For EDITORS

For READERS

All Issues

Vol.15, 2025
Vol.14, 2024
Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 14, Number 4, 2024, Pages -                                                                DOI:10.11948/JAAC-2022-0504
Numerical technique based on generalized Laguerre and shifted Chebyshev polynomials
Shazia Sadiq,Mujeeb ur Rehman
Keywords:Fractional derivatives  psi-shifted Chebyshev polynomials  psi-Laguerre polynomials  Operational matrices of integration.
Abstract:
      In this study, we present a numerical scheme for solving a class of fractional partial differential equations. First, we introduce psi -Laguerre polynomials like psi-shifted Chebyshev polynomials and employ these newly introduced polynomials for the solution of space-time fractional differential equations. In our approach, we project these polynomials to develop operational matrices of fractional integration. The use of these orthogonal polynomials converts the problem under consideration into a system of algebraic equations. The solution of this system provide us the desired results. The convergence of the proposed method is analyzed. Finally, some illustrative examples are included to observe the validity and applicability of the proposed method.
PDF      Download reader