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UNIVERSAL APPROACH TO THE
TAKESAKI-TAKAI v-DUALITY

M.I. Yaremenko®'

Abstract In this article, we generalize and simplify the proof of the Takesaki-
Takai y-duality theorem. Assume a morphismw : G — Aut (A) is a projective
representation of the locally compact Abel group G in Aut (A), mapping v :
G — G is continuous, and (A, G, w) is a dynamic system then there exists
isomorphism

T 5 Bnos” (L' (G, Bl (I (G, A)))) = A® LK (L (@)
which is the equivariant for the double dual action
& G— Aut (Envgﬂ (L1 (G, Env,” (L1 (G, A))))) .

These results deepen our understanding of the representation theory and are
especially interesting given their possible applications to problems of the quan-
tum theory.

Keywords Takai Duality, v-duality, Wigner function, C*-algebra, Pontrya-
gin duality, induced representation, cross product.
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1. Introduction

Let G be a locally compact group, let Co (G) be a space of real-valued function
with compact support.

Definition 1.1. A Radon measure on a locally compact group G is called a
linear form p on Cco (G) such that for any compact set K C G restriction
of the linear form u to subspace Cc (K) C Cc (G) functions of Cc (G)
which support contains in K, is continuous in the topology of uniform
convergence. The value 11 (¢) of the Radon measure i on the continuous
function ¢ € Cc (G) with compact support is called a Radon integral of
the function 1.

As a consequence of the definition, we have that for any compact subset K C G
there exists a constant ¢ (K) dependent on K such that the equality

lu ()] < ¥l

Ce(G)
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holds for all ¥ € Cc (G).

Let Cc™ (G) be s set of all finite positive continuous functions with compact
supports. We denote by p, (G) the set of all lower semicontinuous positive functions
i.e., all functions ¥ such that at every point gg of its domain satisfy the following
condition

lim inf ¥ (g) = ¢ (go) -

g—gogeG

Definition 1.2. Let u be positive Radon measure on G, then the upper
integral p* (¢) of a function ¢ € p, (G) is defined by

w () = sup 1)
peCcT(G), <Y

The upper integral of an arbitrary positive function vy : G — RT is
defined by

* = inf * .
W) pEp+(G), wzwu 2
Definition 1.3. The outer measure p* (E) of an arbitrary subset E C G

is an upper integral p* (1g) of the characteristic function 1g of E.

The set M (G) of all Radon measures p on the locally compact space G is the
space of all linear forms on the vector space Cc (G) and thus M (G) is a topological
space with the «-weak or so-called wide topology of the weak convergence. If G is a
compact group then the wide topology coincides with the classical weak topology.

Wide topology in M (G) can be defined by seminorms p — sup |u (¢;)], where

1<i<k

{¥iti<i<k C Cc (G) is an arbitrary finite sequence of functions of Ce (G).

The dual group G consists of all homomorphisms (characters) from G' to the
circle group with natural measure /i (x) = [ x (9)du (g), x € G.
The Fourier transform of a function 1 € L' (G) is given by

b (x) = /G ¥ (9) X @)du (g).

Let A be a C*-algebra then we call a triplet (A, G, w) a dynamical system where
w : G — Aut(A) is a strongly continuous representation, and let H be a Hilbert
space then a triplet (H, 7, p) is called a covariant representation of (A, G, w).

The Takai duality theory is a generalization of the Takesai duality theorem for
the Neumann algebras, which are unital *-algebras of bounded operators on Hilbert
spaces that are closed in the weak operator topology. The classical Takai duality
theorem can be formulated as follows: let (A, w) be an action of an Abelian group
G then there exists an isomorphism T from the iterated product (A x, G) Xy G to
the maximal product A @ LK (L? (G)).

Considerable interest in C*-algebras is justified by many applications to the
problems of quantum mechanics for instance so-called von Neumann algebras. Some
applications of C*-algebras to quantum physics are described in [5, 12]. B. Abadie
[1] considers the Cuntz-Krieger-Pimsner algebras that be a generalization of the
crossed product by the set of integer numbers and Toeplitz and Cuntz-Krieger
algebras. In [2, 3], the Cuntz—Pimsner covariance condition is considered as a
nondegeneracy condition for representations of cross algebras and a groupoid model
for the Cuntz—Pimsner algebra is constructed; in [10], the author considers the C*-
envelope of a tensor algebra as the corresponding Cuntz- Krieger C*-algebra.
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We will consider the cross product of C*-algebra A x,,G as the universal envelop-
ing C*-algebra Enuv,, (Ll (G, A)) of the Banach algebra completed in the universal
norm. The covariant representation (H, m, p) can be unequivocally characterized
by morphism (p x 7) : LP (G, A)E — LB (H, H). This approach can be applied
to generalize this theory to include the pseudo-differential operators for general
quantization. Thus, we could define a binary operation as

(1 0y ¥2) (9) =
= /Gw (7 (9) (h)) Wy (h)w (7 (9) "y (htg), Ty (h”g)) dp (h)

and U197 (g9) = w (’y (g)_1 hy (g_l), (\111 (g_l))*) where v : G — G is a con-
tinuous function. So, we could define a - quantization for v : G — G, and
corresponding pseudo-differential operators, and recover the Weyl-Wigner theory;
the next logical step in generalization is to consider p-Schatten classes. For further
reading consider a list of references [1-14] and the most recent [15-18].

2. The C*-algebra

Let A be a C*-algebra. Let G be a locally compact group equipped with Haar
measure p. Let for each g € G we define a C*-algebra isomorphism w (g) : A — A,
for each fixed ¥ € A the morphism w (g, %) is a continuous mapping w (-, ¥) :
G — A and satisfies the semigroup condition w (g, ) ow (h, ¥) = w (gh, ¥) for all
g, h € G, a such defined morphism will be denoted w : G — Aut (A). The triplet
(A, G, w) is called a dynamical system.

Definition 2.1. Let H be a separable Hilbert space, 7 : G — U (H) be a
continuous unitary representation, p : A — LB (H) be a x-representation,
then the covariant representation is a set (H, m, p) under the condition

7(g)p()7(9)" = p(w(g, ¥)) for all g € G and b € A. Often, the triplet
(H, w, p) is abbreviated to duplet (7, p).

Let L? (G, A) be a Banach x-algebra of A- valued function on G, with the norm
given by

TI= /G 19 (9) 1 " (9)

we assume p = 1 and the multiplication operation ® : LP (G, A) x L? (G, A) —
L? (G, A) is defined by

(1) © W) (g) = /G U () (Vs (h'g)) du (h)
and

0% () =w (g, (U1 (s7))")

for any pair ¥y, ¥y € LP (G, A).
The universal enveloping C*-algebra Env (LP (G, A)) of the Banach #-algebra
L? (G, A) is constructed as follows. First, we construct the free tensor algebra

T(L? (G, A) =G o LP (G, A) @ (LP (G, A) @ L? (G, A) &
®(LP (G, A)® L? (G, A)® LP (G, A))...
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where @ is the direct sum and ® is the tensor product. Second, the multiplica-
tion operation ©® : LP (G, A) x L? (G, A) — L? (G, A)is bilinear and the tensor
product is bilinear so the natural lift is accomplished in such a way as to pre-
serve multiplication as a homomorphism. Third, the universal enveloping algebra
Env,, (LP (G, A)) is a quotient space Env,, (LP (G, A)) =T (L? (G, A)) / ~, where
the equivalence relation is ¥ @ Uy — Wy @ Uy = Uy ©® Uy, The set I of all elements
generated by elements given by U1 Q Uy — Uy @ Uy — Uy © U5 is a two-side ideal so
I lies in the kernel of the quotient map, so we have the short exact sequence

0—>1—>T(L*”(G, A)—>T(L*”(G, A)/I—0

since the sequence is exact, the kernel of the map coincides with the image of
the mapping before. In this interpretation, the universal enveloping C*-algebra
Env, (L? (G, A)) is defined as Env,, (L? (G, A)) =T (L? (G, A)) /1.

The universal norm is given as

1, = sup I Ly »

where mapping II is a representation of L? (G, A) in LB (H, H).
The integral transformation (p x w) : LP (G, A)E — LB (H, H) defined by

(p o ) (T) = / o (T (9)) 7 (g) dyt ()

G

extends to mapping (p < w) : Env, (L? (G, A)) — LB (H, H) due to the univer-
sity of enveloping C*-algebra.

3. The Takesaki-Takai duality

Let morphism w : G — Aut(A) be a projective representation of the locally
compact Abel group G in Aut (A). We denote a C*-algebra of compact operators
on a separable Hilbert space H by LK (H). The morphism w : G — Aut(A) is
called an action of the group G. Let a triplet (A, G, w) be a dynamical system.
We obtain the dual action as the homomorphism

&+ G — Aut (Env, (L' (G, A))),

then the triplet (Em)w (L1 (G, A)) , G, d)) is called the dual dynamic system.

Theorem 3.1. (Variant of the Takai duality). Let G be a locally compact
Abelian group and let (A, G, w) be the dynamic system. Then,

Envyg (Ll (G‘, Env,, (L' (G, A)))) isomorphically equals A® LK (L? (G)), so
there exists such isomorphism Y : Envg (Ll (Gﬂ Env,, (L* (G, A)))) —
A ® LK (L*(G)) which is equivariant for the double dual action OG-
Aut (Env@ (L1 (G‘, Env,, (L' (G, A))))) and equivariant for w ® Ad(()

G — Aut (A® LK (L? (G))).
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Proof. The statement of the Takai duality theorem will be proven if we show
that there is a sequence of the following isomorphisms:

Enug (L' (G, Bnvs (LG, A)))) =

&Env;%@w( (G Em}ld( ( 7A))))
(

Envs -1, (Ll (G, Envrg (Ll (G, A)))) =% Envyge (L (G, Cy (G, A)))
Envagw (L' (G, Co (G, A))) =% Envagra (L' (G, Co (G, A))),
Envagra (L' (G, Co (G, A))) =% Envy (L' (G & A, Co (@),

Envy (L' (G® A, Co(G))) =5 LK (L* (G)) ® A,

so that the isomorphism in question can be presented as T = Y5040 T30T507,
where A is left translation.

Let K be compact, by construction, the set Co (K x H, A) is a dense subspace
of Envg (L' (H, Env, (L* (K, A)))). Since the topology of Cc (K, A) is induced
by the topology of L!- norm, we presume Cq (K, A) C Enuv, (L1 (K, A)) is in-
variant under homomorphism S and there is f (h, g) € Co (H x K, A) such that
f(h, g) =Bl (h)) (g) where {; € Cc (H, Env, (L' (K, A))).

The proof will follow from the next statements.

Statement 1. The isomorphism

Y, : Envg <L1 (é, Env,, (L' (G, A)))) -

- Envy g, (L1 (G’ Envra (Ll (G’ A))))

maps dense subalgebras
Ty Co (GG, A) ™8 Co (Gx G, A)

sothat Y1 (f) (g, x) = x (9) f (x, g) forall (g, x) € GxGand f € C¢ (G’ x G, A).
Statement 2. Let G be an Abelian group and let C (A, G, w ) be a dynamical
system then the mapping Ty : Co (G x G, A) — Cc (G, Cp (G, A)) is given by

Yo (f = [af( X (k) dji (x), the mapping
Ty : Envg g, (Ll (G, Envg (Ll (G, A)))) — Envsew (L (G, Co (G, A)))
is an isomorphism.

Statement 3. Let G be an Abelian group and let (A, G, w ) be a dynamical
system then there exists an isomorphism

Tg : ETL'U)\@,W (Ll (G, CO (G, A))) — ETL’U)\®[d (Ll (G, C() (G, A)))

such that equality Y3 (f) (g, h) = w1 (h, f (g, h)) holds for all
f€Cc(G, Cy(G, A)).
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Statement 4. Let G be a locally compact group and let (A, G, w) be a
dynamical system then there exists an isomorphism Y5 = T5 T4 such that

Y5 : Bnvagw (L' (G, Co (G, A))) — LK (L* (G)) ® A.

Proof statement 1. In order to prove statement 1, we must show that || Ty (f)|| =

I1F1]-
Let f1, fo € Co (H x K, A) then

((hy g) = Ly, (B) = (h, £y, (h's)) (9)) € Cc (H x K, A),
so that £y, s, € Cc (K, A) C Env, (L' (K, A)) and we have
(b, Lg,) () (9) =

= /H/Kﬁfl (htyw (t, o (b, (g, (W18)), t79)) dusc (t) dprz (B) .

Thus, we obtain those equalities

(b L5,) 00 (9) =

= [ ]t €0 1 0 (b5, @) +7) din(0) i Q)
GJG
and dual
(€7, <¢5,) (@) (0 =

= [ [t 0T0x 0w (o (1 ('9)) . T) di (€ d (o)
hold for all fi, fo € Co (éx el A) and for all fi, fo € Co (Gx el A) c
Env;\®w (L1 (G7 Envpg (L1 (G, A)))) Then, we have a homomorphism

T, - CC(Gxa A)fﬂ?cc@xé, A).
We write the equalities

Crin (9) () =

= (X‘l ®w) (@) (trsp) (971) ) =x (@ w (9, Lryp (971) (0 =
=x(@w(g (N (X)) =wle F(xg™) =w(g ) (7))
=x(9) €y (X) (9) =T (") () (9) -

In general, every continuous in the inductive topology * -homomorphism is
bounded in the topology of the universal norm thus this * -homomorphism extends
to a representation on Env,, (L' (G, A)).

Let U : G — U (H) be a unitary representation and (U, p) be a covariant rep-

resentation of the dynamic system (Em);d (Ll (G’, A)) LG A e w) ,and (V) m)

be a covariant representation of (A, G’, Id), then we denote

A= (U, p)(f) = / (1 (9)U (9) dyt (9)

G
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so that A = (U, p) : Envg_1q, (L1 (G, Enwgg (L1 (G A)))) 5 LB (H), and

pi=(V, ) (f)=/éﬂ(f(é))V(é)dﬂ(§)~

Next, we have A~1 (g)op(xC) = x(g)d(XC) © A1 (g). Let us take a € A,
Y € Co (G) and ¢ € C¢ (é) so that all linear combinations a ® ¢ ® v constitute a

dense subset of C¢ (G’ x G, A), so that

S

(9)V(0A@@e81) = UV )@V (6)U 1) =
(@ (g.0)V (A (9) 00 (X)) U 9) U (4) =
X
X

9V (6m(w(g.0)V (A1 (9.0) Ulg) U (%) =
PV )U(Ala2é®y)
and we obtain U (¢) V (x) = x (9) V (x) U (g). Next, we write

We compute

A(Y1(f)) = f(; f@ﬂ(ﬂ ()06 9V 00U (9)din(x) dp(g) =
=JoJem( N x(9) V0D U (9)dir (x) du(g) =
=JaJam( NU gV (X)) dp(g) dfr (x)
so, we obtain ||y (f)|| < ||f]|, the similarly, we obtain ||f|| < ||T1 (f)]] and Ty :
Envg (L1 (é, Env,, (L' (G, A)))) — Env; g, (L1 (G, Envy (L1 (C:?, A))))
is an isomorphism, statement 1 is proven.
Proof statement 2. The isomorphism Envrg (Ll (G‘ A)) — Co (G, A) given

by (¥X)s can be constructed as an extension of the mapping a ® ¢ — a ® ¢> that is
defined on the span of bases as A ® C* (G) =~ Enurg (L1 (G A)) —=Co (G, A) =
Co (G) ® A. The mapping T3 := (¢X) s ® Id is equivariant isomorphism since

A@w)(9) fav (x)x (9)dfi (x) =

= Jo (AT @w) (9) ¥ (X) x (9)di (x)

statement 2 is proven.
Proof of statement 3. Since w™!(h, ¢ (h)) is an isomorphism Cy (G, A) —
Co (G, A), statement 3 follows from

w (g, A®W) (g9, 9) (W) =w™ ! (hw (g, ¢ (97 h))) =w ' (g7 h, ¢ (g7'h)) =
=Aow) (9w (h, ¢(h),
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so that T3 (f) (9, h) =w™ (h, f (g, h)).
Proof of statement 4. Let A be a modular function on G, namely, A : G — R,

is a continuous homomorphism and the equality

A g)/Gw(hg)du(h):/GWh)du(h)

holds for all 1 € C¢ (G). Next, we must show that Envy (L' (G, Cy(G))) =
LK (L*(G)). The Envy (L* (G, Cy (G))) is simple. We define a natural covariant
representation (M, 1) of (Co(G), G, X\) as M (¢) ¢ (9) = ¥ (g9) ¢ (g) where [
G — U (L*(G)) is the left-regular representation and M operator of pointwise
multiplication. Let k € Cc (G x G) then A (h7g) k (g9, h™'g) = ¥i (h,g), ¥x €
Cc (G x G) so that

Jo (M (Y (9, )1 (g) 1, p2) 12 dp(g) =

:fcfc¢k g, h) 1( 71h)5027(h)d/l(9)dﬂ(h):

=JoJo A (97 E(h, g7'h) o1 (9 ‘1h)mdu(g)du(h)=
= g Jo k(b g) 1 (9) 2 (B) dpu(g) dpu () .

The kernel k € C¢ (G x G) C L? (G x G) defines a compact Hilbert-Schmidt op-
erator. Since C¢ (G) is dense in L? (G) we have LK (L? (G)) belongs to the image of
a compact Hilbert-Schmidt operator with kernel k mapping Enwvy (L1 (G, Cy (G)))
Assume ¢ € Cc (G x G) we denote k (h, g) = A (g7) ¥ (hg™*, h) so ¢y, =1, and
Envy (L' (G, Co (G))) = LK (L*(G)) follows from the density of Cc (G x G) in
E’Il”U)\ (Ll (G, Co (G)))

So, since

¥ Jo (9. h)p (g7 ht) dpu(g) =
= fG (p® Id) (t, ¥) (9. h) 7 (t) ¢ (97" h) dpu(g) =

the mapping given by integration [, (g,h) (¢~'h) du(g) defines an equivariant
isomorphism

(Envy (L' (G, Co (@), G, p@1d) — (LK (L*(G)), G, Ad (7)),

where p is a right translation of the group G on itself.
Thus, we obtain the existence of the equivariant isomorphism

Y5 : Envagra (L' (G, Co (G, A))) — LK (L? (G)) @ A,

statement 5 is proven so proof of the variant of the Takai duality theorem is com-
pleted.

4. The general cross product (*-algebra

Let v : G — G be a continuous mapping, we define an enveloping C*-algebra
Env,” (LP (G, A)) as T (L? (G, A)) /I where mapping I is the two-sided ideal gen-
erated by elements

U@V — Uy @ Wy — W 0 Uy,
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where a binary operation ©, is defined by

(W 2 Uy) (9) =

= [ (r@ 1 m) v e (307t (171) . B (6715) ) e ).
Thus, we generalized the Takai duality theory on 7-case as follows.

Theorem 4.1. (y-variant of the Takai duality). Let G be a locally com-
pact Abelian group, let v : G — G be a continuous mapping, and let

(A, G, w) be the dynamic system. Then, Envy" (Ll (G, Env," (L* (G, A))))

isomorphically equals A ® LK (L*(G)), so there ewists such isomorphism
T i Envy? (L' (G, Bno (K1 (G, A)))) = A LK (L2(G))
which is equivariant for the double dual action
G G Aut (Bnvy (L' (G, Enu (11(G, A))))) -

The proof is similar to the previous theorem.

5. Conclusions

This paper dedicated to dynamical systems and C*-algebras. We establish that the
enveloping C*-algebra Enuvg” (Ll (G‘, Enuv,” (L1 (G, A)))) with a pointwise con-

vergence topology is isomorphically identical to maximal product A® LK (L? (G)).
In our future works, we will generalize this statement to include the classes of non-
abelian groups G and wide class functions v : G — G, we also plan to develop a
new approach to its application to symmetry in quantum mechanics.
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