For EDITORS

For READERS

All Issues

Vol.15, 2025
Vol.14, 2024
Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 14, Number 5, 2024, Pages -                                                                DOI:10.11948/JAAC-2022-0349
Monotonicity of the ratios of two Abelian integrals for Hamiltonian systems with parameters
Xianbo Sun
Keywords:Abelian integral  limit cycle  bifurcation
Abstract:
      We study the monotonicity of the ratios of two Abelian integrals $\oint_{\gamma_{i}(h)}ydx$ $\backslash$ $\oint_{\gamma_{0i}(h)}xydx$ over three period annuli $\{\gamma_i(h)\}$, for $i=1, 2, 3$, defined by a seventh-degree hyperelliptic Hamiltonian $H(x,y)=y^2+\Psi(x)$ with a parameter. The parameter makes the problem more challenging to analyze. To over the difficulty, we apply some criterion with the help of transformations, tools in computer algebra such as boundary polynomial theory to determine the monotonicity of the ratios. Our results establish the existence and uniqueness of limit cycle bifurcated from each period annulus.
PDF      Download reader