All Issues

Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 10, Number 2, 2020, Pages 771-794                                                                DOI:10.11948/20190292
On the existence of full dimensional KAM torus for fractional nonlinear Schrodinger equation
Yuan Wu,Xiaoping Yuan
Keywords:KAM theory, almost periodic solution, Gevrey space, fractional nonlinear Schrodinger equation.
      In this paper,\ we study fractional nonlinear Schrodinger equation (FNLS) with periodic boundary condition $$ \textbf{i}u_{t}=-(-\Delta)^{s_{0}} u-V*u-\epsilon f(x)|u|^4u,\ ~~x\in \mathbb{T}, ~~t\in \mathbb{R}, ~~s_{0}\in (\frac12,1),~~~~~~~~~~~~~~~~~~~~~~~~~~~~(0.1) $$ where $(-\Delta)^{s_{0}}$ is the Riesz fractional differentiation defined in [21] and $V*$ is the Fourier multiplier defined by $\widehat{V*u}(n)=V_n\widehat{u}(n),\ V_n\in\left[-1,1\right],$ and $f(x)$ is Gevrey smooth. We prove that for $0\leq|\epsilon|\ll1$ and appropriate $V$,\ the equation (0.1) admits a full dimensional KAM torus in the Gevrey space satisfying $ \frac12e^{-rn^{\theta}}\leq \left|q_n\right|\leq 2e^{-rn^{\theta}}, \theta\in (0,1),$ which generalizes the results given by [8-10] to fractional nonlinear Schrodinger equation.
PDF      Download reader