UNIVERSAL APPROACH TO THE TAKESAKI-TAKAI γ -DUALITY

M.I. Yaremenko^{1,†}

Abstract In this article, we generalize and simplify the proof of the Takesaki-Takai γ -duality theorem. Assume a morphism $\omega : G \to Aut$ (A) is a projective representation of the locally compact Abel group G in Aut (A), mapping $\gamma : G \to G$ is continuous, and (A, G, ω) is a dynamic system then there exists isomorphism

$$\Upsilon : Env_{\hat{\omega}}{}^{\gamma} \left(L^1 \left(\hat{G}, Env_{\omega}{}^{\gamma} \left(L^1 \left(G, \mathbf{A} \right) \right) \right) \right) \to \mathbf{A} \otimes LK \left(L^2 \left(G \right) \right)$$

which is the equivariant for the double dual action

 $\hat{\hat{\omega}} \; : \; G \to Aut \left(Env_{\hat{\omega}}{}^{\gamma} \left(L^1 \left(\hat{G}, \; Env_{\omega}{}^{\gamma} \left(L^1 \left(G, \; \mathbf{A} \right) \right) \right) \right) \right).$

These results deepen our understanding of the representation theory and are especially interesting given their possible applications to problems of the quantum theory.

Keywords Takai Duality, γ -duality, Wigner function, C^* -algebra, Pontryagin duality, induced representation, cross product.

MSC(2010) 32K05, 46A16, 46A22, 46B25, 46B50, 46E15.

1. Introduction

Let G be a locally compact group, let $C_C(G)$ be a space of real-valued function with compact support.

Definition 1.1. A Radon measure on a locally compact group G is called a linear form μ on $C_C(G)$ such that for any compact set $K \subset G$ restriction of the linear form μ to subspace $C_C(K) \subset C_C(G)$ functions of $C_C(G)$ which support contains in K, is continuous in the topology of uniform convergence. The value $\mu(\psi)$ of the Radon measure μ on the continuous function $\psi \in C_C(G)$ with compact support is called a Radon integral of the function ψ .

As a consequence of the definition, we have that for any compact subset $K \subset G$ there exists a constant $\tilde{c}(K)$ dependent on K such that the equality

$$|\mu\left(\psi\right)| \le \tilde{c} \, \|\psi\|_{C_{c}(G)}$$

[†]The corresponding author.

¹Department of PDE, Technical University of Ukraine, PDE, 37, Prospect Beresteiskyi (former Peremohy), Kyiv, Ukraine, 03056,

Email: math.kiev@gmail.com (M.I. Yaremenko)

holds for all $\psi \in C_C(G)$.

Let $C_C^+(G)$ be s set of all finite positive continuous functions with compact supports. We denote by $\wp_+(G)$ the set of all lower semicontinuous positive functions i.e., all functions ψ such that at every point g_0 of its domain satisfy the following condition

$$\lim_{g \to g_0} \inf_{g \in G} \psi\left(g\right) = \psi\left(g_0\right)$$

Definition 1.2. Let μ be positive Radon measure on G, then the upper integral $\mu^*(\psi)$ of a function $\psi \in \wp_+(G)$ is defined by

$$\mu^{*}(\psi) = \sup_{\varphi \in C_{C}^{+}(G), \quad \varphi \leq \psi} \mu(\varphi).$$

The upper integral of an arbitrary positive function ψ : $G \rightarrow R^+$ is defined by

$$\mu^{*}(\psi) = \inf_{\varphi \in \wp_{+}(G), \quad \varphi \ge \psi} \mu^{*}(\varphi)$$

Definition 1.3. The outer measure $\mu^*(E)$ of an arbitrary subset $E \subset G$ is an upper integral $\mu^*(1_E)$ of the characteristic function 1_E of E.

The set M(G) of all Radon measures μ on the locally compact space G is the space of all linear forms on the vector space $C_C(G)$ and thus M(G) is a topological space with the *-weak or so-called wide topology of the weak convergence. If G is a compact group then the wide topology coincides with the classical weak topology.

Wide topology in $\mathcal{M}(G)$ can be defined by seminorms $\mu \mapsto \sup_{1 \le i \le k} |\mu(\psi_i)|$, where

 $\{\psi_i\}_{1\leq i\leq k} \subset C_C(G)$ is an arbitrary finite sequence of functions of $C_C(G)$.

The dual group \hat{G} consists of all homomorphisms (characters) from G to the circle group with natural measure $\hat{\mu}(\chi) = \int \overline{\chi(g)} d\mu(g), \ \chi \in \hat{G}$.

The Fourier transform of a function $\psi \in L^{1}(G)$ is given by

$$\hat{\psi}\left(\chi\right) = \int_{G} \psi\left(g\right) \overline{\chi\left(g\right)} d\mu\left(g\right)$$

Let A be a C^{*}-algebra then we call a triplet (A, G, ω) a dynamical system where ω : $G \to Aut(A)$ is a strongly continuous representation, and let H be a Hilbert space then a triplet (H, π, ρ) is called a covariant representation of (A, G, ω).

The Takai duality theory is a generalization of the Takesai duality theorem for the Neumann algebras, which are unital *-algebras of bounded operators on Hilbert spaces that are closed in the weak operator topology. The classical Takai duality theorem can be formulated as follows: let (A, ω) be an action of an Abelian group G then there exists an isomorphism Υ from the iterated product $(A \times_{\omega} G) \times_{\hat{\omega}} \hat{G}$ to the maximal product $A \otimes LK(L^2(G))$.

Considerable interest in C^* -algebras is justified by many applications to the problems of quantum mechanics for instance so-called von Neumann algebras. Some applications of C^* -algebras to quantum physics are described in [5, 12]. B. Abadie [1] considers the Cuntz-Krieger-Pimsner algebras that be a generalization of the crossed product by the set of integer numbers and Toeplitz and Cuntz-Krieger algebras. In [2, 3], the Cuntz-Pimsner covariance condition is considered as a nondegeneracy condition for representations of cross algebras and a groupoid model for the Cuntz-Pimsner algebra is constructed; in [10], the author considers the C^* envelope of a tensor algebra as the corresponding Cuntz- Krieger C^* -algebra.

 $\mathbf{2}$

We will consider the cross product of C^* -algebra $A \times_{\omega} G$ as the universal enveloping C^* -algebra $Env_{\omega} (L^1 (G, A))$ of the Banach algebra completed in the universal norm. The covariant representation (H, π, ρ) can be unequivocally characterized by morphism $(\rho \propto \pi) : L^p (G, A) E \to LB (H, H)$. This approach can be applied to generalize this theory to include the pseudo-differential operators for general quantization. Thus, we could define a binary operation as

$$\left(\Psi_{1} \odot_{\gamma} \Psi_{2}\right)(g) =$$

$$= \int_{G} \omega \left(\gamma \left(g\right)^{-1} \gamma \left(h\right)\right) \Psi_{1}\left(h\right) \omega \left(\gamma \left(g\right)^{-1} h \gamma \left(h^{-1} g\right), \Psi_{2} \left(h^{-1} g\right)\right) d\mu \left(h\right)$$

and $\Psi_1^{\odot_{\gamma}}(g) = \omega \left(\gamma \left(g \right)^{-1} h \gamma \left(g^{-1} \right), \left(\Psi_1 \left(g^{-1} \right) \right)^* \right)$ where $\gamma : G \to G$ is a continuous function. So, we could define a γ - quantization for $\gamma : G \to G$, and corresponding pseudo-differential operators, and recover the Weyl-Wigner theory; the next logical step in generalization is to consider *p*-Schatten classes. For further reading consider a list of references [1-14] and the most recent [15-18].

2. The C^* -algebra

Let A be a C^* -algebra. Let G be a locally compact group equipped with Haar measure μ . Let for each $g \in G$ we define a C^* -algebra isomorphism $\omega(g) : A \to A$, for each fixed $\psi \in A$ the morphism $\omega(g, \psi)$ is a continuous mapping $\omega(\cdot, \psi) :$ $G \to A$ and satisfies the semigroup condition $\omega(g, \psi) \circ \omega(h, \psi) = \omega(gh, \psi)$ for all $g, h \in G$, a such defined morphism will be denoted $\omega : G \to Aut(A)$. The triplet (A, G, ω) is called a dynamical system.

Definition 2.1. Let H be a separable Hilbert space, $\pi : G \to U(H)$ be a continuous unitary representation, $\rho : A \to LB(H)$ be a *-representation, then the covariant representation is a set (H, π, ρ) under the condition $\pi(g) \rho(\psi) \pi(g)^* = \rho(\omega(g, \psi))$ for all $g \in G$ and $\psi \in A$. Often, the triplet (H, π, ρ) is abbreviated to duplet (π, ρ) .

Let $L^{p}(G, A)$ be a Banach *-algebra of A- valued function on G, with the norm given by

$$\|\Psi\|_{L^{p}} = \int_{G} \|\Psi(g)\|_{A} d\mu(g),$$

we assume p = 1 and the multiplication operation \odot : $L^{p}(G, A) \times L^{p}(G, A) \rightarrow L^{p}(G, A)$ is defined by

$$\left(\Psi_{1} \odot \Psi_{2}\right)\left(g\right) = \int_{G} \Psi_{1}\left(h\right) \omega\left(\Psi_{2}\left(h^{-1}g\right)\right) d\mu\left(h\right)$$

and

$$\Psi_1^{\odot}(g) = \omega\left(g, \left(\Psi_1\left(g^{-1}\right)\right)^*\right)$$

for any pair Ψ_1 , $\Psi_2 \in L^p(G, \mathbf{A})$.

The universal enveloping C^* -algebra $Env(L^p(G, \mathbf{A}))$ of the Banach *-algebra $L^p(G, \mathbf{A})$ is constructed as follows. First, we construct the free tensor algebra

$$T (L^{p} (G, A)) = G \oplus L^{p} (G, A) \oplus (L^{p} (G, A) \otimes L^{p} (G, A)) \oplus (L^{p} (G, A) \otimes L^{p} (G, A) \otimes L^{p} (G, A) \otimes L^{p} (G, A)) \dots$$

where \oplus is the direct sum and \otimes is the tensor product. Second, the multiplication operation \odot : $L^p(G, A) \times L^p(G, A) \to L^p(G, A)$ is bilinear and the tensor product is bilinear so the natural lift is accomplished in such a way as to preserve multiplication as a homomorphism. Third, the universal enveloping algebra $Env_{\omega}(L^p(G, A))$ is a quotient space $Env_{\omega}(L^p(G, A)) = T(L^p(G, A)) / \sim$, where the equivalence relation is $\Psi_1 \otimes \Psi_2 - \Psi_2 \otimes \Psi_1 = \Psi_1 \odot \Psi_2$. The set *I* of all elements generated by elements given by $\Psi_1 \otimes \Psi_2 - \Psi_2 \otimes \Psi_1 - \Psi_1 \odot \Psi_2$ is a two-side ideal so *I* lies in the kernel of the quotient map, so we have the short **exact** sequence

$$0 \to I \to T\left(L^p\left(G, \mathbf{A}\right)\right) \to T\left(L^p\left(G, \mathbf{A}\right)\right)/I \to 0$$

since the sequence is exact, the kernel of the map coincides with the image of the mapping before. In this interpretation, the universal enveloping C^* -algebra $Env_{\omega} (L^p (G, A))$ is defined as $Env_{\omega} (L^p (G, A)) = T (L^p (G, A)) / I$.

The universal norm is given as

$$\left\|\Psi\right\|_{Un} = \sup_{\Pi} \left\|\Pi\left(\Psi\right)\right\|_{LB(H)},$$

where mapping Π is a representation of $L^{p}(G, A)$ in LB(H, H).

The integral transformation $(\rho \propto \pi)$: $L^p(G, A) \to LB(H, H)$ defined by

$$\left(\rho \propto \pi
ight) \left(\Psi
ight) = \int_{G} \rho \left(\Psi \left(g
ight)
ight) \pi \left(g
ight) d\mu \left(g
ight)$$

extends to mapping $(\rho \propto \pi)$: $Env_{\omega}(L^{p}(G, \mathbf{A})) \rightarrow LB(H, H)$ due to the university of enveloping C^{*} -algebra.

3. The Takesaki-Takai duality

Let morphism $\omega : G \to Aut(A)$ be a projective representation of the locally compact Abel group G in Aut(A). We denote a C^* -algebra of compact operators on a separable Hilbert space H by LK(H). The morphism $\omega : G \to Aut(A)$ is called an action of the group G. Let a triplet (A, G, ω) be a dynamical system. We obtain the dual action as the homomorphism

$$\hat{\omega} : \hat{G} \to Aut\left(Env_{\omega}\left(L^{1}\left(G, \mathbf{A}\right)\right)\right),$$

then the triplet $\left(Env_{\omega}\left(L^{1}\left(G, A\right)\right), \hat{G}, \hat{\omega}\right)$ is called the dual dynamic system.

Theorem 3.1. (Variant of the Takai duality). Let G be a locally compact Abelian group and let (A, G, ω) be the dynamic system. Then, $Env_{\hat{\omega}}\left(L^1\left(\hat{G}, Env_{\omega}\left(L^1\left(G, A\right)\right)\right)\right)$ isomorphically equals $A \otimes LK\left(L^2\left(G\right)\right)$, so there exists such isomorphism Υ : $Env_{\hat{\omega}}\left(L^1\left(\hat{G}, Env_{\omega}\left(L^1\left(G, A\right)\right)\right)\right) \rightarrow$ $A \otimes LK\left(L^2\left(G\right)\right)$ which is equivariant for the double dual action $\hat{\hat{\omega}} : G \rightarrow$ $Aut\left(Env_{\hat{\omega}}\left(L^1\left(\hat{G}, Env_{\omega}\left(L^1\left(G, A\right)\right)\right)\right)\right)$ and equivariant for $\omega \otimes Ad(\zeta)$: $G \rightarrow Aut\left(A \otimes LK\left(L^2\left(G\right)\right)\right)$. **Proof.** The statement of the Takai duality theorem will be proven if we show that there is a sequence of the following isomorphisms:

$$\begin{split} Env_{\hat{\omega}} \left(L^{1} \left(\hat{G}, \ Env_{\omega} \left(L^{1} \left(G, \ \mathbf{A} \right) \right) \right) \right) \xrightarrow{\Upsilon_{1}} \\ \xrightarrow{\Upsilon_{1}} Env_{\hat{\lambda}^{-1} \otimes \omega} \left(L^{1} \left(G, \ Env_{Id} \left(L^{1} \left(\hat{G}, \ \mathbf{A} \right) \right) \right) \right), \\ Env_{\hat{\lambda}^{-1} \otimes \omega} \left(L^{1} \left(G, \ Env_{Id} \left(L^{1} \left(\hat{G}, \ \mathbf{A} \right) \right) \right) \right) \xrightarrow{\Upsilon_{2}} Env_{\lambda \otimes \omega} \left(L^{1} \left(G, \ C_{0} \left(G, \ \mathbf{A} \right) \right) \right), \\ Env_{\lambda \otimes \omega} \left(L^{1} \left(G, \ C_{0} \left(G, \ \mathbf{A} \right) \right) \right) \xrightarrow{\Upsilon_{3}} Env_{\lambda \otimes Id} \left(L^{1} \left(G, \ C_{0} \left(G, \ \mathbf{A} \right) \right) \right), \\ Env_{\lambda \otimes Id} \left(L^{1} \left(G, \ C_{0} \left(G, \ \mathbf{A} \right) \right) \right) \xrightarrow{\Upsilon_{4}} Env_{\lambda} \left(L^{1} \left(G \otimes \mathbf{A}, \ C_{0} \left(G \right) \right) \right), \\ Env_{\lambda} \left(L^{1} \left(G \otimes \mathbf{A}, \ C_{0} \left(G \right) \right) \right) \xrightarrow{\Upsilon_{5}} LK \left(L^{2} \left(G \right) \right) \otimes \mathbf{A}, \end{split}$$

so that the isomorphism in question can be presented as $\Upsilon = \Upsilon_5 \circ \Upsilon_4 \circ \Upsilon_3 \circ \Upsilon_2 \circ \Upsilon_1$, where λ is left translation.

Let K be compact, by construction, the set $C_C(K \times H, A)$ is a dense subspace of $Env_{\beta}(L^1(H, Env_{\alpha}(L^1(K, A))))$. Since the topology of $C_C(K, A)$ is induced by the topology of L^1 - norm, we presume $C_C(K, A) \subset Env_{\alpha}(L^1(K, A))$ is invariant under homomorphism β and there is $f(h, g) \in C_C(H \times K, A)$ such that $f(h, g) = \beta(\ell_f(h))(g)$ where $\ell_f \in C_C(H, Env_{\alpha}(L^1(K, A)))$.

The proof will follow from the next statements.

Statement 1. The isomorphism

$$\begin{split} \Upsilon_{1} &: Env_{\hat{\omega}}\left(L^{1}\left(\hat{G}, Env_{\omega}\left(L^{1}\left(G, \mathbf{A}\right)\right)\right)\right) \to \\ &\to Env_{\hat{\lambda}^{-1}\otimes\omega}\left(L^{1}\left(G, Env_{Id}\left(L^{1}\left(\hat{G}, \mathbf{A}\right)\right)\right)\right) \end{split}$$

maps dense subalgebras

$$\Upsilon_1 : C_C \left(\hat{G} \times G, \mathbf{A} \right) \xrightarrow{onto} C_C \left(G \times \hat{G}, \mathbf{A} \right)$$

so that $\Upsilon_1(f)(g, \chi) = \chi(g) f(\chi, g)$ for all $(g, \chi) \subset G \times \hat{G}$ and $f \in C_C(\hat{G} \times G, A)$.

Statement 2. Let G be an Abelian group and let $C_C(A, G, \omega)$ be a dynamical system then the mapping Υ_2 : $C_C(G \times \hat{G}, A) \to C_C(G, C_0(G, A))$ is given by $\Upsilon_2(f)(g, h) = \int_{\hat{G}} f(g, \chi) \overline{\chi(h)} d\hat{\mu}(\chi)$, the mapping

$$\Upsilon_{2} : Env_{\hat{\lambda}^{-1} \otimes \omega} \left(L^{1} \left(G, Env_{Id} \left(L^{1} \left(\hat{G}, A \right) \right) \right) \right) \to Env_{\lambda \otimes \omega} \left(L^{1} \left(G, C_{0} \left(G, A \right) \right) \right)$$

is an isomorphism.

Statement 3. Let G be an Abelian group and let (A, G, ω) be a dynamical system then there exists an isomorphism

$$\Upsilon_{3} : Env_{\lambda \otimes \omega} \left(L^{1} \left(G, C_{0} \left(G, A \right) \right) \right) \to Env_{\lambda \otimes Id} \left(L^{1} \left(G, C_{0} \left(G, A \right) \right) \right)$$

such that equality $\Upsilon_3(f)(g, h) = \omega^{-1}(h, f(g, h))$ holds for all $f \in C_C(G, C_0(G, A)).$

Statement 4. Let G be a locally compact group and let (A, G, ω) be a dynamical system then there exists an isomorphism $\tilde{\Upsilon}_5 = \Upsilon_5 \Upsilon_4$ such that

$$\widetilde{\Upsilon}_{5} : Env_{\lambda \otimes \omega} \left(L^{1} \left(G, C_{0} \left(G, A \right) \right) \right) \to LK \left(L^{2} \left(G \right) \right) \otimes A.$$

Proof statement 1. In order to prove statement 1, we must show that $\|\Upsilon_1(f)\| = \|f\|$.

Let $f_1, f_2 \in C_C (H \times K, A)$ then

$$\left((h, g) \mapsto \ell_{f_1}(h) * \alpha \left(h, \ell_{f_1}(h^{-1}s)\right)(g)\right) \in C_C(H \times K, A),$$

so that $\ell_{f_1} * \ell_{f_2} \in C_C(K, \mathbf{A}) \subset Env_\alpha(L^1(K, \mathbf{A}))$ and we have

$$\left(\ell_{f_1} \ast \ell_{f_2}\right)(s)\left(g\right) =$$

$$= \int_{H} \int_{K} \ell_{f_1}(h,t) \,\omega\left(t, \,\alpha\left(h, \left(\ell_{f_2}\left(h^{-1}s\right)\right), \,t^{-1}g\right)\right) d\mu_K(t) \,d\mu_H(h)$$

Thus, we obtain those equalities

$$(\ell_{f_1} * \ell_{f_2}) (\chi) (g) =$$

$$= \int_{\hat{G}} \int_{G} \ell_{f_1} (\zeta, t) \overline{\zeta (t^{-1}g)} \omega \left(t, \ \alpha \left(\ell_{f_2} \left(\overline{\zeta} \chi \right) \right), \ t^{-1}g \right) d\mu (t) d\hat{\mu} (\zeta)$$

and dual

$$\left(\ell_{f_{1}} * \ell_{f_{2}}\right)(g)(\chi) =$$

$$= \int_{G} \int_{\hat{G}} \ell_{\tilde{f}_{1}}(t,\zeta) \,\overline{\zeta}(t) \,\chi(t) \,\omega\left(t, \,\alpha\left(\ell_{\tilde{f}_{2}}\left(t^{-1}g\right)\right), \,\overline{\zeta}\chi\right) d\hat{\mu}(\zeta) \,d\mu(t)$$

 $\left(\ell_{z} + \ell_{z} \right) \left(q \right) \left(\gamma \right) =$

hold for all f_1 , $f_2 \in C_C(\hat{G} \times G, A)$ and for all \tilde{f}_1 , $\tilde{f}_2 \in C_C(G \times \hat{G}, A) \subset Env_{\hat{\lambda} \otimes \omega}(L^1(G, Env_{Id}(L^1(G, A))))$. Then, we have a homomorphism

$$\Upsilon_1 : C_C\left(\hat{G} \times G, \mathbf{A}\right) \xrightarrow{onto} C_C\left(G \times \hat{G}, \mathbf{A}\right).$$

We write the equalities

$$\ell^{*} \Upsilon_{1}(f) (g) (\chi) =$$

$$= \left(\hat{\lambda}^{-1} \otimes \omega\right) (g) \left(\ell_{\Upsilon_{1}(f)} \left(g^{-1}\right)\right) (\chi) = \chi (g) \omega \left(g, \ \ell_{\Upsilon_{1}(f)} \left(g^{-1}\right)\right)^{*} (\chi) =$$

$$= \chi (g) \omega \left(g, \ \Upsilon_{1} (f) \left(g^{-1}, \overline{\chi}\right)\right)^{*} = \omega \left(g, \ f \left(\overline{\chi}, g^{-1}\right)\right)^{*} = \omega \left(g, \ \ell_{f} (\overline{\chi}) \left(g^{-1}\right)\right)^{*}$$

$$= \chi (g) \ell^{*}_{f} (\overline{\chi}) (g) = \Upsilon_{1} (\ell^{*}_{f}) (\chi) (g).$$

In general, every continuous in the inductive topology * -homomorphism is bounded in the topology of the universal norm thus this * -homomorphism extends to a representation on Env_{ω} ($L^1(G, A)$).

Let $U : G \to U(H)$ be a unitary representation and (U, ρ) be a covariant representation of the dynamic system $\left(Env_{Id}\left(L^{1}\left(\hat{G}, A\right)\right), G, \hat{\lambda}^{-1} \otimes \omega\right)$, and (V, π) be a covariant representation of (A, \hat{G}, Id) , then we denote

$$\Lambda := (U, \ \rho) \left(f \right) = \int_{G} \rho \left(f \left(g \right) \right) U \left(g \right) d\mu \left(g \right)$$

so that
$$\Lambda = (U, \rho)$$
 : $Env_{\hat{\lambda}^{-1}\otimes\omega}\left(L^1\left(G, Env_{Id}\left(L^1\left(\hat{G}, A\right)\right)\right)\right) \to LB(H)$, and
 $\rho := (V, \pi)(f) = \int_{\hat{G}} \pi(f(\hat{g}))V(\hat{g})d\hat{\mu}(\hat{g}).$

Next, we have $\hat{\lambda}^{-1}(g) \circ \phi(\overline{\chi}\zeta) = \chi(g)\phi(\overline{\chi}\zeta) \circ \hat{\lambda}^{-1}(g)$. Let us take $a \in A$, $\psi \in C_C(G)$ and $\phi \in C_C(\hat{G})$ so that all linear combinations $a \otimes \phi \otimes \psi$ constitute a dense subset of $C_C(\hat{G} \times G, A)$, so that

$$\begin{split} U\left(g\right)V\left(\chi\right)\Lambda\left(a\otimes\phi\otimes\psi\right) &= U\left(g\right)V\left(\chi\right)\pi\left(a\right)V\left(\phi\right)U\left(\psi\right) = \\ &= \pi\left(\omega\left(g,a\right)\right)V\left(\hat{\lambda}^{-1}\left(g\right)\circ\phi\left(\overline{\chi}\zeta\right)\right)U\left(g\right)U\left(\psi\right) = \\ &= \chi\left(g\right)V\left(\chi,\pi\left(\omega\left(g,a\right)\right)\right)V\left(\hat{\lambda}^{-1}\left(g,\phi\right)\right)U\left(g\right)U\left(\psi\right) = \\ &= \chi\left(g\right)V\left(\chi\right)U\left(g\right)\Lambda\left(a\otimes\phi\otimes\psi\right) \end{split}$$

and we obtain $U(g) V(\chi) = \chi(g) V(\chi) U(g)$. Next, we write

$$\begin{split} U\left(g\right) \pi\left(b\right) \pi\left(a\right) V\left(\phi\right) U\left(\psi\right) &= \\ &= \pi\left(\omega\left(g, \ ba\right)\right) V\left(\hat{\lambda}^{-1}\left(g, \ \phi\right)\right) U\left(g\right) U\left(\psi\right) = \\ &= \pi\left(\omega\left(g, \ b\right)\right) U\left(g\right) \pi\left(a\right) V\left(\phi\right) U\left(\psi\right). \end{split}$$

We compute

$$\begin{split} \Lambda\left(\Upsilon_{1}\left(f\right)\right) &= \int_{G} \int_{\hat{G}} \pi\left(\Upsilon_{1}\left(f\right)\left(\chi,\ g\right)\right) V\left(\chi\right) U\left(g\right) d\hat{\mu}\left(\chi\right) d\mu\left(g\right) = \\ &= \int_{G} \int_{\hat{G}} \pi\left(f\left(\chi,\ g\right)\right) \chi\left(g\right) V\left(\chi\right) U\left(g\right) d\hat{\mu}\left(\chi\right) d\mu\left(g\right) = \\ &= \int_{\hat{G}} \int_{G} \pi\left(f\left(\chi,\ g\right)\right) U\left(gV\left(\chi\right)\right) d\mu\left(g\right) d\hat{\mu}\left(\chi\right) \end{split}$$

so, we obtain $\|\Upsilon_1(f)\| \leq \|f\|$, the similarly, we obtain $\|f\| \leq \|\Upsilon_1(f)\|$ and Υ_1 : $Env_{\hat{\omega}}\left(L^1\left(\hat{G}, Env_{\omega}\left(L^1(G, A)\right)\right)\right) \rightarrow Env_{\hat{\lambda}^{-1}\otimes\omega}\left(L^1\left(G, Env_{Id}\left(L^1\left(\hat{G}, A\right)\right)\right)\right)$ is an isomorphism, statement 1 is proven.

Proof statement 2. The isomorphism $Env_{Id}\left(L^1\left(\hat{G}, A\right)\right) \to C_0(G, A)$ given by $\langle \psi \overline{\chi} \rangle_{\hat{G}}$ can be constructed as an extension of the mapping $a \otimes \phi \mapsto a \otimes \hat{\phi}$ that is defined on the span of bases as $A \otimes C^*\left(\hat{G}\right) \cong Env_{Id}\left(L^1\left(\hat{G}, A\right)\right) \to C_0(G, A) \cong$ $C_0(G) \otimes A$. The mapping $\Upsilon_2 := \langle \psi \overline{\chi} \rangle_{\hat{G}} \otimes Id$ is equivariant isomorphism since

$$\begin{split} \left(\lambda\otimes\omega\right)\left(g\right)\int_{\hat{G}}\psi\left(\chi\right)\chi\left(g\right)d\hat{\mu}\left(\chi\right) = \\ &=\int_{\hat{G}}\left(\lambda^{-1}\otimes\omega\right)\left(g\right)\psi\left(\chi\right)\overline{\chi\left(g\right)}d\hat{\mu}\left(\chi\right), \end{split}$$

statement 2 is proven.

Proof of statement 3. Since $\omega^{-1}(h, \varphi(h))$ is an isomorphism $C_0(G, A) \to C_0(G, A)$, statement 3 follows from

$$\begin{split} &\omega^{-1}\left(g,\ \left(\lambda\otimes\omega\right)\left(g,\ \varphi\right)\right)\left(h\right)=\omega^{-1}\left(h,\omega\ \left(g,\ \varphi\left(g^{-1}h\right)\right)\right)=\omega^{-1}\left(g^{-1}h,\ \varphi\left(g^{-1}h\right)\right)=\\ &=\left(\lambda\otimes\omega\right)\left(g\right)\omega^{-1}\left(h,\ \varphi\left(h\right)\right), \end{split}$$

so that $\Upsilon_{3}(f)(g, h) = \omega^{-1}(h, f(g, h)).$

Proof of statement 4. Let Δ be a modular function on G, namely, $\Delta : G \to R_+$ is a continuous homomorphism and the equality

$$\Delta(g) \int_{G} \psi(hg) \, d\mu(h) = \int_{G} \psi(h) \, d\mu(h)$$

holds for all $\psi \in C_C(G)$. Next, we must show that $Env_{\lambda}\left(L^1(G, C_0(G))\right) \cong LK\left(L^2(G)\right)$. The $Env_{\lambda}\left(L^1(G, C_0(G))\right)$ is simple. We define a natural covariant representation (M, l) of $(C_0(G), G, \lambda)$ as $M(\psi)\varphi(g) = \psi(g)\varphi(g)$ where l: $G \to U\left(L^2(G)\right)$ is the left-regular representation and M operator of pointwise multiplication. Let $k \in C_C(G \times G)$ then $\Delta\left(h^{-1}g\right)k\left(g, h^{-1}g\right) = \psi_k(h,g), \ \psi_k \in C_C(G \times G)$ so that

$$\begin{split} &\int_{G} \langle M\left(\psi_{k}\left(g,\ \cdot\right)\right) l\left(g\right)\varphi_{1},\ \varphi_{2}\rangle_{L^{2}} \,d\mu\left(g\right) = \\ &= \int_{G} \int_{G} \psi_{k}\left(g,\ h\right)\varphi_{1}\left(g^{-1}h\right) \overline{\varphi_{2}\left(h\right)} \,d\mu\left(g\right) d\mu\left(h\right) = \\ &= \int_{G} \int_{G} \Delta\left(g^{-1}\right) k\left(h,\ g^{-1}h\right)\varphi_{1}\left(g^{-1}h\right) \overline{\varphi_{2}\left(h\right)} \,d\mu\left(g\right) d\mu\left(h\right) = \\ &= \int_{G} \int_{G} k\left(h,\ g\right)\varphi_{1}\left(g\right) \overline{\varphi_{2}\left(h\right)} \,d\mu\left(g\right) d\mu\left(h\right). \end{split}$$

The kernel $k \in C_C(G \times G) \subset L^2(G \times G)$ defines a compact Hilbert-Schmidt operator. Since $C_C(G)$ is dense in $L^2(G)$ we have $LK(L^2(G))$ belongs to the image of a compact Hilbert-Schmidt operator with kernel k mapping $Env_{\lambda}(L^1(G, C_0(G)))$. Assume $\psi \in C_C(G \times G)$ we denote $k(h, g) = \Delta(g^{-1}) \psi(hg^{-1}, h)$ so $\psi_k = \psi$, and $Env_{\lambda}(L^1(G, C_0(G))) \cong LK(L^2(G))$ follows from the density of $C_C(G \times G)$ in $Env_{\lambda}(L^1(G, C_0(G)))$.

So, since

$$\begin{split} &\Delta\left(t\right)^{\frac{1}{2}}\int_{G}\psi\left(g,\ ht\right)\varphi\left(g^{-1}ht\right)\ d\mu\left(g\right) = \\ &= \int_{G}\left(\rho\otimes Id\right)\left(t,\ \psi\right)\left(g,h\right)\tau\left(t\right)\varphi\left(g^{-1}h\right)d\mu\left(g\right) = \end{split}$$

the mapping given by integration $\int_{G} \psi(g,h) (g^{-1}h) d\mu(g)$ defines an equivariant isomorphism

$$\left(Env_{\lambda}\left(L^{1}\left(G,\ C_{0}\left(G\right)\right)\right),\ G,\ \rho\otimes Id\right)\rightarrow\left(LK\left(L^{2}\left(G\right)\right),\ G,\ Ad\left(\tau\right)\right),$$

where ρ is a right translation of the group G on itself.

Thus, we obtain the existence of the equivariant isomorphism

$$\widetilde{\Upsilon}_{5} : Env_{\lambda \otimes Id} \left(L^{1} \left(G, C_{0} \left(G, A \right) \right) \right) \to LK \left(L^{2} \left(G \right) \right) \otimes A,$$

statement 5 is proven so proof of the variant of the Takai duality theorem is completed.

4. The general cross product C^* -algebra

Let $\gamma : G \to G$ be a continuous mapping, we define an enveloping C^* -algebra $Env_{\omega}^{\gamma}(L^p(G, \mathbf{A}))$ as $T(L^p(G, \mathbf{A}))/I$ where mapping I is the two-sided ideal generated by elements

$$\Psi_1 \otimes \Psi_2 - \Psi_2 \otimes \Psi_1 - \Psi_1 \odot_{\gamma} \Psi_2,$$

where a binary operation \odot_{γ} is defined by

$$\left(\Psi_{1} \odot_{\gamma} \Psi_{2}\right)(g) =$$

$$= \int_{G} \omega \left(\gamma \left(g\right)^{-1} \gamma \left(h\right)\right) \Psi_{1}\left(h\right) \omega \left(\gamma \left(g\right)^{-1} h\gamma \left(h^{-1}g\right), \Psi_{2}\left(h^{-1}g\right)\right) d\mu \left(h\right).$$

Thus, we generalized the **Takai duality theory** on γ -case as follows.

Theorem 4.1. (γ -variant of the Takai duality). Let G be a locally compact Abelian group, let $\gamma : G \to G$ be a continuous mapping, and let (A, G, ω) be the dynamic system. Then, $Env_{\hat{\omega}}{}^{\gamma} \left(L^1\left(\hat{G}, Env_{\omega}{}^{\gamma}\left(L^1(G, A)\right)\right)\right)$ isomorphically equals $A \otimes LK\left(L^2(G)\right)$, so there exists such isomorphism

 $\Upsilon : Env_{\hat{\omega}}{}^{\gamma} \left(L^1 \left(\hat{G}, Env_{\omega}{}^{\gamma} \left(L^1 \left(G, \mathbf{A} \right) \right) \right) \right) \to \mathbf{A} \otimes LK \left(L^2 \left(G \right) \right),$

which is equivariant for the double dual action

$$\hat{\omega} : G \to Aut\left(Env_{\hat{\omega}}{}^{\gamma}\left(L^{1}\left(\hat{G}, \ Env_{\omega}{}^{\gamma}\left(L^{1}\left(G, \ \mathbf{A}\right)\right)\right)\right)\right).$$

The proof is similar to the previous theorem.

5. Conclusions

This paper dedicated to dynamical systems and C^* -algebras. We establish that the enveloping C^* -algebra $Env_{\hat{\omega}}^{\gamma}\left(L^1\left(\hat{G}, Env_{\omega}^{\gamma}\left(L^1\left(G, A\right)\right)\right)\right)$ with a pointwise convergence topology is isomorphically identical to maximal product $A \otimes LK\left(L^2\left(G\right)\right)$. In our future works, we will generalize this statement to include the classes of non-abelian groups G and wide class functions $\gamma : G \to G$, we also plan to develop a new approach to its application to symmetry in quantum mechanics.

References

- B. Abadie, Takai duality for crossed products by Hilbert C * -bimodules, J. Operator Theory 64 (2010), 19–34.
- [2] S. Albandik and R. Meyer, Product systems over Ore monodies, Doc. Math. 20 (2015) 1331–1402.
- [3] A. Alldridge, C. Max, M. R. Zirnbauer, Bulk-Boundary Correspondence for Disordered Free-Fermion Topological Phases, Commun. Math. Phys. 377, 1761– 1821 (2020).
- [4] E. Bedos, S. Kaliszewski, J. Quigg, and D. Robertson, A new look at crossed product correspondences and associated C * -algebras, J. Math. Anal. Appl. 426 (2015), 1080-1098.
- [5] N. Dupuis, L. Canet, A. Eichhorn, W. Metzner, J. Pawlowski, M. Tissier, and N. Wschebor, *The nonperturbative functional renormalization group and its applications*, Physics Reports 910, 1–114 (2021).
- [6] V. Deaconu, Group actions on graphs and C * -correspondences, Houston J. Math. 44 (2018), 147–168.

- [7] V. Deaconu, A. Kumjian, and J. Quigg, Group actions on topological graphs, Ergodic Theory Dynam. Systems 32 (2012),1527–1566.
- [8] A. Carey, G. C. Thiang, The Fermi gerbe of Weyl semimetals, Letters Math. Phys. 111, 1-16 (2021).
- [9] S. Kaliszewski, J. Quigg and D. Robertson, Coactions on Cuntz-Pimsner algebras, Math. Scand. 116 (2015), 222–249.
- [10] E. Katsoulis, Non-selfadjoint operator algebras: dynamics, classification, and C * - envelopes, Recent advances in operator theory and operator algebras, 27–81, CRC Press, Boca Raton, FL, (2018).
- [11] E. Katsoulis, C* -envelopes and the Hao-Ng Isomorphism for discrete groups, International Mathematics Research Notices, Volume 2017, Issue 18 (2017), 5751–5768.
- [12] I. Raeburn, Dynamical systems and operator algebras. In National Symposium on Functional Analysis, Optimization and Applications, pages 109–119. Australian National University, Mathematical Sciences Institute, (1999).
- [13] S. Sundar, C*-algebras associated to topological Ore semigroups, Munster J. of Math. 9 (2016), no. 1, 155–185.
- [14] M.I. Yaremenko, Calderon-Zygmund Operators and Singular Integrals, Applied Mathematics & Information Sciences: Vol. 15: Iss. 1, Article 13, (2021).
- [15] F.F. Miao, G.L. Wang, W. Yuan, Product Systems of C*-correspondences and Baaj—Skandalis Duality, Acta Mathematica Sinica, English Series 39, no. 2 (2023), 240-256.
- [16] A. Dor-On,E. Katsoulis, K. Laca, C*-envelopes for operator algebras with a coaction and couniversal C*-algebras for product systems, Adv. Math., 400, 108286, 40 pp. (2022).
- [17] G. Szabo, Equivariant property (SI) revisited, Anal. PDE 14 (2021), no. 4, 1199–1232.
- [18] A. McKee, R. Pourshahami, Amenable and inner amenable actions and approximation properties for crossed products by locally compact groups, Canad. Math. Bull. 65 (2) R. (2022), 381–399.