For EDITORS

For READERS

All Issues

Vol.15, 2025
Vol.14, 2024
Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 14, Number 4, 2024, Pages -                                                                DOI:10.11948/JAAC-2022-0441
Levenberg-Marquardt method with a general LM parameter and a nonmonotone trust region technique
Luyao Zhao,Jingyong Tang
Keywords:Nonlinear equations  Levenberg-Marquardt method  nonmonotone technique  local error bound, weighted linear complementarity problem
Abstract:
      We propose a new Levenberg-Marquardt (LM) method for solving the nonlinear equations. The new LM method takes a general LM parameter \lambda_k=\mu_k[(1-\theta)\|F_k\|^\delta+\theta\|J_k^TF_k\|^\delta] where \theta\in[0,1] and \delta\in(0,3) and adopts a nonmonotone trust region technique to ensure the global convergence. Under the local error bound condition, we prove that the new LM method has at least superlinear convergence rate with the order \min\{1+\delta,4-\delta,2\}. We also apply the new LM method to solve the nonlinear equations arising from the weighted linear complementarity problem. Numerical experiments indicate that the new LM method is efficient and promising.
PDF      Download reader