Volume 9, Number 3, 2019, Pages 1165-1182 DOI:10.11948/2156-907X.20190022 |
Infinitely many solutions for fractional Schrodinger-Maxwell equations |
Jiafa Xu,Zhongli Wei,Donal O Regan,Donal O''Regan,Yujun Cui |
Keywords:Fractional Laplacian, Schrodinger-Maxwell equations, infinitely many solutions. |
Abstract: |
In this paper using fountain theorems we study the existence of infinitely many solutions for fractional Schr\"{o}dinger-Maxwell equations
\[\begin{cases}
(-\Delta)^\alpha u+\lambda V(x)u+\phi u=f(x,u)-\mu g(x)|u|^{q-2}u, \text{ in } \mathbb R^3,\(-\Delta)^\alpha \phi=K_\alpha u^2, \text{ in } \mathbb R^3,
\end{cases}\]
where $\lambda,\mu >0$ are two parameters, $\alpha\in (0,1]$, $K_\alpha=\frac{\pi^{-\alpha}\Gamma(\alpha)}{\pi^{-(3-2\alpha)/2}\Gamma((3-2\alpha)/2)}$ and $(-\Delta)^\alpha$ is the fractional Laplacian. Under appropriate assumptions on $f$ and $g$ we obtain an existence theorem for this system. |
PDF Download reader
|
|
|
|