For EDITORS

For READERS

All Issues

Vol.15, 2025
Vol.14, 2024
Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 9, Number 3, 2019, Pages 1165-1182                                                                DOI:10.11948/2156-907X.20190022
Infinitely many solutions for fractional Schrodinger-Maxwell equations
Jiafa Xu,Zhongli Wei,Donal O Regan,Donal O''Regan,Yujun Cui
Keywords:Fractional Laplacian, Schrodinger-Maxwell equations, infinitely many solutions.
Abstract:
      In this paper using fountain theorems we study the existence of infinitely many solutions for fractional Schr\"{o}dinger-Maxwell equations \[\begin{cases} (-\Delta)^\alpha u+\lambda V(x)u+\phi u=f(x,u)-\mu g(x)|u|^{q-2}u, \text{ in } \mathbb R^3,\(-\Delta)^\alpha \phi=K_\alpha u^2, \text{ in } \mathbb R^3, \end{cases}\] where $\lambda,\mu >0$ are two parameters, $\alpha\in (0,1]$, $K_\alpha=\frac{\pi^{-\alpha}\Gamma(\alpha)}{\pi^{-(3-2\alpha)/2}\Gamma((3-2\alpha)/2)}$ and $(-\Delta)^\alpha$ is the fractional Laplacian. Under appropriate assumptions on $f$ and $g$ we obtain an existence theorem for this system.
PDF      Download reader