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GENERALIZED P(X)-ELLIPTIC SYSTEM
WITH NONLINEAR PHYSICAL DATA

Elhoussine Azroul1 and Farah Balaadich1,†

Abstract This paper considers the following Dirichlet problem of the form

−div
(
Φ(Du−Θ(u)

)
= v(x) + f(x, u) + div

(
g(x, u)

)
,

which corresponds to a diffusion problem with a source v in moving and
dissolving substance, the motion is described by g and the dissolution by f .
By the theory of Young measure we will prove the existence result in variable
exponent Sobolev spaces W

1,p(x)
0 (Ω;Rm).

Keywords p(x)-Laplacian systems, variable exponents, weak solutions, young
measures.
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1. Introduction and main result
Let Ω be a bounded open domain in Rn, n ≥ 2. Throughout this paper, we
denote by Mm×n the set of real m by n matrices equipped with the inner product
ξ : η =

∑
i,j ξijηij . For ξ ∈ Mm×n, |ξ| is the norm of ξ when regarded as a vector

of Rmn. In [6], the following quasilinear elliptic system was considered −div
(
Φ(Du−Θ(u))

)
= v in Ω,

u = 0 on ∂Ω,
(1.1)

where Du is the symmetric part of the gradient of u : Ω → Rm, v belongs to
W−1,p′

(Ω;Rm), 1
p + 1

p′ = 1, Φ(ξ) = |ξ|p−2ξ for all ξ ∈ Mm×n and 1 < p < ∞ (a
constant). And Θ : Rm → Mm×n is a continuous function satisfying

Θ(0) = 0 and |Θ(a)−Θ(b)| ≤ c|a− b|, ∀a, b ∈ Rm, (1.2)

where the positive constant c satisfies

c <
1

diam(Ω)

(1
2

) 1
p

. (1.3)

Here diam(Ω) is the diameter of Ω. The authors used the theory of Young measure
and Galerkin method to prove that (1.1) had a weak solution u ∈ W 1,p

0 (Ω;Rm)
under the conditions (1.2) and (1.3). See also [7, 9] for related topics.
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When the exponent p is not constant, but depends on x, i.e. p ≡ p(x), Azroul
and Balaadich [8] established the existence result for (1.1), where v belongs to
W−1,p′(x)(Ω;Rm) and the constant c in (1.2) is assumed to satisfy

c <
1

diam(Ω)

(1
2

) 1

p+

.

Here p+ is the essential sup of the variable exponent p(x) for x ∈ Ω. They used
also the tool of Young measure in establishing their result.

The operator −div
(
|Du|p(x)−2Du

)
is said to be the p(x)-Laplacian and becomes

p-Laplacian when p(x) ≡ p. When p(x) > 2 (resp. 1 < p(x) < 2), then the problem
(1.1) is nonlinear degenerate (resp. singular) elliptic systems. Partial differential
equations with nonlinearities involving nonconstant exponents have attracted an
increasing amont of attention in recent years. The impulse for this maybe comes
from the sound physical applications in play, or perhaps it is just the thrill of
developping a mathematical theory where PDEs again meet functional analysis in
a truly two-way street.

As we know, the p(x)-Laplacian is inhomogeneous. This implies that it posesses
more complicated nonlinearities than the case of p constant. Problems with variable
exponent appear in several domains. For example; in the mathematical modeling of
stationary thermorheological viscous of the process filtration of an ideal barotropic
gas through a porous medium (cf. [2, 3]). In image processing [18], to outline the
borders of a true image and to elliminate possible noise, the variable nonlinearity
find its applications. For the case of calculus of variations, the reader can see [1,14]
and references therein.

The authors in [10] considered the following p(x)-curl systems∇×
(
|∇ × u|p(x)−2∇× u

)
= λg(x, u)− µf(x, u), ∇.u = 0 in Ω

|∇ × u|p(x)−2∇× u× n = 0, u.n = 0 on ∂Ω.

Here ∇×u is the curl of u = (u1, u2, u3). They studied the existence and nonexistence
of solutions. Note that the above system is arising in electromagnetism.

E. Azroul et al. [4] investigated a class of nonlinear p(x)-Laplacian problems, in
the scalar case, of the form −divΦ(∇u−Θ(u)) + |u|p(x)−2u+ α(u) = f in Ω,

Φ(∇u−Θ(u)).η + γ(u) = g on ∂Ω,

where the source term f was assumed to belong to L1(Ω). They used the techniques
of entropy solutions to prove the existence of a solution. See also [5, 13].

In this paper we shall prove the existence of weak solutions for the following
problem which is motivated by physics or geometry:

− div
(
Φ(Du−Θ(u))

)
= v(x) + f(x, u) + div

(
g(x, u)

)
in Ω, (1.4)

supplemented with the Dirichlet boundary condition u = 0 on ∂Ω. Here v belongs to
W−1,p′(x)(Ω;Rm), Φ : Mm×n → Mm×n is given in a simple form Φ(ξ) = |ξ|p(x)−2ξ
for all ξ ∈ Mm×n and Θ : Rm → Mm×n is a continuous function such that

Θ(0) = 0 and |Θ(a)−Θ(b)| ≤ c|a− b|, ∀a, b ∈ Rm, (1.5)
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where c is a positive constant that satisfies c < 1
diam(Ω)

(
1
2

) 1

p+ . Moreover, f and g

satisfy the following continuity and growth conditions:

(F0)(Continuity) f : Ω × Rm −→ Rm is a Carathéodory function, i.e. x 7→ f(x, u)
is measurable for every u ∈ Rm and u 7→ f(x, u) is continuous for a.e. x ∈ Ω.
(F1)(Growth) There exist b1 ∈ Lp′(x)(Ω) and 0 < γ(x) < p(x)− 1 such that

|f(x, u)| ≤ b1(x) + |u|γ(x).

(G0)(Continuity) g : Ω×Rm −→ Mm×n is a Carathéodory function in the sense of
(F0).
(G1)(Growth) There exist b2 ∈ Lp′(x) and 0 < q(x) < p(x)− 1 such that

|g(x, u)| ≤ b2(x) + |u|q(x).

Remark 1.1. 1) The strict bound p(x) − 1 for γ(x) and q(x) in the growth
conditions (F1) and (G1) ensures the coercivity of the operator T introduced
in Section 3.

2) The function f may depend even on the Jacobien matrix Du := 1
2

(
∇u+(∇u)t

)
and linear with respect to its variable ξ ∈ Mm×n, see Appendix.

Let u : Ω → Rm be a vector-valued function.

Definition 1.1. A measurable function u ∈ W
1,p(x)
0 (Ω;Rm) is called a weak solution

to problem (1.4) if∫
Ω

Φ
(
Du−Θ(u)

)
: Dϕdx = 〈v, ϕ〉+

∫
Ω

f(x, u).ϕdx−
∫
Ω

g(x, u) : Dϕdx

holds for all ϕ ∈ W
1,p(x)
0 (Ω;Rm). Here 〈., .〉 is the duality pairing of W−1,p′(x)(Ω;Rm)

and W
1,p(x)
0 (Ω;Rm).

We shall prove the following existence theorem:

Theorem 1.1. Assume that (1.5), (F0), (F1), (G0) and (G1) hold true. Then
there exists at least one weak solution to (1.4) in the sense of Definition 1.1.

The outline of the present paper is as follows: In section 2, we introduce the
functional space and its properties, and a brief review on the theory of Young
measure. Section 3 is devoted to construct the approximating solutions by the
Galerkin method and we give the proof of the main result. This paper ends with
an appendix.

2. Preliminaries
2.1. Variable exponent Lebesgue and Sobolev spaces
In order to discuss the solutions to the Dirichlet problem (1.4), we need some
theories and basic properties of variable exponent Lebesgue and Sobolev spaces
Lp(x)(Ω;Rm), W1,p(x)

0 (Ω;Rm) respectively (see [16,18,21] and other references therein).
Let Ω be a bounded open domain of Rn. We denote C+(Ω) the following set

C+(Ω) =
{
p ∈ C(Ω) : p(x) > 1 for all x ∈ Ω

}
.
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Throughout this paper,

p− := ess inf
x∈Ω

p(x) and p+ := ess sup
x∈Ω

p(x)

for every p ∈ C+(Ω). We define the modular of a measurable function u : Ω → Rm

by
ρp(.)(u) :=

∫
Ω

|u(x)|p(x)dx.

The variable exponent Lebesgue space Lp(x)(Ω;Rm) is a Banach space that is the
set of all measurable functions u : Ω → Rm such that its modular

ρp(.)(u) < +∞

is finite, equipped with the Luxemburg norm

‖u‖Lp(x)(Ω;Rm) := ‖u‖p(x) = inf
{
β > 0 : ρp(.)

(u
β

)
≤ 1

}
.

Note that the generalized Lebesgue space Lp(x)(Ω;Rm) is a kind of Musielak-Orlicz
space. If

1 ≤ p− ≤ p+ < ∞,

Lp(x)(Ω;Rm) is separable and, in particular, C∞
0 (Ω;Rm) is dense in Lp(x)(Ω;Rm).

If we restrict p(.) to satisfy
1 < p− ≤ p+ < ∞,

then Lp(x)(Ω;Rm) becomes reflexive, and its dual is given for p′(x) = p(x)/(p(x)−1)
by Lp′(x)(Ω;Rm), where p′(x) is the conjugate of p(x). In these spaces, a version of
Hölder’s inequality∫

Ω

uvdx ≤
( 1

p−
+

1

p+

)
‖u‖p(x)‖v‖p′(x) ≤ 2‖u‖p(x)‖v‖p′(x)

is valid for u ∈ Lp(x)(Ω;Rm) and v ∈ Lp′(x)(Ω;Rm). For the relation between
the modular ρp(.)(.) and the norm ‖.‖p(x), we recall the following properties: if
uk, u ∈ Lp(x)(Ω;Rm) and 1 < p− ≤ p+ < ∞, then:

if ‖u‖p(x) > 1 ⇒ ‖u‖p
−

p(x) ≤ ρp(x)(u) ≤ ‖u‖p
+

p(x);

if ‖u‖p(x) < 1 ⇒ ‖u‖p
+

p(x) ≤ ρp(x)(u) ≤ ‖u‖p
−

p(x);

‖uk‖p(x) → 0 (resp. +∞) ⇔ ρp(x)(uk) → 0 (resp. +∞).

We define the generalized Lebesgue-Sobolev space W 1,p(x)(Ω;Rm) as the set of
all u ∈ Lp(x)(Ω;Rm) such that Du ∈ Lp(x)(Ω;Mm×n), which is a Banach space for
the norm

‖u‖1,p(x) = ‖u‖p(x) + ‖Du‖p(x).

This space is again a special case of Sobolev-Orlicz spaces and inherits many of the
properties of Lp(x)(Ω;Rm). In particular, W 1,p(x)(Ω;Rm) is separable if 1 ≤ p− ≤
p+ < ∞, and is reflexive if 1 < p− ≤ p+ < ∞. Further, W

1,p(x)
0 (Ω;Rm) is the

closure of C∞
0 (Ω;Rm) in the norm of W 1,p(x)(Ω;Rm). If p(.) ∈ C+(Ω), then an
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equivalent norm in W
1,p(x)
0 (Ω;Rm) is ‖Du‖p(x). The dual space of W 1,p(x)

0 (Ω;Rm)

can be identified with W−1,p′(x)(Ω;Rm) for 1
p(x)+

1
p′(x) = 1. As in [19], the following

Poincaré’s inequality: there exists a positive constant α = diam(Ω) such that

‖u‖p(x) ≤
α

2
‖Du‖p(x), ∀u ∈ W

1,p(x)
0 (Ω;Rm),

together with Hölder’s inequality, are central in this paper.
Let us summarize the above properties in the following proposition:

Proposition 2.1 ( [18]). 1) W 1,p(x)(Ω;Rm) and W
1,p(x)
0 (Ω;Rm) are Banach spaces

which are separable if p(.) ∈ L∞(Ω) and reflexive if 1 < p− ≤ p+ < ∞.
2) If q ∈ C+(Ω) with q(x) < p∗(x) := np(x)

n−p(x) for all p(x) < n, then the following
compact embedding W 1,p(x) ↪→ Lq(x)(Ω;Rm) holds true. In particular, since p(x) <
p∗(x) for all x ∈ Ω then

W 1,p(x) ↪→↪→ Lp(x)(Ω;Rm).

3) There exists a constant C > 0 with ‖u‖p(x) ≤ C‖Du‖p(x) for all u ∈ W
1,p(x)
0 (Ω;Rm),

hence ‖Du‖p(x) and ‖u‖1,p(x) are two equivalent norms on W
1,p(x)
0 (Ω;Rm).

2.2. Young measures
The weak convergence is a basic tool of modern nonlinear analysis, because it has
the same compactness properties as the convergence in finite dimensional spaces as
discussed in the paper of Evans [15]. However this convergence, sometimes, does
not behave as we desire with respect to nonlinear functionals and operators. To
solve this difficulties, we can use the tool of Young measure which we will use in
this paper to prove the needed result.

For convenience of the reader not familiar with this concept, we recall some basic
notions and properties (see eg. [11,15,17,20] and references therein).

By C0(Rm) we denote the set of functions g ∈ C(Rm) satisfying lim|λ|→∞ g(λ) =
0. Its dual is the well known space of signed Radon measures with finite mass and
denoted by M(Rm). The duality pairing of these spaces is defined for ν : Ω −→
M(Rm) as

〈ν, g〉 =
∫
Rm

g(λ)dν(λ).

Lemma 2.1 ( [15]). Assume that the sequence {wk}k≥1 is bounded in L∞(Ω;Rm).
Then there exist a subsequence (still denoted by {wk}) and a Borel probability
measure νx on Rm for a.e. x ∈ Ω, such that for each g ∈ C(Rm) we have g(wk) ⇀

∗ g
weakly in L∞(Ω;Rm) where

g(x) = 〈νx, g〉 =
∫
Rm

g(λ)dνx(λ) for a.e. x ∈ Ω.

We call ν = {νx}x∈Ω the family of Young measure associated with the subsequence
{wk}. In [11] it is shown that if for all R > 0

lim
L→∞

sup
k∈N

∣∣∣{x ∈ Ω ∩BR(0) : |wk(x)| ≥ L
}∣∣∣ = 0,
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then for any measurable Ω′ ⊂ Ω

h(., wk) ⇀ 〈νx, h(x, .)〉 =
∫
Rm

h(x, λ)dνx(λ)

weakly in L1(Ω′), for any Carathéodory function h : Ω′ × Rm → R provided that
the sequence {h(., wk)} is weakly precompact in L1(Ω′).

Moreover, if |Ω| < ∞,

wk −→ w in measure ⇐⇒ νx = δw(x). (2.1)

The Young measure associated to the sequence (yk, wk) is given by

δy(x) ⊗ νx (2.2)

if yk → y in measure and if νx is the Young measure associated to wk.

Lemma 2.2 ( [8]). Let (wk) be the sequence defined as above. Then the Young
measure νx generated by Dwk in Lp(x)(Ω;Mm×n) has the following properties:

(i) νx is a probability measure, i.e. ‖νx‖M(Mm×n) = 1 for almost every x ∈ Ω.
(ii) The weak L1-limit of Dwk is given by 〈νx, id〉 =

∫
Mm×n λdνx(λ).

(iii) νx satisfies 〈νx, id〉 = Dw(x) for almost every x ∈ Ω.

3. Approximating solutions
To construct the approximating solutions, we will use the Galerkin method. To this
purpose, we consider the following map T : W

1,p(x)
0 (Ω;Rm) −→ W−1,p′(x)(Ω;Rm)

defined for arbitrary u ∈ W
1,p(x)
0 (Ω;Rm), by

〈T (u), ϕ〉 =
∫
Ω

Φ
(
Du−Θ(u)

)
: Dϕdx− 〈v, ϕ〉 −

∫
Ω

f(x, u)ϕdx+

∫
Ω

g(x, u) : Dϕdx

for all ϕ ∈ W
1,p(x)
0 (Ω;Rm). As a consequence, our problem (1.4) is then equivalent

to find u ∈ W
1,p(x)
0 (Ω;Rm) such that

〈T (u), ϕ〉 = 0 for all ϕ ∈ W
1,p(x)
0 (Ω;Rm).

Lemma 3.1. The mapping T (u) is well defined, linear and bounded.

Proof. For arbitrary u ∈ W
1,p(x)
0 (Ω;Rm), T (u) is linear. For all ϕ ∈ W

1,p(x)
0 (Ω;Rm),

|〈T (u), ϕ〉| ≤
∣∣∣ ∫

Ω

Φ
(
Du−Θ(u)

)
: Dϕdx−〈v, ϕ〉−

∫
Ω

f(x, u)ϕdx+

∫
Ω

g(x, u) : Dϕdx
∣∣∣

≤
∫
Ω

∣∣Du−Θ(u)
∣∣p(x)−1|Dϕ|dx+

∣∣〈v, ϕ〉∣∣
+

∫
Ω

|f(x, u)||ϕ|dx+

∫
Ω

|g(x, u)||Dϕ|dx.

Note that since
|a+ b|r ≤ 2r−1

(
|a|r + |b|r

)
for r > 1, (3.1)
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it follows by Hölder’s inequality that

I1 :=

∫
Ω

∣∣Du−Θ(u)
∣∣p(x)−1|Dϕ|dx

≤
(∫

Ω

∣∣Du−Θ(u)
∣∣p(x)dx) 1

p′(x) ‖Dϕ‖p(x)

≤
(∫

Ω

2p(x)−1
(
|Du|p(x) + |Θ(u)|p(x)

)
dx

) p(x)−1
p(x) ‖Dϕ‖p(x)

≤ 2
(p+−1)2

p−
(
‖Du‖p(x)p(x) + ‖Θ(u)‖p(x)p(x)

) p(x)−1
p(x) ‖Dϕ‖p(x).

The generalized Hölder inequality implies that

I2 :=
∣∣〈v, ϕ〉∣∣ ≤ ‖v‖−1,p′(x)‖ϕ‖1,p(x).

On the other hand, it follows from the growth condition (F1) (without loss of
generality, we can assume that γ(x) = p(x)− 1), that

I3 :=

∫
Ω

|f(x, u)||ϕ|dx ≤ ‖b1‖p′(x)‖ϕ‖p(x) + ‖u‖p(x)−1
p(x) ‖ϕ‖p(x).

Finally, the growth condition (G1) (without loss of generality, we may assume that
q(x) = p(x)− 1) allows to estimate (by application of the Hölder inequality)

I4 :=

∫
Ω

|g(x, u)||Dϕ|dx ≤ ‖b2‖p′(x)‖Dϕ‖p(x) + ‖u‖p(x)−1
p(x) ‖Dϕ‖p(x).

By virtual of the Poincaré inequality, the Ii for i = 1, .., 4 are finite, then T (u) is
well defined. Moreover, for all ϕ ∈ W

1,p(x)
0 (Ω;Rm)

∣∣〈T (u), ϕ〉∣∣ ≤ 4∑
i=1

Ii ≤ C‖Dϕ‖p(x),

and this implies that T (u) is bounded.

Lemma 3.2. The restriction of T to a finite dimensional linear subspace V of
W

1,p(x)
0 (Ω;Rm) is continuous.

Proof. Let r be the dimension of V and (ei)
r
i=1 a basis of V . Let (uj = aijei) be

a sequence in V which converges to u = aiei in V (with conventional summation).
Then uj → u and Duj → Du almost everywhere. The continuity of Θ, f and g
implies that

Φ(Duj −Θ(uj)) : Dϕ → Φ(Du−Θ(u)) : Dϕ,

f(x, uj)ϕ → f(x, u)ϕ and g(x, uj) : Dϕ → g(x, u) : Dϕ

almost everywhere. Since uj → u strongly in V ,∫
Ω

|uj − u|p(x)dx −→ 0 and
∫
Ω

|Duj −Du|p(x) −→ 0.
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According to [12] (Chapter IV, Section 3, Theorem 3) there exist a subsequence
of {uj} still denoted by {uj} and h1, h2 ∈ L1(Ω) such that |uj − u|p(x) ≤ h1,
|Duj −Du|p(x) ≤ h2. By vertue of the Eq (3.1), we can write

|uj |p(x) = |uj − u+ u|p(x) ≤ 2p
+−1

(
|uj − u|p(x) + |u|p(x)

)
≤ 2p

+−1
(
h1 + |u|p(x)

)
,

from which (similarly) we get |Duj |p(x) ≤ 2p
+−1

(
h2 + |Du|p(x)

)
. Consequently, the

sequences ‖uj‖p(x) and ‖Duj‖p(x) are bounded by a constant denoted C. Now,
if Ω′ ⊂ Ω is a measurable subset and ϕ ∈ W

1,p(x)
0 (Ω;Rm), then by Poincaré’s

inequality ∫
Ω′

∣∣Φ(Duj −Θ(uj)) : Dϕ
∣∣dx

≤2
(p+−1)2

p−
(
‖Duj‖p(x)p(x) + ‖Θ(uj)‖p(x)p(x)

) p(x)−1
p(x)

(∫
Ω′

|Dϕ|p(x)
) 1

p(x)

≤2
(p+−1)2

p−
(
‖Duj‖p(x)p(x)︸ ︷︷ ︸

≤C

+ cp
+

‖uj‖p(x)p(x)︸ ︷︷ ︸
≤C

) p(x)−1
p(x)

(∫
Ω′

|Dϕ|p(x)
) 1

p(x)

,

where the small c is the constant in (1.5), and (without loss of generality, we can
assume that γ(x) = p(x)− 1 and q(x) = p(x)− 1)∫

Ω′
|f(x, uj)ϕ|dx ≤ C

(
‖b1‖p′(x) + ‖uj‖p(x)−1

p(x)︸ ︷︷ ︸
≤C

)(∫
Ω′

|Dϕ|p(x)dx
) 1

p(x)

,

and ∫
Ω′

|g(x, uj) : Dϕ|dx ≤
(
‖b2‖p′(x) + ‖uj‖p(x)−1

p(x)︸ ︷︷ ︸
≤C

)(∫
Ω′

|Dϕ|p(x)dx
) 1

p(x)

.

Therefore, the sequences
(
Φ(Duj − Θ(uj)) : Dϕ

)
,
(
f(x, uj)ϕ

)
and

(
g(x, uj) :

Dϕ
)

are equiintegrable, since
∫
Ω′ |Dϕ|p(x)dx is arbirary small if the measure of

Ω′ is chosen small enough. Applying the Vitali Theorem, it follows for all ϕ ∈
W

1,p(x)
0 (Ω;Rm) that limj→∞〈T (uj), ϕ〉 = 〈T (u), ϕ〉 as we desire.

Lemma 3.3. The mapping T is coercive.

Proof. Taking ϕ = u in the definition of T , then

〈T (u), u〉 =
∫
Ω

Φ(Du−Θ(u)) : Dudx− 〈v, u〉 −
∫
Ω

f(x, u)udx+

∫
Ω

g(x, u) : Dudx.

(3.2)
We know that

|ξ|r−2ξ : (ξ − η) ≥ 1

r
|ξ|r − 1

r
|η|r,

then for ξ = Du−Θ(u) and η = −Θ(u), we get

J1 :=

∫
Ω

|Du−Θ(u)|p(x)−2(Du−Θ(u)) : (Du−Θ(u) + Θ(u))dx
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≥
∫
Ω

1

p(x)
|Du−Θ(u)|p(x)dx−

∫
Ω

1

p(x)
|Θ(u)|p(x)dx.

On the other hand, by (3.1)

|Du|p(x) = |Du−Θ(u) + Θ(u)|p(x)

≤ 2p
+−1

(
|Du−Θ(u)|p(x) + |Θ(u)|p(x)

)
,

thus

J1 ≥ 1

p+
1

2p+−1

∫
Ω

|Du|p(x)dx− 2

p+

∫
Ω

|Θ(u)|p(x)dx

≥
( 1

p+
1

2p+−1
− 2

p+
1

2αp+

(α
2

)p+)∫
Ω

|Du|p(x)dx

=
1

p+
1

2p+

∫
Ω

|Du|p(x)dx,

by definition of the function Θ and Poincaré’s inequality. Next the Hölder inequality
implies that

|J2| := |〈v, u〉| ≤ ‖v‖−1,p′(x)‖u‖1,p(x).

Finally, it follows from the growth conditions (F1) and (G1) that

J3 :=

∫
Ω

f(x, u)udx ≤ ‖b1‖p′(x)‖u‖p(x) + ‖u‖γ(x)+1
p(x)

≤ C‖b1‖p′(x)‖Du‖p(x) + Cγ++1‖Du‖γ(x)+1
p(x)

and

|J4| :=
∣∣∣ ∫

Ω

g(x, u) : Dudx
∣∣∣ ≤ ‖b2‖p′(x)‖Du‖p(x) + Cq+‖Du‖q(x)+1

p(x) .

From these estimations it follows that

〈T (u), u〉 = J1 − J2 − J3 + J4 −→ +∞ as ‖u‖1,p(x) → +∞

since p+ > max
{
1, γ+ + 1, q+ + 1

}
. Hence T is coercive.

Now, let V1 ⊂ V2 ⊂ ... ⊂ W
1,p(x)
0 (Ω;Rm) be a sequence of finite dimensional

subspaces with the property that ∪k∈NVk is dense in W
1,p(x)
0 (Ω;Rm). Notice that

such a sequence (Vk) exists since W
1,p(x)
0 (Ω;Rm) is separable. Let dim Vk = r and

e1, .., er is a basis of Vk for a fixed k. To construct the approximating solution, we
define the map

S : Rr → Rr,



a1

a2

.

.

ar


7→



〈T (aiei), e1〉

〈T (aiei), e2〉

.

.

〈T (aiei), er〉


.
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Lemma 3.4. 1) The map S is continuous.
2) For all k ∈ N there exists uk ∈ Vk such that

〈T (uk), ϕ〉 = 0 for all ϕ ∈ Vk. (3.3)

3) The sequence constructed in 2) is uniformly bounded in W
1,p(x)
0 (Ω;Rm), i.e. there

exists a constant R > 0 such that

‖uk‖1,p(x) ≤ R for all k ∈ N. (3.4)

Proof. 1) Since T restricted to Vk is continuous (see Lemma 3.2), then S is
continuous.
2) Let a ∈ Rr and u = aiei ∈ Vk. Then S(a).a = 〈T (u), u〉. Notice that
‖a‖Rr → +∞ is equivalent to ‖u‖1,p(x) → +∞. It follows by Lemma 3.3 that

S(a).a −→ +∞ as ‖a‖Rr → +∞.

Hence, there exists R > 0 such that for all a ∈ ∂BR(0) ⊂ Rr we have S(a).a > 0.
The usual topological arguments (see eg. [22, Proposition 2.8]) allows to deduce that
S(x) = 0 has a solution x ∈ BR(0). Therefore, for all k ∈ N there exists uk ∈ Vk

such that
〈T (uk), ϕ〉 = 0 for all ϕ ∈ Vk.

3) We have by Lemma 3.3, that 〈T (u), u〉 → +∞ as ‖u‖1,p(x) → +∞. It result then
the existence of R > 0 with the property, that 〈T (u), u〉 > 1 whenever ‖u‖1,p(x) > R.
Taking this into consideration and the sequence of Galerkin approximations uk ∈ Vk

which satisfy 〈T (uk), uk〉 = 0 (by 2)), it follows that (uk) is uniformly bounded.
Before we pass to the limit in the approximating sequences and so to prove

Theorem 1.1, notice that since (uk) is bounded in W
1,p(x)
0 (Ω;Rm) (see Lemma 3.4),

it follows by Lemma 2.1 the existence of a Young measure νx generated by Duk in
Lp(x)(Ω;Mm×n) which satisfies the properties of Lemma 2.2.

Proof of Theorem 1.1. To apply the convergence described in Lemma 2.2 to
our approximating problem, we need the convergence in measure of uk to u. To
this purpose, consider Ek,ϵ =

{
x ∈ Ω; |uk(x)−u(x)| ≥ ε

}
. Since (uk) is bounded in

W
1,p(x)
0 (Ω;Rm), then for a subsequence still denoted uk, uk → u in Lp(x)(Ω;Rm).

Therefore ∫
Ω

∣∣uk(x)− u(x)
∣∣p(x) ≥ ∫

Ek,ϵ

∣∣uk(x)− u(x)
∣∣p(x) ≥ εp

− ∣∣Ek,ϵ

∣∣,
which implies that∣∣Ek,ϵ

∣∣ ≤ 1

εp−

∫
Ω

∣∣uk(x)− u(x)
∣∣p(x) −→ 0 as k → ∞.

Hence the sequence uk converges in measure to u on Ω. On the other hand, since
{Duk−Θ(uk)} is equiintegrable by the condition (1.5) and the boundedness of (uk),
it result that

Duk −Θ(uk) ⇀

∫
Mm×n

(
λ−Θ(u)

)
dνx(λ)
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=

∫
Mm×n

λdνx(λ)︸ ︷︷ ︸
=:Du(x)

−Θ(u)

∫
Mm×n

dνx(λ)︸ ︷︷ ︸
=:1

= Du−Θ(u)

weakly in L1(Ω), where we have used Lemma 2.2. Further, from the reflexivity
of Lp′(x)(Ω) and the boundedness of {Φ(Duk −Θ(uk))}, we deduce that Φ(Duk −
Θ(uk)) converges in Lp′(x)(Ω) and its weak Lp′(x)-limit is given by Φ(Du − Θ(u)).
Consequently

lim
k→∞

∫
Ω

Φ(Duk −Θ(uk)) : Dϕdx =

∫
Ω

Φ(Du−Θ(u)) : Dϕdx ∀ϕ ∈ ∪k∈NVk.

Moreover, since uk → u in measure for k → ∞, we may infer that, after extraction
of a suitable subsequence, if necessary,

uk −→ u almost everywhere for k → ∞.

Hence, for arbitrary ϕ ∈ W
1,p(x)
0 (Ω;Rm), it follows from the continuity conditions

(F0) and (G0), that

f(x, uk)ϕ → f(x, u)ϕ and g(x, uk) : Dϕ → g(x, u) : Dϕ

almost everywhere. As in the proof of Lemma 3.2, we have f(x, uk)ϕ and g(x, uk) :
Dϕ are equiintegrable, thus

f(x, uk)ϕ → f(x, u)ϕ and g(x, uk) : Dϕ → g(x, u) : Dϕ

in L1(Ω) by the Vitali Convergence Theorem. Consequently

lim
k→∞

∫
Ω

f(x, uk)ϕdx =

∫
Ω

f(x, u)ϕdx ∀ϕ ∈ ∪k≥1Vk

and
lim
k→∞

∫
Ω

g(x, uk) : Dϕdx =

∫
Ω

g(x, u) : Dϕdx ∀ϕ ∈ ∪k≥1Vk.

Since ∪k≥1Vk is dense in W
1,p(x)
0 (Ω;Rm), u is then a weak solution of (1.4).

Appendix
Consider the function f depends on ξ ∈ Mm×n, i.e. f : Ω×Rm×Mm×n → Rm and
satisfies

|f(x, s, ξ| ≤ b1(x) + |s|γ(x) + |ξ|s(x), (3.5)

where b1 ∈ Lp′(x)(Ω), 0 < γ(x) < p(x) − 1 and 0 < s(x) < p(x) − 1. By similar
arguments as above (since p+ > max

{
1, γ+ + 1, q+ + 1, s+ + 1

}
), it follows that

lim
k→∞

∫
Ω

f(x, uk, Duk)ϕdx =

∫
Ω

f(x, u,Du)ϕdx ∀ϕ ∈ ∪k≥1Vk
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for all ϕ ∈ ∪k≥1Vk. Now, assume that ξ 7→ f(x, u, ξ) is linear. We have f(x, uk, Duk)
is equiinetgrable (by the growth condition (3.5)), this implies

f(x, uk, Duk) ⇀

∫
Mm×n

f(x, u, λ)dνx(λ)

= f(x, u, .)

∫
Mm×n

λdνx(λ)︸ ︷︷ ︸
=:Du(x)

= f(x, u,Du)

weakly in L1(Ω), by linearity of f .
To conclude this paper, let ϕ ∈ W

1,p(x)
0 (Ω;Rm), since ∪k≥1Vk is dense in

W
1,p(x)
0 (Ω;Rm), then there exists a sequence (ϕk) ⊂ ∪k≥Vk such that ϕk → ϕ

in W
1,p(x)
0 (Ω;Rm). According to the previous results, we get

lim
k→∞

〈T (uk), ϕk〉 = 〈T (u), ϕ〉.

The equation (3.3) implies that 〈T (u), ϕ〉 = 0 as we desire for all ϕ ∈ W
1,p(x)
0 (Ω;Rm).
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