For EDITORS

For READERS

All Issues

Vol.15, 2025
Vol.14, 2024
Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 10, Number 5, 2020, Pages 1995-2007                                                                DOI:10.11948/20190309
Generalized p(x)-elliptic system with nonlinear physical data
Elhoussine Azroul,Farah Balaadich
Keywords:p(x)-Laplacian systems, variable exponents, weak solutions, young measures.
Abstract:
      This paper considers the following Dirichlet problem of the form \[-\text{div}\,\big(\Phi(Du-\Theta(u)\big)=v(x)+f(x,u)+\text{div}\,\big(g(x,u)\big),\] which corresponds to a diffusion problem with a source $v$ in moving and dissolving substance, the motion is described by $g$ and the dissolution by $f$. By the theory of Young measure we will prove the existence result in variable exponent Sobolev spaces $W^{1,p(x)}_0(\Omega;\R^m)$.
PDF      Download reader