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Abstract: We propose a new Levenberg-Marquardt (LM) method for solving the nonlinear4

equations. The new LM method takes a general LM parameter λk = µk[(1−θ)∥Fk∥δ+θ∥JT
k Fk∥δ]5

where θ ∈ [0, 1] and δ ∈ (0, 3) and adopts a nonmonotone trust region technique to ensure the6

global convergence. Under the local error bound condition, we prove that the new LM method7

has at least a superlinear convergence rate with the order min{1 + δ, 4 − δ, 2}. We also apply8

the new LM method to solve the nonlinear equations arising from the weighted linear comple-9

mentarity problem. Numerical experiments indicate that the new LM method is efficient and10

promising.11
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1 Introduction16

We consider the system of nonlinear equations17

F (x) = 0, (1)

where F (x) : Rn → Rn is a continuously differentiable function. Throughout the paper, we write18

the Jacobian F ′(x) as J(x) and use the notions Fk = F (xk) and Jk = J(xk).19

As it is well-known, the Levenberg-Marquardt (LM) method is one of the most effective20

methods for solving the nonlinear equations (1). At every iteration, the LM method computes21

the LM step22

dk = −(JT
k Jk + λkI)

−1JT
k Fk,

where λk is the LM parameter updated from iteration to iteration. The LM parameter λk23

has a great influence on the numerical performance and theoretical results of the LM method.24

Yamashita and Fukushima [26] showed, under the local error bound condition which is weaker25

than nonsingularity, the LM method has quadratic convergence if the LM parameter is chosen26

as λk = ∥Fk∥2. Under the same condition, Fan and Yuan [12] proved that the LM method27

taking λk = ∥Fk∥ has the quadratic convergence. Although the numerical results in [12] show28

that the choice of λk = ∥Fk∥ performs better than that of λk = ∥Fk∥2, it does not perform29
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very well when the sequence {xk} is far from the solution set. To overcome this difficulty,1

Fan [9] used λk = µk∥Fk∥ with µk being updated from iteration to iteration by trust region2

techniques. In [13], Fan and Yuan extended the results in [26, 9] and proved that the LM3

method taking λk = ∥Fk∥δ where δ ∈ [1, 2] still achieves the quadratic convergence under the4

local error bound condition. Besides λk = O(∥Fk∥), many researchers studied the convergence5

properties of the LM method with λk = O(∥JT
k Fk∥) (e.g., [24, 25, 30]). Ma and Jiang [17] took6

λk = (1 − θ)∥Fk∥ + θ∥JT
k Fk∥ where θ ∈ [0, 1] and proved that the LM method has quadratic7

convergence under the local error bound condition. Some other choices of the LM parameter8

are given [3, 10, 11].9

On the other hand, many LM methods used the trust region technique to ensure the global10

convergence (e.g., [9, 10, 24, 28]). Define the actual reduction and the predicted reduction of11

∥F (x)∥2 at the k-th iteration as12

Aredk = ∥Fk∥2 − ∥F (xk + dk)∥2, (2)

and13

Predk = ∥Fk∥2 − ∥Fk + Jkdk∥2. (3)

The ratio of the actual reduction to the predicted reduction14

rk =
Aredk
Predk

(4)

has been used in the LM methods to decide whether to accept the LM step and how to adjust15

the parameter µk. Recently, many researchers generalized the nonmonotone techniques to trust16

region methods and proposed some efficient nonmonotone trust region methods (e.g., [1, 8, 23,17

27]). A lot of numerical experiments show that the algorithms with nonmonotone strategies are18

more efficient than the algorithms with monotone strategies.19

Motivated by all of the work cited above, in this paper we aim to propose a new LM method20

which takes the LM parameter21

λk = µk[(1− θ)∥Fk∥δ + θ∥JT
k Fk∥δ], where θ ∈ [0, 1] and δ ∈ (0, 3). (5)

This new LM parameter is very general which includes the LM parameters used in [9, 13, 17]22

as special cases. Moreover, the new LM method adopts a nonmonotone trust region technique23

to ensure its global convergence. Under the local error bound condition, we prove that the new24

LM method has at least a superlinear convergence rate with the order min{1+ δ, 4− δ, 2}. This25

convergence result is more general than those obtained in [9, 13, 17]. We also apply the new26

LM method to solve the nonlinear equations arising from the weighted linear complementarity27

problem. Numerical experiments show the local fast convergence rate and the advantages of the28

new LM method.29

The paper is organized as follows. In Section 2, we give a detailed description of the new30

LM method and establish its global convergence. In Section 3, we derive the convergence order31

of the new LM method under the local error bound condition. In Section 4, we apply the new32

LM method to solve some nonlinear equations and report some numerical results. Finally, we33

deliver some conclusions in Section 5.34
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2 The new LM method and its global convergence1

In this section, we first give a detailed description of the new LM method and then prove its2

global convergence.3

4

Algorithm 2.1 (A new LM method for nonlinear equations)5

Step 0: Choose µ0 > m0 > 0, 0 < p0 ≤ p1 ≤ p2 < 1, θ ∈ [0, 1], τ ∈ (0, 1] and δ ∈ (0, 3). Choose6

x0 ∈ Rn and set W0 = ∥F0∥2. Set k := 0.7

Step 1: If ∥JT
k Fk∥ = 0, then stop. Otherwise, set8

λk = µk[(1− θ)∥Fk∥δ + θ∥JT
k Fk∥δ]. (6)

Step 2: Compute dk by solving the following system9

(JT
k Jk + λkI)d = −JT

k Fk. (7)

Step 3: Compute Predk by (3) and10

Ãredk = Wk − ∥F (xk + dk)∥2. (8)

Set11

r̃k =
Ãredk
Predk

. (9)

Step 4: Set12

xk+1 =

{
xk + dk if r̃k ≥ p0,

xk otherwise.
(10)

Set13

Wk+1 = (1− τ)Wk + τ∥Fk+1∥2. (11)

Step 5: Choose µk+1 as14

µk+1 =


4µk if r̃k < p1,

µk if r̃k ∈ [p1, p2],

max{µk
4 ,m} otherwise.

(12)

Set k = k + 1 and go to Step 1.15

Remark 2.1 There are two notable differences of the new LM method from existing LM meth-16

ods. First, the LM parameter defined by (6) allows δ ∈ (0, 3) which is more general than those17

used in existing LM methods where one usually requires δ ∈ (0, 2]. Second, Algorithm 2.118

adopts a nonmonotone trust region technique. It is noticeable that Wk is a convex combina-19

tion of Wk−1 and ∥Fk∥2. Since W0 = ∥F0∥2, it follows that Wk is a convex combination of20

∥F0∥2, ∥F1∥2, ..., ∥Fk∥2.21
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Lemma 2.1 The predicted reduction Predk defined by (3) satisfies1

Predk ≥ ∥JT
k Fk∥min

{
∥dk∥,

∥JT
k Fk∥

∥JT
k Jk∥

}
. (13)

Proof The result can be found in [9, Lemma 3.1]. ⊓⊔2

Lemma 2.2 The sequence {xk} generated by Algorithm 2.1 satisfies ∥Fk∥2 ≤ Wk, Wk+1 ≤ Wk3

and ∥Fk∥ ≤ ∥F0∥ for all k ≥ 0.4

Proof First, we prove ∥Fk∥2 ≤ Wk for all k ≥ 0. Suppose that ∥Fk∥2 ≤ Wk holds for some k. If5

r̃k < p0, then by (10) we have xk+1 = xk and so6

Wk ≥ ∥Fk∥2 = ∥Fk+1∥2. (14)

Otherwise, r̃k ≥ p0 and by (10) we have xk+1 = xk + dk. Then it follows from (8) and (9) that7

r̃k =
Wk − ∥F (xk + dk)∥2

Predk
=

Wk − ∥Fk+1∥2

Predk
≥ p0,

which together with (13) implies8

Wk ≥ ∥Fk+1∥2 + p0Predk ≥ ∥Fk+1∥2. (15)

Thus, we have ∥Fk+1∥2 ≤ Wk which together with (11) yields9

∥Fk+1∥2 ≤ (1− τ)Wk + τ∥Fk+1∥2 = Wk+1. (16)

Since ∥F0∥2 = W0, by induction on k, we obtain ∥Fk∥2 ≤ Wk for all k ≥ 0. Moreover, by (14)10

and (15), it holds that ∥Fk+1∥2 ≤ Wk for all k ≥ 0. This together with (11) gives for all k ≥ 0,11

Wk+1 ≤ (1− τ)Wk + τWk = Wk.

Furthermore, we have ∥Fk∥2 ≤ Wk ≤ W0 = ∥F0∥2 for all k ≥ 0. The proof is completed. ⊓⊔12

To establish the global convergence of Algorithm 2.1, we make the following assumption.13

14

Assumption 1 The Jacobian J(x) is bounded and Lipschitz continuous on Rn, i.e., there15

exist positive constants L1 and L2 such that16

∥J(x)∥ ≤ L1, ∀ x ∈ Rn, (17)

and17

∥J(y)− J(x)∥ ≤ L2∥y − x∥, ∀ x, y ∈ Rn. (18)

By (18), we have18

∥F (y)− F (x)− J(x)(y − x)∥ ≤ L2∥y − x∥2, ∀ x, y ∈ Rn. (19)
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Theorem 2.1 Under the conditions of Assumption 1, the sequence {xk} generated by Algorithm1

2.1 satisfies2

lim inf
k→∞

∥JT
k Fk∥ = 0. (20)

Proof If the theorem is not true, then there exist a constant η > 0 and an index k̄ such that3

∥JT
k Fk∥ ≥ η, ∀ k ≥ k̄. (21)

By the second result in Lemma 2.2, the sequence {Wk} is monotonically decreasing and bounded4

below. Thus, there exists a constant W∗ ≥ 0 such that lim
k→∞

Wk = W∗. Furthermore, by (11)5

we have6

lim
k→∞

∥Fk∥2 = lim
k→∞

Wk − (1− τ)Wk−1

τ
= W∗.

Define the set of successful iterations as7

K = {k|r̃k ≥ p0}.

We derive the contradictions in two cases.8

Case 1. K is infinite. In this case, by (13), (17) and (21), we have for all k ∈ K and k ≥ k̄,9

Wk − ∥Fk+1∥2 = Wk − ∥F (xk + dk)∥2

= Ãredk

≥ p0Predk

≥ p0∥JT
k Fk∥min

{
∥dk∥,

∥JT
k Fk∥

∥JT
k Jk∥

}
≥ p0ηmin

{
∥dk∥,

η

L2
1

}
.

It follows from lim
k→∞

∥Fk∥2 = lim
k→∞

Wk = W∗ that lim
(K∋)k→∞

dk = 0. Note that xk+1 − xk = 0 if10

k /∈ K. Thus, we have11

lim
k→∞

dk = 0. (22)

This together with (7) and (21) yields12

lim
k→∞

λk = +∞. (23)

Due to the third result in Lemma 2.2 and (17), we have13

(1− θ)∥Fk∥δ + θ∥JT
k Fk∥δ ≤ (1− θ)∥F0∥δ + θLδ

1∥F0∥δ.

So, by (6) and (23) we have14

lim
k→∞

µk = +∞. (24)

Moreover, by the result given in the proof of [24, Theorem 2.4], we have15

|∥F (xk + dk)∥2 − ∥Fk + Jkdk∥2| ≤ ∥Fk + Jkdk∥O(∥dk∥2) +O(∥dk∥4). (25)
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Thus, from (13), (21) and (25), we have for k ≥ k̄,1

|rk − 1| =

∣∣∣∣Aredk − Predk
Predk

∣∣∣∣
≤ |∥F (xk + dk)∥2 − ∥Fk + Jkdk∥2|

∥JT
k Fk∥min

{
∥dk∥,

∥JT
k Fk∥

∥JT
k Jk∥

}
≤ ∥Fk + Jkdk∥O(∥dk∥2) +O(∥dk∥4)

ηmin

{
∥dk∥, η

L2
1

}
=

∥Fk + Jkdk∥O(∥dk∥2) +O(∥dk∥4)
∥dk∥

. (26)

Since ∥Fk + Jkdk∥ ≤ ∥F0∥ + L1∥dk∥, the inequality (26) yields rk → 1 as k → ∞. Since2

Wk ≥ ∥Fk∥2 for all k ≥ 0, it holds that Ãredk ≥ Aredk and so3

r̃k =
Ãredk
Predk

≥ Aredk
Predk

= rk → 1.

In view of the updating rule of µk, there exists a positive constant m̃ > m such that µk < m̃4

holds for all large k, which is a contradiction to (24).5

Case 2. K is finite. In this case, there exists an index k̂ such that r̃k < p0 for all k > k̂. By6

Step 5 of Algorithm 2.1, we have µk+1 = 4µk for all k > k̂, which yields7

lim
k→∞

µk = +∞. (27)

By (17) and (21), we have8

∥Fk∥ ≥
∥JT

k Fk∥
L1

≥ η

L1
, ∀ k ≥ k̄.

It follows that9

(1− θ)∥Fk∥δ + θ∥JT
k Fk∥δ ≥

(1− θ)ηδ

Lδ
1

+ θηδ > 0, ∀ k ≥ k̄.

Thus, by (6) and (27) we have10

lim
k→∞

λk = +∞, (28)

which together with (7) and (21) gives11

lim
k→∞

dk = 0.

By the same analysis as Case 1, we have r̃k ≥ rk → 1 as k → ∞. Thus, there exists a constant12

m̂ > m such that µk ≤ m̂ holds for all large k, which is a contradiction to (27).13

Summarizing Case 1 and Case 2, we have (20) and complete the proof. ⊓⊔14
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3 Convergence rate of Algorithm 2.11

In this section, we analyze the convergence rate of Algorithm 2.1. We assume that the sequence2

{xk} generated by Algorithm 2.1 converges to the solution set X∗ of the nonlinear equations (1)3

and lies in some neighbourhood of x∗ ∈ X∗. We make the following assumption.4

5

Assumption 2 (a) F (x) is continuously differentiable and ∥F (x)∥ provides a local error bound6

on some neighbourhood of x∗ ∈ X∗, i.e., there exist positive constants κ > 0 and ε > 0 such7

that8

∥F (x)∥ ≥ κdist(x,X∗), ∀ x ∈ N(x∗, ε) = {x|∥x− x∗∥ ≤ ε}. (29)

(b) The Jacobian J(x) is Lipschitz continuous on N(x∗, ε), i.e., there exists a constant L > 09

such that10

∥J(y)− J(x)∥ ≤ L∥y − x∥, ∀ x, y ∈ N(x∗, ε). (30)

By the Lipschitzness of Jacobian given in (30), we have11

∥F (y)− F (x)− J(x)(y − x)∥ ≤ L∥y − x∥2, ∀ x, y ∈ N(x∗, ε). (31)

Thus, there exists a constant M > 0 such that12

∥F (y)− F (x)∥ ≤ M∥y − x∥, ∀ x, y ∈ N(x∗, ε). (32)

Moreover, by (32) we have (see [31])13

∥J(x)∥ ≤ M, ∀ x ∈ N(x∗, ε). (33)

Due to the result given by Behling and Iusem in [4, Theorem 1], if ∥F (x)∥ provides a local14

error bound, then there exists a positive constant ω > 0 such that15

rank(J(x̄)) = rank(J(x∗)), ∀ x̄ ∈ N(x∗, ω) ∩X∗.

We assume without loss of generality that rank(J(x̄)) = r for all x̄ ∈ N(x∗, ε) ∩ X∗. Suppose16

that the singular value decomposition (SVD) of J(x̄k) is17

J̄k = ŪkΣ̄kV̄
T
k = (Ūk,1, Ūk,2)

(
Σ̄k,1

0

)(
V̄ T
k,1

V̄ T
k,2

)
= Ūk,1Σ̄k,1V̄

T
k,1,

where Σ̄k,1 = diag(σ̄k,1, · · · , σ̄k,r) > 0, and correspondingly the SVD of Jk is18

Jk = UkΣkV
T
k = (Uk,1, Uk,2)

(
Σk,1

Σk,2

)(
V T
k,1

V T
k,2

)
= Uk,1Σk,1V

T
k,1 + Uk,2Σk,2V

T
k,2,

where Σk,1 = diag(σk,1, · · · , σk,r) > 0 and Σk,2 = diag(σk,r+1, · · · , σk,n) ≥ 0. In the following, if

the context is clear, we neglect the subscription k in Σk,i and Uk,i,Vk,i(i = 1, 2) and write Jk as

Jk = U1Σ1V
T
1 + U2Σ2V

T
2 .
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In the following, we denote x̄k as the vector in X∗ that satisfies1

∥x̄k − xk∥ = dist(xk, X
∗).

The following lemma gives the estimations of ∥U1U
T
1 Fk∥ and ∥U2U

T
2 Fk∥ whose proof can be2

found in [24, Lemma 3.4].3

Lemma 3.1 Under the conditions of Assumption 2, for all sufficiently large k,4

(a) ∥U1U
T
1 Fk∥ ≤ M∥x̄k − xk∥;5

(b) ∥U2U
T
2 Fk∥ ≤ 2L∥x̄k − xk∥2,6

where M and L are given in (32) and (30) respectively.7

Lemma 3.2 Under the conditions of Assumption 2, there exists a constant c > 0 such that for8

all sufficiently large k,9

c∥x̄k − xk∥ ≤ ∥JT
k Fk∥ ≤ M2∥x̄k − xk∥, (34)

where M is given in (32).10

Proof For all xk ∈ N(x∗, ε/2), we have11

∥x̄k − x∗∥ ≤ ∥x̄k − xk∥+ ∥xk − x∗∥ ≤ 2∥xk − x∗∥ ≤ ε,

which implies that x̄k ∈ N(x∗, ε). Then, by (32) and (33), we have for all sufficiently large k,12

∥JT
k Fk∥ ≤ ∥Jk∥∥Fk∥ ≤ M2∥x̄k − xk∥,

which proves the right inequality in (34). Moreover, by (31) and (32), we can further obtain13

that for all sufficiently large k,14

F T
k (Fk − Jk(xk − x̄k)) ≤ ML∥x̄k − xk∥3. (35)

It follows from (29) and (35) that for all sufficiently large k,15

∥F T
k Jk∥ ≥

F T
k Jk(xk − x̄k)

∥xk − x̄k∥

=
∥Fk∥2 − F T

k (Fk − Jk(xk − x̄k))

∥xk − x̄k∥

≥ κ∥x̄k − xk∥2 −ML∥x̄k − xk∥3

∥xk − x̄k∥
= κ∥x̄k − xk∥ −ML∥x̄k − xk∥2

≥ c∥x̄k − xk∥,

where c > 0 is some constant. This proves the left inequality in (34). ⊓⊔16

Lemma 3.3 Under the conditions of Assumption 2, there exists a constant c̃ > 0 such that for17

all sufficiently large k,18

∥dk∥ ≤ c̃∥x̄k − xk∥min{2− δ
2
,1}. (36)
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Proof By µk ≥ m, (29) and the left inequality in (34), we have from (6) that1

λk ≥ m0[(1− θ)κδ + θcδ]∥x̄k − xk∥δ. (37)

For any k ≥ 0, since dk is a solution of the following minimization problem2

min
d∈Rn

φk(d) := ∥Fk + Jkd∥2 + λk∥d∥2, (38)

by (31) and (37), we have for all sufficiently large k,3

∥dk∥2 ≤ φk(dk)

λk

≤ φk(x̄k − xk)

λk

=
∥Fk + Jk(x̄k − xk)∥2

λk
+ ∥x̄k − xk∥2

≤ L2

m0[(1− θ)κδ + θcδ]
∥x̄k − xk∥4−δ + ∥x̄k − xk∥2

≤
(

L2

m0[(1− θ)κδ + θcδ]
+ 1

)
∥x̄k − xk∥min{4−δ,2}.

By letting c̃ =
√

L2/m0[(1− θ)κδ + θcδ] + 1, we have (36). ⊓⊔4

Lemma 3.4 Under the conditions of Assumption 2, there exists a positive constant Θ > m5

such that6

µk ≤ Θ (39)

holds for all sufficiently large k.7

Proof First we prove that for all sufficiently large k, the predicted reduction Predk satisfies8

Predk ≥ c̄∥Fk∥∥dk∥max{1, 2
4−δ

}, (40)

where c̄ > 0 is some constant. We consider two cases. If ∥x̄k − xk∥ ≤ ∥dk∥, then by (29), (31),9

(36) and the fact that dk is the solution of (38), we have10

∥Fk∥ − ∥Fk + Jkdk∥ ≥ ∥Fk∥ − ∥Fk + Jk(x̄k − xk)∥
≥ κ∥x̄k − xk∥ − L∥x̄k − xk∥2

≥ c̄1∥x̄k − xk∥

≥ c̄2∥dk∥max{1, 2
4−δ

}, (41)

where c̄1, c̄2 > 0 are some constants. Otherwise, ∥x̄k − xk∥ < ∥dk∥. In this case, by the third11

inequality of (41), we have12

∥Fk∥ − ∥Fk + Jkdk∥ ≥ ∥Fk∥ −
∥∥∥∥Fk +

∥dk∥
∥x̄k − xk∥

Jk(x̄k − xk)

∥∥∥∥
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≥ ∥Fk∥ −
∥∥∥∥(1− ∥dk∥

∥x̄k − xk∥

)
Fk +

∥dk∥
∥x̄k − xk∥

(Fk + Jk(x̄k − xk))

∥∥∥∥
≥ ∥dk∥

∥x̄k − xk∥
(∥Fk∥ − ∥Fk + Jk(x̄k − xk)∥)

≥ c̄1∥dk∥. (42)

Thus, by (41) and (42), for all sufficiently large k,1

Predk = ∥Fk∥2 − ∥Fk + Jkdk∥2

= (∥Fk∥+ ∥Fk + Jkdk∥)(∥Fk∥ − ∥Fk + Jkdk∥)

≥ c̄∥Fk∥∥dk∥max{1, 2
4−δ

},

where c̄ > 0 is some constant. Since δ ∈ (0, 3), we have max{1, 2
4−δ} < 2. Also note that2

∥Fk + Jkdk∥ ≤ ∥Fk∥ by (41) and (42). Thus, by (25) and (40), for all sufficiently large k,3

|rk − 1| =

∣∣∣∣Aredk − Predk
Predk

∣∣∣∣
≤ |∥F (xk + dk)∥2 − ∥Fk + Jkdk∥2

c̄∥Fk∥∥dk∥max{1, 2
4−δ

}

≤ ∥Fk + Jkdk∥O(∥dk∥2) +O(∥dk∥4)
c̄∥Fk∥∥dk∥max{1, 2

4−δ
}

→ 0. (43)

Furthermore, we have4

r̃k =
Ãredk
Predk

≥ Aredk
Predk

= rk → 1.

Hence, there exists a positive constant Θ > m such that µk < Θ holds for all sufficiently large5

k. The proof is completed. ⊓⊔6

Now we give the convergence order of Algorithm 2.1 as follows.7

Theorem 3.1 Under the conditions of Assumption 2, the sequence {xk} converges to the solu-8

tion set X∗ at least superlinearly with the order min{1 + δ, 4− δ, 2}9

Proof Since J(x) is Lipschitz continuous, by the theory of matrix perturbation [18], we have

∥diag(Σ1 − Σ̄1,Σ2)∥ ≤ ∥Jk − J̄k∥ ≤ L∥x̄k − xk∥,

which gives10

∥Σ1 − Σ̄1∥ ≤ L∥x̄k − xk∥ and ∥Σ2∥ ≤ L∥x̄k − xk∥. (44)

Since {xk} converges to the solution set X∗, we assume that L∥x̄k − xk∥ ≤ σ̄r/2 holds for all11

sufficiently large k. Then it follows from (44) that for all sufficiently large k12

∥(Σ2
1 + λkI)

−1∥ ≤ ∥Σ−2
1 ∥ ≤ 1

(σ̄r − L∥x̄k − xk∥)2
≤ 4

σ̄2
r

. (45)
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Moreover, by Lemma 3.4, (32) and the right inequality in (34), we have from (6) that1

λk ≤ Θ[(1− θ)M δ + θM2δ]∥x̄k − xk∥δ. (46)

By the SVD of Jk, we compute

dk = −V1(Σ
2
1 + λkI)

−1Σ1U
T
1 Fk − V2(Σ

2
2 + λkI)

−1Σ2U
T
2 Fk.

So, we have

Fk + Jkdk = Fk − U1Σ1(Σ
2
1 + λkI)

−1Σ1U
T
1 Fk − U2Σ2(Σ

2
2 + λkI)

−1Σ2U
T
2 Fk

= λkU1(Σ
2
1 + λkI)

−1UT
1 Fk + λkU2(Σ

2
2 + λkI)

−1UT
2 Fk,

which together with Lemma 3.1, (45), (46) and ∥(Σ2
2 + λkI)

−1∥ ≤ λ−1
k yields

∥Fk + Jkdk∥ ≤ λk∥(Σ2
1 + λkI)

−1∥∥UT
1 Fk∥+ ∥UT

2 Fk∥∥

≤ 4Θ[(1− θ)M δ + θM2δ]

σ̄2
r

∥x̄k − xk∥1+δ + 2L∥x̄k − xk∥2

≤ C∥x̄k − xk∥min{1+δ,2}, (47)

where C = 4Θ[(1− θ)M δ + θM2δ]/σ̄2
r + 2L. Furthermore, by (29), (31), (36) and (47), we have2

dist(xk+1, X
∗) = ∥x̄k+1 − xk+1∥

≤ 1

κ
∥F (xk+1)∥ =

1

κ
∥F (xk + dk)∥

≤ 1

κ
(∥Fk + Jkdk∥+ L∥dk∥2)

≤ 1

κ

(
C∥x̄k − xk∥min{1+δ,2} + Lc̃2∥x̄k − xk∥min{4−δ,2})

≤ C + Lc̃2

κ
∥x̄k − xk∥min{1+δ,4−δ,2}

= O(dist(xk, X
∗)min{1+δ,4−δ,2}).

The proof is completed. ⊓⊔3

Remark 3.1 (a) Theorem 3.1 indicates that the sequence {xk} converges to the solution set4

X∗ superlinearly for δ ∈ (0, 1), and quadratically for δ ∈ [1, 2]. These results are the same as5

those obtained for the LM method (e.g., [10, 13]). However, Theorem 3.1 also shows that {xk}6

converges to X∗ superlinearly with the order 4 − δ when δ ∈ (2, 3). Therefore, Theorem 3.17

generalizes existing convergence results of the LM method.8

(b) By (29), (32) and Theorem 3.1, we have9

∥Fk+1∥ = O(∥x̄k+1 − xk+1∥) = O(dist(xk, X
∗)min{1+δ,4−δ,2}) = O(∥Fk∥min{1+δ,4−δ,2}).

This indicates that the sequence {∥Fk∥} converges to zero at least superlinearly with the order10

min{1 + δ, 4− δ, 2}.11
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4 Application to weighted linear complementarity problems1

Numerical performances of the LM method for solving some singular problems have been done2

in [3, 10, 13, 17, 30] which clearly show the efficiency of the LM method. In this section, we3

pay particular attention to the performances of the LM method for solving nonlinear equations4

arising from the weighted linear complementarity problem (wLCP).5

4.1 Nonlinear equations arising from wLCP6

The weighted linear complementarity problem (wLCP) was introduced by Potra [15] which is7

to find vectors x ∈ Rn, s ∈ Rn, y ∈ Rm such that8

(wLCP) x ≥ 0, s ≥ 0, Px+Qs+Ry = a, xs = w. (48)

Here P ∈ R(n+m)×n, Q ∈ R(n+m)×n, R ∈ R(n+m)×m are given matrices, a ∈ Rn+m is a given9

vector, w ≥ 0 is a given weight vector (the data of the problem) and xs is the componentwise10

product of the vectors x and s. The significance of studying the wLCP lies in the fact that11

a lot of equilibrium problems in economics can be formulated in a natural way as wLCP [15].12

Moreover, those formulations lend themselves to the development of highly efficient algorithms13

for solving the corresponding equilibrium problems [15]. For example, the Fisher market equi-14

librium problem, which can be modelled as a nonlinear CP, can also be formulated as a wLCP15

that can be efficiently solved by interior-point methods [15]. In recent years, the wLCP has16

received considerable attention from researchers (see, [2, 6, 7, 14, 16, 19, 20, 21, 22, 29]).17

To equivalently reformulate the wLCP as a system of nonlinear equations, we consider the18

following weighted complementarity function19

ϕc(a, b) = (a+ b)3 −
(√

a2 + b2 + 2c
)3
, ∀(a, b) ∈ R2,

where c ≥ 0 is a constant.20

Lemma 4.1 (a) The function ϕc satisfies21

ϕc(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = c.

(b) The function ϕc is continuously differentiable at any (a, b) ∈ R2 with22

∇ϕc(a, b) =

(
3[(a+ b)2 − a

√
a2 + b2 + 2c]

3[(a+ b)2 − b
√
a2 + b2 + 2c]

)
.

Let z := (x, s, y). Then, due to Lemma 4.1, solving the wLCP is equivalent to computing a23

solution of the following nonlinear equations24

F (z) =


Px+Qs+Ry − a

ϕw1(x1, s1)
...

ϕwn(xn, sn)

 = 0, (49)
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where w = (w1, ..., wn)
T is the weight vector given in the wLCP. Since the function F (z) is1

continuously differentiable at any z ∈ R2n+m, we can apply the LM method to solve the nonlinear2

equations (49) so that a solution of the wLCP can be obtained.3

By Lemma 4.1 (b), the Jacobian of F (z) is given as4

J(z) =

[
P Q R

diag
(∂ϕwi

∂xi

)
diag

(∂ϕwi

∂si

)
0

]
, (50)

where5

∂ϕwi

∂xi
= 3

[
(xi + si)

2 − xi

√
x2i + s2i + 2wi

]
,

∂ϕwi

∂si
= 3

[
(xi + si)

2 − si

√
x2i + s2i + 2wi

]
.

In the following, we show that the Jacobian J(z) satisfies the Lipschitz continuity, i.e., Assump-6

tion 2 (b) holds for the nonlinear equations (49).7

Theorem 4.1 The Jacobian J(z) given in (50) is Lipschitz continuous on the closed and convex8

set N(z) = {z ∈ R2n+m|∥z∥ ≤ ϱ} for any ϱ > 0.9

Proof Obviously, we only need to prove that the gradient ∇ϕc(a, b) is Lipschitz continuous on the10

closed and convex set Ω := {(a, b) ∈ R2|∥(a, b)∥ ≤ ζ} for any ζ > 0. Let hc(a, b) =
√
a2 + b2 + 2c.11

It is easy to see that12

hc(a, b) ≤
√
ζ2 + 2c, ∀ (a, b) ∈ Ω. (51)

We consider the following three cases.13

Case 1. c > 0. In this case, hc(a, b) > 0 for any (a, b) ∈ Ω. Thus, ϕc is twice continuously14

differentiable at any (a, b) ∈ Ω with15

∇2ϕc(a, b) =

[
∂2ϕc

∂a2
∂2ϕc

∂a∂b
∂2ϕc

∂b∂a
∂2ϕc

∂b2

]
,

where16

∂2ϕc

∂a2
= 3

{
2(a+ b)−

(
a2/hc(a, b) + hc(a, b)

)}
,

∂2ϕc

∂b2
= 3

{
2(a+ b)−

(
b2/hc(a, b) + hc(a, b)

)}
,

∂2ϕc

∂a∂b
=

∂2ϕc

∂b∂a
= 3
{
2(a+ b)− ab/hc(a, b)

}
.

By (51), we have for any (a, b) ∈ Ω,17

max{a2/hc(a, b), b2/hc(a, b), ab/hc(a, b)} ≤ hc(a, b) ≤
√

ζ2 + 2c.

Thus, there exists a constant C > 0 independent of (a, b) ∈ Ω such that18

∥∇2ϕc(a, b)∥ ≤ C, ∀ (a, b) ∈ Ω.
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By Mean Value Theorem, we have that1

∥∇ϕc(a1, b1)−∇ϕc(a2, b2)∥ ≤ C∥(a1, b1)− (a2, b2)∥

holds for any (a1, b1), (a2, b2) ∈ Ω and prove the desired result.2

Case 2. c = 0 and (0, 0) /∈ Ω. In this case, h0(a, b) =
√
a2 + b2 > 0 for any (a, b) ∈ Ω. Thus,3

ϕ0 is twice continuously differentiable at any (a, b) ∈ Ω. By following exactly the same steps as4

in the Case 1, we can prove the desired result.5

Case 3. c = 0 and (0, 0) ∈ Ω. Then, similarly as Case 1, we can prove that there exists a6

constant C̄ > 0 independent of (a, b) such that7

∥∇2ϕ0(a, b)∥ ≤ C̄, ∀ (a, b) ̸= (0, 0) ∈ Ω.

Then, by [5, Lemma 2.6], we have8

∥∇ϕ0(a1, b1)−∇ϕ0(a2, b2)∥ ≤ C̄∥(a1, b1)− (a2, b2)∥ (52)

holds for all (a1, b1), (a2, b2) ∈ Ω with (0, 0) /∈ [(a1, b1), (a2, b2)]. Moreover, since ∇ϕ0(0, 0) =9

(0, 0), the inequality (52) also holds in case (a1, b1) = (a2, b2) = (0, 0). Therefore, we can10

assume (a1, b1) ̸= (0, 0) ∈ Ω. Since ϕ0 is continuously differentiable for all (a, b) ∈ R2 with11

∇ϕ0(0, 0) = (0, 0), by using a continuity argument, we obtain that the inequality (52) remains12

true for all (a2, b2) ∈ Ω. Thus, the inequality (52) holds for all (a1, b1), (a2, b2) ∈ Ω which proves13

the desired result. ⊓⊔14

4.2 Computational experiments15

In this subsection, we apply Algorithm 2.1 to solve the nonlinear equations (49) with16

P =

(
A

M

)
, Q =

(
0

−I

)
, R =

(
0

−AT

)
, a =

(
b

−f

)
, (53)

where A ∈ Rm×n is a full row rank matrix with m < n, b ∈ Rm, f ∈ Rn and M ∈ Rn×n is an17

symmetric positive semidefinite matrix. It is worth pointing out that the wLCP (48) with (53)18

is the optimality conditions of the quadratic programming and weighted centering problem [15,19

Theorem 2.1]. In experiments, we generate a random matrix A ∈ Rm×n with full row rank and20

set M = BBT /∥BBT ∥ with B = rand(n, n). Then we choose x̂ = rand(n, 1), f = rand(n, 1)21

and set b = Ax̂, ŝ = Mx̂+ f and w = x̂ŝ. The parameters used in Algorithm 2.1 are chosen as22

p0 = 10−4, p1 = 0.25, p2 = 0.75,m0 = 10−8, τ = 0.5 and µ0, θ, δ are specified in the experiments.23

First, to observe the local convergence behavior, we generate one test problem with n = 10024

and m = 50 and solve it by Algorithm 2.1 with µ0 = 10−4. We test the following LM parameters:25

(i) θ = 0, i.e., λk = µk∥Fk∥δ.26

(ii) θ = 0.5, i.e., λk = µk
∥Fk∥δ+∥JT

k Fk∥δ
2 .27

(iii) θ = 1, i.e., λk = µk∥JkFk∥δ.28

The starting point is chosen as x0 = s0 = (1, ..., 1)T and y0 = (0, ..., 0)T . Table 1 gives the value29

of ∥F (zk)∥ at the k-th iteration.30
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Table 1. The value of ∥F (zk)∥ at the k-th iteration1

δ = 0.6 δ = 1.0 δ = 1.5 δ = 2 δ = 2.2

θ = 0 k = 1 7.3940 7.3615 7.1490 44.9536 53.5820

k = 2 1.4243 1.4095 1.5719 21.3399 51.9793

k = 3 0.3603 0.2656 0.1937 3.6613 45.8181

k = 4 0.0705 0.0427 0.0111 1.5099 26.2801

k = 5 0.0084 0.0037 2.7974e-04 0.1865 4.7418

k = 6 1.7980e-04 3.6944e-05 3.0876e-07 0.0064 2.5236

k = 7 8.7850e-08 3.7522e-09 3.9399e-13 2.3145e-05 0.6067

k = 8 3.4460e-14 2.9348e-14 0 7.1417e-10 0.0652

k = 9 0 0 0 2.5806e-14 0.0018

k = 10 0 0 0 0 4.8512e-06

k = 11 0 0 0 0 4.0442e-11

θ = 0.5 k = 1 7.3739 7.1787 7.4973 36.6905 52.5572

k = 2 1.4149 1.3341 1.9771 9.7323 47.0581

k = 3 0.2936 0.1584 0.2898 3.4634 29.1759

k = 4 0.0510 0.0113 0.0139 1.6859 5.9672

k = 5 0.0050 2.5241e-04 2.8185e-04 0.3429 3.2019

k = 6 6.5933e-05 2.4935e-07 3.1004e-07 0.0293 1.3536

k = 7 1.1888e-08 2.5763e-13 3.9592e-13 8.8565e-04 0.4265

k = 8 2.6622e-14 0 0 1.3332e-06 0.0662

k = 9 0 0 0 3.0416e-12 0.0052

k = 10 0 0 0 0 4.5166e-05

k = 11 0 0 0 0 3.4861e-09

k = 12 0 0 0 0 2.6096e-14

θ = 1 k = 1 7.3626 7.0494 7.8009 18.3519 31.2565

k = 2 1.4098 1.2873 2.3134 3.0913 7.0409

k = 3 0.2663 0.1559 0.4035 0.8192 3.3569

k = 4 0.0429 0.0111 0.0227 0.0626 1.5570

k = 5 0.0037 2.4747e-04 3.0924e-04 8.2097e-04 0.4177

k = 6 3.7527e-05 2.3615e-07 3.1045e-07 4.0869e-07 0.0577

k = 7 3.8708e-09 2.2738e-13 3.9534e-13 1.9931e-13 0.0040

k = 8 2.5699e-14 0 0 0 2.7297e-05

k = 9 0 0 0 0 1.2737e-09

k = 10 0 0 0 0 3.1010e-14

2

From Table 1, three observations can be made here.3

(a) Algorithm 2.1 has at least superlinear convergence rate for δ ∈ (0, 3).4

(b) Algorithm 2.1 taking δ ∈ [1, 2) converges faster than that taking δ ∈ (0, 1) ∪ [2, 3).5

(c) The efficiency of Algorithm 2.1 is reduced in initial steps when δ ∈ [2, 3).6

These observations confirm the theoretical results of the new LM method.7
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Next, we further investigate the influences the the parameter θ on Algorithm 2.1. We test1

Algorithm 2.1 with δ = 1, i.e., λk = µk[(1−θ)∥Fk∥+θ∥JT
k Fk∥]. For each problem with different2

sizes n(= 2m), we generate five instances and solve them by Algorithm 2.1. For the purpose3

of comparison, we also apply the LM method studied by Fan [9] to solve these problems. It4

is worth pointing out that Fan’s LM method [9] took λk = µk∥Fk∥ with µk being updated by5

the trust region technique. The starting point is chosen as before. We use ∥F (zk)∥ < 10−6
6

and iter < 30 as the stopping criterion where iter denotes the number of iterations. Numerical7

results are listed in Table 2 where AIT and ACPU denote the average number of iterations8

and the average CPU time in seconds respectively, and ∗ stands for that the algorithm fails to9

solve some instances as the iteration number is greater than 30 and the average is based on the10

successful instances through our numerical report.11

Table 2. Comparison of Algorithm 2.1 with different values of θ12

µ0 θ = 0 θ = 0.5 θ = 1 Fan-LM

n AIT ACPU AIT ACPU AIT ACPU AIT ACPU

10−4 100 6.8 0.04 6.6 0.02 6.6 0.02 6.8 0.02

300 7.2 0.22 7.0 0.24 7.0 0.24 7.2 0.22

500 7.2 0.78 7.0 0.67 7.0 0.69 7.4 0.70

700 7.0∗ 1.42 7.0 1.39 7.0 1.46 7.0 1.51

900 7.0 2.52 7.0 2.54 7.0∗ 2.97 7.5∗ 2.75

1100 7.4 4.53 7.2 4.68 8.8∗ 5.11 7.4 4.25

1300 7.2 6.64 8.4 7.89 10.2 9.26 7.2 6.24

1500 7.8 10.04 7.4 9.88 10.3∗ 14.11 7.7∗ 10.83

10−2 100 6.4 0.02 6.4 0.02 6.4 0.02 6.6 0.03

300 6.8 0.21 6.6 0.19 7.2 0.21 6.6 0.17

500 7.0 0.81 7.0 0.77 7.6 0.82 7.0 0.70

700 7.0 1.50 7.8 1.73 8.6 1.77 7.0 1.51

900 8.0 3.10 8.6 3.27 8.4 3.26 7.4 2.70

1100 7.2 4.46 8.4 5.17 8.2∗ 5.37 8.2 4.81

1300 8.0 7.51 9.4 8.86 8.0∗ 7.47 8.0∗ 7.98

1500 7.6 10.20 9.2∗ 12.32 8.6 11.49 8.2 10.64

13

From Table 2, we may see that Algorithm 2.1 with θ = 0 always outperforms or at least14

performs as well as it with θ = 0.5 or θ = 1 in most cases. Moreover, we may observe that15

Algorithm 2.1 taking θ = 0, i.e., λk = µk∥Fk∥, performs better than Fan’s LM method [9] which16

also took λk = µk∥Fk∥. This indicates that the nonmonotone trust region technique introduced17

in this paper improves the numerical performance of the LM method. We have tested Algorithm18

2.1 with other values of δ and the computation effect is similar.19
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5 Conclusions1

In this paper we have improved the Levenberg-Marquardt method by taking a general LM2

parameter and adopting a nonmonotone trust region technique. We have proved that the new3

LM method has global convergence and its convergence order is min{1 + δ, 4 − δ, 2} where4

δ ∈ (0, 3) under the local error bound condition. We have also applied the new LM method to5

solve the nonlinear equations arising from the weighted linear complementarity problem where6

the associated mapping satisfies the Lipschitz continuity of the Jacobian. The numerical results7

showed that the new LM method is efficient and promising.8

9
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