For EDITORS

For READERS

All Issues

Vol.15, 2025
Vol.14, 2024
Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 14, Number 4, 2024, Pages -                                                                DOI:10.11948/JAAC-2022-0422
Stability and Hopf bifurcation of a delayed predator-prey system with nonlocal competition and herd behaviour
Yahong Peng,Xingyu Yang,Yujing Li
Keywords:Predator-prey model  time delay  nonlocal prey competition  Hopf bifurcation
Abstract:
      In this paper, we investigate the stability and Hopf bifurcation of a diffusive predator-prey system with herd behaviour. The model is described by introducing both time delay and nonlocal prey intraspecific competition. Compared to the model without time delay, or without nonlocal competition, thanks to the together action of time delay and nonlocal competition, we prove that the first critical value of Hopf bifurcation may be homogenous or non-homogeneous. We also show that a double-Hopf bifurcation occurs at the intersection point of the homogenous and non-homogeneous Hopf bifurcation curves. Furthermore, by the computation of normal forms for the system near equilibria, we investigate the stability and direction of Hopf bifurcation. Numerical simulations also show that the spatially homogeneous and non-homogeneous periodic patters.
PDF      Download reader