) = sup
φ∈CC

+(G), φ≤ψ
µ (φ) .

The upper integral of an arbitrary positive function ψ : G → R+ is
defined by

µ∗ (ψ) = inf
φ∈℘+(G), φ≥ψ

µ∗ (φ) .

Definition 1.3. The outer measure µ∗ (E) of an arbitrary subset E ⊂ G
is an upper integral µ∗ (1E) of the characteristic function 1E of E.

The set M (G) of all Radon measures µ on the locally compact space G is the
space of all linear forms on the vector space CC (G) and thus M (G) is a topological
space with the ∗-weak or so-called wide topology of the weak convergence. If G is a
compact group then the wide topology coincides with the classical weak topology.

Wide topology in M (G) can be defined by seminorms µ 7→ sup
1≤i≤k

|µ (ψi)|, where

{ψi}1≤i≤k ⊂ CC (G) is an arbitrary finite sequence of functions of CC (G).

The dual group Ĝ consists of all homomorphisms (characters) from G to the
circle group with natural measure µ̂ (χ) =

∫
χ (g)dµ (g), χ ∈ Ĝ.

The Fourier transform of a function ψ ∈ L1 (G) is given by

ψ̂ (χ) =

∫
G

ψ (g)χ (g)dµ (g) .

Let A be a C∗-algebra then we call a triplet (A, G, ω) a dynamical system where
ω : G → Aut (A) is a strongly continuous representation, and let H be a Hilbert
space then a triplet (H, π, ρ) is called a covariant representation of (A, G, ω).

The Takai duality theory is a generalization of the Takesai duality theorem for
the Neumann algebras, which are unital ∗-algebras of bounded operators on Hilbert
spaces that are closed in the weak operator topology. The classical Takai duality
theorem can be formulated as follows: let (A, ω) be an action of an Abelian group
G then there exists an isomorphism Υ from the iterated product (A×ω G)×ω̂ Ĝ to
the maximal product A⊗ LK

(
L2 (G)

)
.

Considerable interest in C∗-algebras is justified by many applications to the
problems of quantum mechanics for instance so-called von Neumann algebras. Some
applications of C∗-algebras to quantum physics are described in [5, 12]. B. Abadie
[1] considers the Cuntz-Krieger-Pimsner algebras that be a generalization of the
crossed product by the set of integer numbers and Toeplitz and Cuntz-Krieger
algebras. In [2, 3], the Cuntz–Pimsner covariance condition is considered as a
nondegeneracy condition for representations of cross algebras and a groupoid model
for the Cuntz–Pimsner algebra is constructed; in [10], the author considers the C∗-
envelope of a tensor algebra as the corresponding Cuntz- Krieger C∗-algebra.



Universal approach to the Takesaki-Takai γ-duality 3

We will consider the cross product of C∗-algebra A×ωG as the universal envelop-
ing C∗-algebra Envω

(
L1 (G, A)

)
of the Banach algebra completed in the universal

norm. The covariant representation (H, π, ρ) can be unequivocally characterized
by morphism (ρ ∝ π) : Lp (G, A)E → LB (H, H). This approach can be applied
to generalize this theory to include the pseudo-differential operators for general
quantization. Thus, we could define a binary operation as

(Ψ1 ⊙γ Ψ2) (g) =

=

∫
G

ω
(
γ (g)

−1
γ (h)

)
Ψ1 (h)ω

(
γ (g)

−1
hγ

(
h−1g

)
, Ψ2

(
h−1g

))
dµ (h)

and Ψ1
⊙γ (g) = ω

(
γ (g)

−1
hγ

(
g−1

)
,
(
Ψ1

(
g−1

))∗)
where γ : G → G is a con-

tinuous function. So, we could define a γ- quantization for γ : G → G, and
corresponding pseudo-differential operators, and recover the Weyl-Wigner theory;
the next logical step in generalization is to consider p-Schatten classes. For further
reading consider a list of references [1-14] and the most recent [15-18].

2. The C∗-algebra

Let A be a C∗-algebra. Let G be a locally compact group equipped with Haar
measure µ. Let for each g ∈ G we define a C∗-algebra isomorphism ω (g) : A → A,
for each fixed ψ ∈ A the morphism ω (g, ψ) is a continuous mapping ω (·, ψ) :
G→ A and satisfies the semigroup condition ω (g, ψ) ◦ω (h, ψ) = ω (gh, ψ) for all
g, h ∈ G, a such defined morphism will be denoted ω : G → Aut (A). The triplet
(A, G, ω) is called a dynamical system.

Definition 2.1. Let H be a separable Hilbert space, π : G → U (H) be a
continuous unitary representation, ρ : A → LB (H) be a ∗-representation,
then the covariant representation is a set (H, π, ρ) under the condition
π (g) ρ (ψ)π (g)

∗
= ρ (ω (g, ψ)) for all g ∈ G and ψ ∈ A. Often, the triplet

(H, π, ρ) is abbreviated to duplet (π, ρ).

Let Lp (G, A) be a Banach ∗-algebra of A- valued function on G, with the norm
given by

∥Ψ∥Lp
p =

∫
G

∥Ψ(g)∥A
pdµ (g) ,

we assume p = 1 and the multiplication operation ⊙ : Lp (G, A) × Lp (G, A) →
Lp (G, A) is defined by

(Ψ1 ⊙Ψ2) (g) =

∫
G

Ψ1 (h)ω
(
Ψ2

(
h−1g

))
dµ (h)

and
Ψ1

⊙ (g) = ω
(
g,

(
Ψ1

(
g−1

))∗)
for any pair Ψ1, Ψ2 ∈ Lp (G, A).

The universal enveloping C∗-algebra Env (Lp (G, A)) of the Banach ∗-algebra
Lp (G, A) is constructed as follows. First, we construct the free tensor algebra

T (Lp (G, A)) = G⊕ Lp (G, A)⊕ (Lp (G, A)⊗ Lp (G, A))⊕

⊕ (Lp (G, A)⊗ Lp (G, A)⊗ Lp (G, A)) ...
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where ⊕ is the direct sum and ⊗ is the tensor product. Second, the multiplica-
tion operation ⊙ : Lp (G, A) × Lp (G, A) → Lp (G, A)is bilinear and the tensor
product is bilinear so the natural lift is accomplished in such a way as to pre-
serve multiplication as a homomorphism. Third, the universal enveloping algebra
Envω (L

p (G, A)) is a quotient space Envω (L
p (G, A)) = T (Lp (G, A)) / ∼, where

the equivalence relation is Ψ1 ⊗Ψ2 −Ψ2 ⊗Ψ1 = Ψ1 ⊙Ψ2. The set I of all elements
generated by elements given by Ψ1 ⊗Ψ2 −Ψ2 ⊗Ψ1 −Ψ1 ⊙Ψ2 is a two-side ideal so
I lies in the kernel of the quotient map, so we have the short exact sequence

0 → I → T (Lp (G, A)) → T (Lp (G, A)) /I → 0

since the sequence is exact, the kernel of the map coincides with the image of
the mapping before. In this interpretation, the universal enveloping C∗-algebra
Envω (L

p (G, A)) is defined as Envω (L
p (G, A)) = T (Lp (G, A)) /I.

The universal norm is given as

∥Ψ∥Un = sup
Π

∥Π(Ψ)∥LB(H) ,

where mapping Π is a representation of Lp (G, A) in LB (H, H).

The integral transformation (ρ ∝ π) : Lp (G, A)E → LB (H, H) defined by

(ρ ∝ π) (Ψ) =

∫
G

ρ (Ψ (g))π (g) dµ (g)

extends to mapping (ρ ∝ π) : Envω (L
p (G, A)) → LB (H, H) due to the univer-

sity of enveloping C∗-algebra.

3. The Takesaki-Takai duality

Let morphism ω : G → Aut (A) be a projective representation of the locally
compact Abel group G in Aut (A). We denote a C∗-algebra of compact operators
on a separable Hilbert space H by LK (H). The morphism ω : G → Aut (A) is
called an action of the group G. Let a triplet (A, G, ω) be a dynamical system.
We obtain the dual action as the homomorphism

ω̂ : Ĝ→ Aut
(
Envω

(
L1 (G, A)

))
,

then the triplet
(
Envω

(
L1 (G, A)

)
, Ĝ, ω̂

)
is called the dual dynamic system.

Theorem 3.1. (Variant of the Takai duality). Let G be a locally compact
Abelian group and let (A, G, ω) be the dynamic system. Then,

Envω̂

(
L1

(
Ĝ, Envω

(
L1 (G, A)

)))
isomorphically equals A⊗LK

(
L2 (G)

)
, so

there exists such isomorphism Υ : Envω̂

(
L1

(
Ĝ, Envω

(
L1 (G, A)

)))
→

A⊗ LK
(
L2 (G)

)
which is equivariant for the double dual action ˆ̂ω : G →

Aut
(
Envω̂

(
L1

(
Ĝ, Envω

(
L1 (G, A)

))))
and equivariant for ω ⊗ Ad (ζ) :

G→ Aut
(
A⊗ LK

(
L2 (G)

))
.
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Proof. The statement of the Takai duality theorem will be proven if we show
that there is a sequence of the following isomorphisms:

Envω̂

(
L1

(
Ĝ, Envω

(
L1 (G, A)

))) Υ1−→

Υ1−→ Envλ̂−1⊗ω

(
L1

(
G, EnvId

(
L1

(
Ĝ, A

))))
,

Envλ̂−1⊗ω

(
L1

(
G, EnvId

(
L1

(
Ĝ, A

))))
Υ2−→ Envλ⊗ω

(
L1 (G, C0 (G, A))

)
,

Envλ⊗ω
(
L1 (G, C0 (G, A))

) Υ3−→ Envλ⊗Id
(
L1 (G, C0 (G, A))

)
,

Envλ⊗Id
(
L1 (G, C0 (G, A))

) Υ4−→ Envλ
(
L1 (G⊗A, C0 (G))

)
,

Envλ
(
L1 (G⊗A, C0 (G))

) Υ5−→ LK
(
L2 (G)

)
⊗A,

so that the isomorphism in question can be presented as Υ = Υ5 ◦Υ4 ◦Υ3 ◦Υ2 ◦Υ1,
where λ is left translation.

Let K be compact, by construction, the set CC (K ×H, A) is a dense subspace
of Envβ

(
L1

(
H, Envα

(
L1 (K, A)

)))
. Since the topology of CC (K, A) is induced

by the topology of L1- norm, we presume CC (K, A) ⊂ Envα
(
L1 (K, A)

)
is in-

variant under homomorphism β and there is f (h, g) ∈ CC (H ×K, A) such that
f (h, g) = β (ℓf (h)) (g) where ℓf ∈ CC

(
H, Envα

(
L1 (K, A)

))
.

The proof will follow from the next statements.
Statement 1. The isomorphism

Υ1 : Envω̂

(
L1

(
Ĝ, Envω

(
L1 (G, A)

)))
→

→ Envλ̂−1⊗ω

(
L1

(
G, EnvId

(
L1

(
Ĝ, A

))))
maps dense subalgebras

Υ1 : CC

(
Ĝ×G, A

)
onto−→ CC

(
G× Ĝ, A

)
so that Υ1 (f) (g, χ) = χ (g) f (χ, g) for all (g, χ) ⊂ G×Ĝ and f ∈ CC

(
Ĝ×G, A

)
.

Statement 2. Let G be an Abelian group and let CC (A, G, ω ) be a dynamical

system then the mapping Υ2 : CC

(
G× Ĝ, A

)
→ CC (G, C0 (G, A)) is given by

Υ2 (f) (g, h) =
∫
Ĝ
f (g, χ)χ (h) dµ̂ (χ), the mapping

Υ2 : Envλ̂−1⊗ω

(
L1

(
G, EnvId

(
L1

(
Ĝ, A

))))
→ Envλ⊗ω

(
L1 (G, C0 (G, A))

)
is an isomorphism.

Statement 3. Let G be an Abelian group and let (A, G, ω ) be a dynamical
system then there exists an isomorphism

Υ3 : Envλ⊗ω
(
L1 (G, C0 (G, A))

)
→ Envλ⊗Id

(
L1 (G, C0 (G, A))

)
such that equality Υ3 (f) (g, h) = ω−1 (h, f (g, h)) holds for all
f ∈ CC (G, C0 (G, A)).
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Statement 4. Let G be a locally compact group and let (A, G, ω ) be a
dynamical system then there exists an isomorphism Υ̃5 = Υ5 Υ4 such that

Υ̃5 : Envλ⊗ω
(
L1 (G, C0 (G, A))

)
→ LK

(
L2 (G)

)
⊗A.

Proof statement 1. In order to prove statement 1, we must show that ∥Υ1 (f)∥ =
∥f∥.

Let f1, f2 ∈ CC (H ×K, A) then(
(h, g) 7→ ℓf1 (h) ∗ α

(
h, ℓf1

(
h−1s

))
(g)

)
∈ CC (H ×K, A) ,

so that ℓf1 ∗ ℓf2 ∈ CC (K, A) ⊂ Envα
(
L1 (K, A)

)
and we have

(ℓf1 ∗ ℓf2) (s) (g) =

=

∫
H

∫
K

ℓf1 (h, t)ω
(
t, α

(
h,

(
ℓf2

(
h−1s

))
, t−1g

))
dµK (t) dµH (h) .

Thus, we obtain those equalities

(ℓf1 ∗ ℓf2) (χ) (g) =

=

∫
Ĝ

∫
G

ℓf1 (ζ, t) ζ (t
−1g)ω

(
t, α

(
ℓf2

(
ζχ

))
, t−1g

)
dµ (t) dµ̂ (ζ)

and dual (
ℓf̃1 ∗ ℓf̃2

)
(g) (χ) =

=

∫
G

∫
Ĝ

ℓf̃1 (t, ζ) ζ (t)χ (t)ω
(
t, α

(
ℓf̃2

(
t−1g

))
, ζχ

)
dµ̂ (ζ) dµ (t)

hold for all f1, f2 ∈ CC

(
Ĝ×G, A

)
and for all f̃1, f̃2 ∈ CC

(
G× Ĝ, A

)
⊂

Envλ̂⊗ω
(
L1

(
G, EnvId

(
L1 (G, A)

)))
. Then, we have a homomorphism

Υ1 : CC

(
Ĝ×G, A

)
onto−→ CC

(
G× Ĝ, A

)
.

We write the equalities

ℓ∗Υ1(f) (g) (χ) =

=
(
λ̂−1 ⊗ ω

)
(g)

(
ℓΥ1(f)

(
g−1

))
(χ) = χ (g)ω

(
g, ℓΥ1(f)

(
g−1

))∗
(χ) =

= χ (g)ω
(
g, Υ1 (f)

(
g−1, χ

))∗
= ω

(
g, f

(
χ, g−1

))∗
= ω

(
g, ℓf (χ)

(
g−1

))∗
= χ (g) ℓ∗f (χ) (g) = Υ1 (ℓ

∗
f ) (χ) (g) .

In general, every continuous in the inductive topology ∗ -homomorphism is
bounded in the topology of the universal norm thus this ∗ -homomorphism extends
to a representation on Envω

(
L1 (G, A)

)
.

Let U : G→ U (H) be a unitary representation and (U, ρ) be a covariant rep-

resentation of the dynamic system
(
EnvId

(
L1

(
Ĝ, A

))
, G, λ̂−1 ⊗ ω

)
, and (V, π)

be a covariant representation of
(
A, Ĝ, Id

)
, then we denote

Λ := (U, ρ) (f) =

∫
G

ρ (f (g))U (g) dµ (g)
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so that Λ = (U, ρ) : Envλ̂−1⊗ω

(
L1

(
G, EnvId

(
L1

(
Ĝ, A

))))
→ LB (H), and

ρ := (V, π) (f) =

∫
Ĝ

π (f (ĝ))V (ĝ) dµ̂ (ĝ) .

Next, we have λ̂−1 (g) ◦ ϕ (χζ) = χ (g)ϕ (χζ) ◦ λ̂−1 (g). Let us take a ∈ A,

ψ ∈ CC (G) and ϕ ∈ CC

(
Ĝ
)
so that all linear combinations a⊗ ϕ⊗ψ constitute a

dense subset of CC

(
Ĝ×G, A

)
, so that

U (g)V (χ) Λ (a⊗ ϕ⊗ ψ) = U (g)V (χ)π (a)V (ϕ)U (ψ) =

= π (ω (g, a))V
(
λ̂−1 (g) ◦ ϕ (χζ)

)
U (g)U (ψ) =

= χ (g)V (χ, π (ω (g, a)))V
(
λ̂−1 (g, ϕ)

)
U (g)U (ψ) =

= χ (g)V (χ)U (g) Λ (a⊗ ϕ⊗ ψ)

and we obtain U (g)V (χ) = χ (g)V (χ)U (g). Next, we write

U (g)π (b)π (a)V (ϕ)U (ψ) =

= π (ω (g, ba))V
(
λ̂−1 (g, ϕ)

)
U (g)U (ψ) =

= π (ω (g, b))U (g)π (a)V (ϕ)U (ψ) .

We compute

Λ (Υ1 (f)) =
∫
G

∫
Ĝ
π (Υ1 (f) (χ, g))V (χ)U (g) dµ̂ (χ) dµ (g) =

=
∫
G

∫
Ĝ
π (f (χ, g))χ (g)V (χ)U (g) dµ̂ (χ) dµ (g) =

=
∫
Ĝ

∫
G
π (f (χ, g))U (gV (χ)) dµ (g) dµ̂ (χ)

so, we obtain ∥Υ1 (f)∥ ≤ ∥f∥, the similarly, we obtain ∥f∥ ≤ ∥Υ1 (f)∥ and Υ1 :

Envω̂

(
L1

(
Ĝ, Envω

(
L1 (G, A)

)))
→ Envλ̂−1⊗ω

(
L1

(
G, EnvId

(
L1

(
Ĝ, A

))))
is an isomorphism, statement 1 is proven.

Proof statement 2. The isomorphism EnvId

(
L1

(
Ĝ, A

))
→ C0 (G, A) given

by ⟨ψχ⟩Ĝ can be constructed as an extension of the mapping a⊗ ϕ 7→ a⊗ ϕ̂ that is

defined on the span of bases as A⊗C∗
(
Ĝ
)
∼= EnvId

(
L1

(
Ĝ, A

))
→ C0 (G, A) ∼=

C0 (G)⊗A. The mapping Υ2 := ⟨ψχ⟩Ĝ ⊗ Id is equivariant isomorphism since

(λ⊗ ω) (g)
∫
Ĝ
ψ (χ)χ (g)dµ̂ (χ) =

=
∫
Ĝ

(
λ−1 ⊗ ω

)
(g)ψ (χ)χ (g)dµ̂ (χ) ,

statement 2 is proven.
Proof of statement 3. Since ω−1 (h, φ (h)) is an isomorphism C0 (G, A) →

C0 (G, A), statement 3 follows from

ω−1 (g, (λ⊗ ω) (g, φ)) (h) = ω−1
(
h, ω

(
g, φ

(
g−1h

)))
= ω−1

(
g−1h, φ

(
g−1h

))
=

= (λ⊗ ω) (g)ω−1 (h, φ (h)) ,
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so that Υ3 (f) (g, h) = ω−1 (h, f (g, h)).
Proof of statement 4. Let ∆ be a modular function on G, namely, ∆ : G→ R+

is a continuous homomorphism and the equality

∆ (g)

∫
G

ψ (hg) dµ (h) =

∫
G

ψ (h) dµ (h)

holds for all ψ ∈ CC (G). Next, we must show that Envλ
(
L1 (G, C0 (G))

) ∼=
LK

(
L2 (G)

)
. The Envλ

(
L1 (G, C0 (G))

)
is simple. We define a natural covariant

representation (M, l) of (C0 (G) , G, λ) as M (ψ)φ (g) = ψ (g)φ (g) where l :
G → U

(
L2 (G)

)
is the left-regular representation and M operator of pointwise

multiplication. Let k ∈ CC (G×G) then ∆
(
h−1g

)
k
(
g, h−1g

)
= ψk (h, g), ψk ∈

CC (G×G) so that∫
G
⟨M (ψk (g, ·)) l (g)φ1, φ2⟩L2 dµ (g) =

=
∫
G

∫
G
ψk (g, h)φ1

(
g−1h

)
φ2 (h) dµ (g) dµ (h) =

=
∫
G

∫
G
∆
(
g−1

)
k
(
h, g−1h

)
φ1

(
g−1h

)
φ2 (h) dµ (g) dµ (h) =

=
∫
G

∫
G
k (h, g)φ1 (g)φ2 (h) dµ (g) dµ (h) .

The kernel k ∈ CC (G×G) ⊂ L2 (G×G) defines a compact Hilbert-Schmidt op-
erator. Since CC (G) is dense in L2 (G) we have LK

(
L2 (G)

)
belongs to the image of

a compact Hilbert-Schmidt operator with kernel k mapping Envλ
(
L1 (G, C0 (G))

)
.

Assume ψ ∈ CC (G×G) we denote k (h, g) = ∆
(
g−1

)
ψ
(
hg−1, h

)
so ψk = ψ, and

Envλ
(
L1 (G, C0 (G))

) ∼= LK
(
L2 (G)

)
follows from the density of CC (G×G) in

Envλ
(
L1 (G, C0 (G))

)
.

So, since

∆ (t)
1
2
∫
G
ψ (g, ht)φ

(
g−1ht

)
dµ (g) =

=
∫
G
(ρ⊗ Id) (t, ψ) (g, h) τ (t)φ

(
g−1h

)
dµ (g) =

the mapping given by integration
∫
G
ψ (g, h)

(
g−1h

)
dµ (g) defines an equivariant

isomorphism(
Envλ

(
L1 (G, C0 (G))

)
, G, ρ⊗ Id

)
→

(
LK

(
L2 (G)

)
, G, Ad (τ)

)
,

where ρ is a right translation of the group G on itself.
Thus, we obtain the existence of the equivariant isomorphism

Υ̃5 : Envλ⊗Id
(
L1 (G, C0 (G, A))

)
→ LK

(
L2 (G)

)
⊗A,

statement 5 is proven so proof of the variant of the Takai duality theorem is com-
pleted.

4. The general cross product C∗-algebra

Let γ : G → G be a continuous mapping, we define an enveloping C∗-algebra
Envω

γ (Lp (G, A)) as T (Lp (G, A)) /I where mapping I is the two-sided ideal gen-
erated by elements

Ψ1 ⊗Ψ2 −Ψ2 ⊗Ψ1 −Ψ1 ⊙γ Ψ2,
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where a binary operation ⊙γ is defined by

(Ψ1 ⊙γ Ψ2) (g) =

=

∫
G

ω
(
γ (g)

−1
γ (h)

)
Ψ1 (h)ω

(
γ (g)

−1
hγ

(
h−1g

)
, Ψ2

(
h−1g

))
dµ (h) .

Thus, we generalized the Takai duality theory on γ-case as follows.

Theorem 4.1. (γ-variant of the Takai duality). Let G be a locally com-
pact Abelian group, let γ : G → G be a continuous mapping, and let

(A, G, ω) be the dynamic system. Then, Envω̂
γ
(
L1

(
Ĝ, Envω

γ
(
L1 (G, A)

)))
isomorphically equals A⊗ LK

(
L2 (G)

)
, so there exists such isomorphism

Υ : Envω̂
γ
(
L1

(
Ĝ, Envω

γ
(
L1 (G, A)

)))
→ A⊗ LK

(
L2 (G)

)
,

which is equivariant for the double dual action

ˆ̂ω : G→ Aut
(
Envω̂

γ
(
L1

(
Ĝ, Envω

γ
(
L1 (G, A)

))))
.

The proof is similar to the previous theorem.

5. Conclusions

This paper dedicated to dynamical systems and C∗-algebras. We establish that the

enveloping C∗-algebra Envω̂
γ
(
L1

(
Ĝ, Envω

γ
(
L1 (G, A)

)))
with a pointwise con-

vergence topology is isomorphically identical to maximal product A⊗LK
(
L2 (G)

)
.

In our future works, we will generalize this statement to include the classes of non-
abelian groups G and wide class functions γ : G → G, we also plan to develop a
new approach to its application to symmetry in quantum mechanics.
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