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Abstract In this paper using fountain theorems we study the existence of
infinitely many solutions for fractional Schrödinger-Maxwell equations{

(−∆)αu+ λV (x)u+ φu = f(x, u)− µg(x)|u|q−2u, in R3,

(−∆)αφ = Kαu
2, in R3,

where λ, µ > 0 are two parameters, α ∈ (0, 1], Kα = π−αΓ(α)

π−(3−2α)/2Γ((3−2α)/2)
and

(−∆)α is the fractional Laplacian. Under appropriate assumptions on f and
g we obtain an existence theorem for this system.
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many solutions.
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1. Introduction

In this paper we study the fractional Schrödinger-Maxwell equations{
(−∆)αu+ λV (x)u+ φu = f(x, u)− µg(x)|u|q−2u, in R3,

(−∆)αφ = Kαu
2, in R3,

(1.1)

where λ, µ > 0 are two parameters, α ∈ (0, 1], Kα = π−αΓ(α)
π−(3−2α)/2Γ((3−2α)/2)

and

(−∆)α is the fractional Laplacian. Here the fractional Laplacian (−∆)α with α ∈
(0, 1] of a function ϕ : R3 → R is defined by F((−∆)αϕ)(ξ) = |ξ|2αF(ϕ)(ξ), ∀α ∈
(0, 1], where F is the Fourier transform, i.e., F(ϕ)(ξ) = 1

(2π)3/2

∫
R3 exp{−2πiξ ·x}dx.
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If ϕ is smooth enough then (−∆)α can also be computed by the singular integral

(−∆)αϕ(x) = c3,αP.V.
∫
R3

ϕ(x)−ϕ(y)
|x−y|3+2α dy, where P.V. is the principal value and c3,α

is a normalization constant.
Fractional models are widely used in various fields, such as physics, signal pro-

cessing, fluid mechanics, viscoelasticity, mathematical biology, and electrochemistry.
For example, Bagley and Torvik [1] used fractional calculus to construct stress-strain
relationships for viscoelastic materials, and they proposed a five-parameter model
in the form

σ(t) + bDβσ(t) = E0ε(t) + E1D
αε(t),

where Dα, Dβ are fractional derivatives, and α, β, b, E0, E1 are parameters. For
more applications in this direction, we refer the reader to [2, 3, 5, 8, 11–14, 33, 34,
39–46] and the references therein. Fractional Schrödinger-Maxwell equations or
Schrödinger-Poisson equations arise from standing waves for fractional nonlinear
Schrödinger equations; for the physical background we refer the reader to [4,9] and
the references therein. For results on existence and multiplicity of solutions for
Schrödinger-Poisson systems we refer the reader to [6,7,10,15,17,19–26,28–32,36–
38,47–52] and the references therein. Li [19] adopted the (AR) condition to obtain
an existence theorem for (1.1) when λ = V = Kα = 1, µ = 0. Teng [32] used
the method of Pohozaev-Nehari manifolds, the arguments of Brezis-Nirenberg, a
monotonic trick and a global compactness lemma to establish the existence of a
nontrivial ground state solution when f = µ|u|q−1u + |u|2∗α−2u, 2∗α = 6

3−2α (λ =
Kα = 1, µ = 0). However, there are only a few papers in the literature which
consider the effect of the parameter λ, µ and the perturbation term g on the existence
of solutions of (1.1); see [17, 25, 28, 36, 37]. In [28], S. Secchi studied nonlinear
fractional equations involving the Bessel operator

(I −∆)αu+ λV (x)u = f(x, u) + µξ(x)|u|p−2u, x ∈ RN ,

where f satisfies the (AR) condition, and ξ(x)|u|p−2u is a sublinear perturbation
term.

In our paper, in system (1.1), the functions u, g, V : R3 → R, f : R3 × R → R
satisfy the following assumptions
(V) V ∈ C(R3,R), and there is a positive constant V0 > 0 such that infx∈R3 Ṽ (x) >

0, lim|x|→∞ Ṽ (x) = +∞, where Ṽ (x) = V (x) + V0, for x ∈ R3.

(H1) f̃ ∈ C(R3 × R,R), and f̃(x, u) = o(u) uniformly in x ∈ R3 as u → 0, where

f̃(x, u) = f(x, u) + λV0u, for (x, u) ∈ R3 × R.

(H2) F̃ (x, u) =
∫ u

0
f̃(x, s)ds ≥ 0 and F̃ (x, u) = 1

4 f̃(x, u)u − F̃ (x, u) ≥ 0, for
(x, u) ∈ R3 × R.

(H3) lim|u|→∞
f̃(x,u)u
u4 = +∞ uniformly in x ∈ R3.

(H4) There exist d1, L1 > 0 and τ ∈ ( 3
2α , 2), α > 3

4 such that

|f̃(x, u)|τ ≤ d1F̃ (x, u)|u|τ , for all x ∈ R3, and |u| ≥ L1.

(H5) f̃(x,−u) = −f̃(x, u), for (x, u) ∈ R3 × R.

(g) g ∈ Lq′(R3), and g(x) ≥ 0 (6≡ 0), for x ∈ R3, where q′ ∈
(

2∗α
2∗α−q

, 2
2−q

]
, q ∈ (1, 2).

Now, we state the main result of our paper.

Theorem 1.1. Suppose that (V), (H1)-(H5) and (g) hold. Then for any µ > 0,
there exists Λ > 0 such that system (1.1) possesses infinitely many solutions when
λ ≥ Λ.
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Remark 1.1. Condition (H4) (see [6, 20,38]) is weaker than the (AR) condition

(H4)′ there exists ϑ > 4 such that 0 < ϑF̃ (x, u) ≤ f̃(x, u)u for all (x, u) ∈ R3 × R
with u 6= 0.

Note if f̃(x, t) = e|x|t3[2 ln(1 + t2) + t2

1+t2 ] for all (x, t) ∈ R3 × R then (H4) is
satisfied but (H4)′ is not. Moreover, from the proof of [28, Lemma 2.3] note (H1)
and (H4)′ imply (H4).

Finally we note that in [17,25,28,36,37] the authors used the (AR) condition (not
(H4)) to discuss the effect of parameters and perturbation terms on the existence
of solutions for their problem.

Remark 1.2. If the potential function V satisfies condition (V), then the following
automatically holds:
(V1) V ∈ C(R3,R), and V is bounded from below, i.e., there exists a positive
constant V0 > 0 such that V (x) + V0 > 0 for all x ∈ R3.

(V2) There exists b > 0 such that meas{x ∈ R3 : Ṽ (x) ≤ b} is finite; here meas
denotes the Lebesgue measure.

2. Variational settings and preliminary results

For any 1 ≤ r <∞, Lr(R3) is the usual Lebesgue space with the norm

‖u‖r =

(∫
R3

|u(x)|rdx
) 1
r

.

The fractional order Sobolev space

Hα(R3) =

{
u ∈ L2(R3) :

∫
R3

(|ξ|2αû2 + û2)dξ <∞
}
,

where û = F(u), and the norm is defined by

‖u‖Hα(R3) =

(∫
R3

(|ξ|2αû2 + û)dξ

) 1
2

.

The space Dα(R3) is defined as the completion of C∞0 (R3) under the norms

‖u‖Dα(R3) =

(∫
R3

(|ξ|2αû2)dξ

) 1
2

=

(∫
R3

|(−∆)α/2u(x)|2dx
) 1

2

.

Note that, from Plancherel’s theorem we have ‖u‖2 = ‖û‖2, and∫
R3

|(−∆)α/2u(x)|2dx =

∫
R3

(( ̂−∆)α/2u(ξ))2dξ =

∫
R3

(|ξ|αû(ξ))2dξ

=

∫
R3

|ξ|2αû2dξ <∞,∀u ∈ Hα(R3).

It follows that

‖u‖Hα(R3) =

(∫
R3

(|(−∆)
α
2 u(x)|2 + u2)dx

) 1
2

.
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In our problem we work with the space

E :=

{
u ∈ Hα(R3) :

(∫
R3

(|(−∆)
α
2 u(x)|2 + λṼ (x)u2)dx

) 1
2

<∞

}
. (2.1)

Now E is a Hilbert space with the inner product

(u, v) :=

∫
R3

((−∆)
α
2 u(x) · (−∆)

α
2 v(x) + λṼ (x)uv)dx.

and its norm is ‖u‖ =
√

(u, u).

Lemma 2.1 (see [7, 10]). Hα(R3) is continuously embedded into Lp(R3) for p ∈
[2, 2∗α]; and compactly embedded into Lploc(R3) for p ∈ [2, 2∗α) where 2∗α = 6

3−2α .
Therefore, there exists a positive constant CP such that

‖u‖p ≤ Cp‖u‖Hα(R3). (2.2)

Lemma 2.2 (see [29]). Under the assumptions (V), the space E is compactly em-
bedded into Lp(R3) for p ∈ [2, 2∗α).

Lemma 2.3 (see [16]). For 1 < p <∞ and 0 < α < N/p, we have

‖u‖
L

pN
N−pα (RN )

≤ B‖(−∆)α/2u‖Lp(RN ), (2.3)

with best constant

B = 2−απ−α/2
Γ((N − α)/2)

Γ((N + α)/2)

(
Γ(N)

Γ(N/2)

)α/N
.

Lemma 2.4. For any u ∈ Hα(RN ) and for any h ∈ D−α(RN ), there exists a
unique solution φ = ((−∆)α + u2)−1h ∈ Dα(RN ) of the equation

(−∆)αφ+ u2φ = h,

(here D−α(RN ) is the dual space of Dα(RN )). Moreover, for every u ∈ Hα(RN )
and for every h, g ∈ D−α(RN ), we have

〈h, ((−∆)α + u2)−1g〉 = 〈g, ((−∆)α + u2)−1h〉, (2.4)

where 〈·, ·〉 denotes the duality pairing between D−α(RN ) and Dα(RN ).

Proof. If u ∈ Hα(RN ), then by the Hölder inequality and (2.3), we have∫
RN

u2φ2dx ≤ ‖u‖22p‖φ‖22q ≤ B2‖u‖22p‖φ‖2Dα , (2.5)

where 1
p + 1

q = 1, q = N
N−2α , 2q = 2∗α. Thus (

∫
RN |(−∆)α/2φ|2dx +

∫
RN u

2φ2dx)1/2

is a norm in Dα(RN ) equivalent to ‖φ‖Dα . Hence, by applying the Lax-Milgram
Lemma, we establish the existence part. For every u ∈ Hα(RN ) and for every
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h, g ∈ D−α(RN ), we have φg = ((−∆)α + u2)−1g, φh = ((−∆)α + u2)−1h. Hence,

〈h, ((−∆)α + u2)−1g〉 =

∫
RN

h((−∆)α + u2)−1gdx =

∫
RN

hφgdx

=

∫
RN

((−∆)α + u2)φhφgdx =

∫
RN

((−∆)αφh + u2φh)φgdx

=

∫
RN

((−∆)αφg + u2φg)φhdx =

∫
RN

gφhdx

=

∫
RN

g((−∆)α + u2)−1hdx = 〈g, ((−∆)α + u2)−1h〉,

so we have (2.4).

Lemma 2.5 (see [18]). Let f be a function in C∞0 (RN ). Then for α ∈ (0, n), we
have

Cα
.
= π−α/2Γ(−α/2), (2.6)

Cα(ξ−αf̂(ξ))∨(x) = Cn−α
∫
Rn
|x− y|α−nf(y)dy. (2.7)

Lemma 2.6. For every u ∈ Hα there exists a unique φ = φ(u) ∈ Dα which solves
the second equation in (1.1). Furthermore, φ(u) is given by

φ(u)(x) =

∫
R3

|x− y|2α−3u2(y)dy. (2.8)

As a consequence, the map Φ : u ∈ Hα 7−→ φ(u) ∈ Dα is of class C1 and

[Φ(u)]′(v)(x) = 2

∫
R3

|x− y|2α−3u(y)v(y)dy,∀u, v ∈ Hα. (2.9)

Proof. The existence and uniqueness part follows from Lemma 2.4. From Lemma
2.5 and the Fourier transform of the second equation in (1.1), the representation
formula (2.8) holds for u ∈ C∞0 (R3); by density it can be extended for any u ∈ Hα.
The representation formula (2.9) is clear.

System (1.1) is the Euler-Lagrange equations corresponding to the functional
J : Hα(R3)×Dα(R3)→ R:

J(u, φ) =
1

2

∫
R3

(
|(−∆)

α
2 u(x)|2 + λṼ (x)u2 − 1

2
|(−∆)

α
2 φ(x)|2 +Kαφu

2

)
dx

−
∫
R3

F̃ (x, u)dx+
µ

q

∫
R3

g(x)|u|qdx,

where F̃ (x, t) =
∫ t

0
f̃(x, s)ds, t ∈ R.

Evidently, the action functional J belongs to C1(Hα(R3)×Dα(R3),R) and the
partial derivatives in (u, φ) are given, for ξ ∈ Hα(R3) and η ∈ Dα(R3), by〈

∂J

∂u
(u, φ), ξ

〉
=

∫
R3

((−∆)
α
2 u(x)(−∆)

α
2 ξ(x) + λṼ (x)uξ +Kαφuξ)dx

−
∫
R3

f̃(x, u)ξ(x)dx+ µ

∫
R3

g(x)|u|q−2uξ(x)dx,〈
∂J

∂φ
(u, φ), η

〉
=

1

2

∫
R3

(−(−∆)
α
2 φ(x)(−∆)

α
2 η(x) +Kαu

2η)dx.

Thus, we have the following result:
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Proposition 2.1. The pair (u, φ) is a weak solution of system (1.1) if and only if
it is a critical point of J in Hα(R3)×Dα(R3).

We can consider the functional J : Hα(R3) → R defined by J(u) = J(u, φ(u)).
After multiplying the second equation in (1.1) by φ(u) and integrating by parts, we
obtain ∫

R3

|(−∆)α/2φ(u)|2dx = Kα

∫
R3

φ(x)u2dx.

Therefore, the reduced functional takes the form

J(u) =
1

2

∫
R3

(|(−∆)
α
2 u(x)|2 + λṼ (x)u2)dx+

1

4
Kα

∫
R3

u2φ(u)dx

−
∫
R3

F̃ (x, u)dx+
µ

q

∫
R3

g(x)|u|qdx.
(2.10)

Lemma 2.7. Assume that there exist c1, c2 > 0 and p ∈ (4, 2∗α) such that

|f̃(x, s)| ≤ c1|s|+ c2|s|p−1,∀x ∈ R3, s ∈ R. (2.11)

Then the following statements are equivalent:
(i) (u, φ) ∈ (Hα ∩ Lp)×Dα is a solution of the system (1.1)-(1.2);
(ii) u ∈ Hα ∩ Lp is a critical point of J and φ = φ(u).

Proof. From assumption (2.11), the Nemitsky operator u ∈ Hα∩Lp 7→ F (x, u) ∈
L1 is of class C1. Hence, from Lemma 2.6, for every u, v ∈ Hα, we have

< J ′(u), v > =

∫
R3

(−∆)
α
2 u(x)(−∆)

α
2 v(x)dx+

∫
R3

λṼ (x)uvdx

+
1

2
Kα

∫
R3

uv

∫
R3

|x− y|2α−3u2(y)dydx

+
1

2
Kα

∫
R3

u2

∫
R3

|x− y|2α−3u(y)v(y)dydx

−
∫
R3

f̃(x, u)vdx+ µ

∫
R3

g(x)|u|q−2uvdx

=

∫
R3

(−∆)
α
2 u(x)(−∆)

α
2 v(x)dx+

∫
R3

λṼ (x)uvdx

+Kα

∫
R3

uvφ(u)dx−
∫
R3

f̃(x, u)vdx+ µ

∫
R3

g(x)|u|q−2uvdx.

From the Fubini-Tonelli Theorem we obtain the conclusion.

Remark 2.1. Conditions (H1), (H2), (H4) imply (2.11). From (H2) and (H4), we
have

|f̃(x, u)|τ ≤ d1

(
1

4
f̃(x, u)u− F̃ (x, u)

)
|u|τ ≤ d1

4
|f̃(x, u)||u|τ+1,

i.e., |f̃(x, u)|τ−1 ≤ d1
4 |u|

τ+1 for large u with 2τ
τ−1 ∈ (4, 2∗α). Combining this with

(H1), there exist c1, c2 > 0 such that (2.11) holds. This also implies that

|F̃ (x, s)| ≤ c1
2
|s|2 +

c2
p
|s|p,∀x ∈ R3, s ∈ R. (2.12)
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If 1 ≤ p <∞ and a, b ≥ 0, then

(a+ b)p ≤ 2p−1(ap + bp). (2.13)

From (1.1), for any u ∈ E using the Hölder inequality we have

‖φ(u)‖2Dα = Kα

∫
R3

φ(u)u2dx ≤ Kα‖φ(u)‖q‖u‖22p ≤ C‖φ(u)‖Dα‖u‖22p,

where 1
p + 1

q = 1, q = 2∗α = 6
3−2α , α > 3

4 . Here and subsequently, C denotes an
universal positive constant. This and Lemma 2.2 imply that

‖φ(u)‖Dα ≤ C‖u‖22p ≤ C‖u‖2E , (2.14)∫
R3

φ(u)u2dx ≤ C‖u‖42p ≤ C‖u‖4E . (2.15)

Lemma 2.8. Suppose that un ⇀ u in E, un(x)→ u(x) for a.e. x ∈ R3. Then we
have ∫

R3

φ(un)u2
n − φ(u)u2dx = o(1), as n→∞, (2.16)

and ∫
R3

(φ(un)un − φ(u)u)vdx = o(1), as n→∞,∀v ∈ E. (2.17)

Proof. Now un → u in Lr(R3) with r ∈ [2, 2∗α) after passing to a subsequence.
From [32, Lemma 2.3] and [47, Lemma 2.4], we have

(i) T (un) = T (u) + T (un − u) + o(1) as n→∞, where T (u) =
∫
R3 φ(u)u2dx.

(ii) if un ⇀ u in E, then φ(un) ⇀ φ(u) in Dα(R3).
From (i), by (2.15) for p = 6

3+2α we obtain

lim
n→∞

∫
R3

φ(un)u2
n−φ(u)u2dx = lim

n→∞

∫
R3

φ(un−u)(un−u)2dx ≤ C‖un−u‖42p → 0.

(2.18)

From (ii) we have φ(un)→ φ(u) in L
12

3+2α (R3). Therefore, from (2.2) we have∫
R3

unv(φ(un)− φ(u))dx

≤
(∫

R3

|un|
12

3+2α dx

) 3+2α
12
(∫

R3

|v|
6

3−2α dx

) 3−2α
6
(∫

R3

|φ(un)− φ(u)|
12

3+2α dx

) 3+2α
12

≤ C 12
3+2α

C 6
3−2α
‖un‖‖v‖

(∫
R3

|φ(un)− φ(u)|
12

3+2α dx

) 3+2α
12

→ 0, as n→∞, for un, u, v ∈ E.
(2.19)

Note (2.5) and we obtain∫
R3

(un − u)vφ(u)dx ≤
(∫

R3

|un − u|2dx
) 1

2
(∫

R3

v2φ2(u)dx

) 1
2

≤ B‖v‖ 12
3+2α
‖φ‖Dα

(∫
R3

|un − u|2dx
) 1

2

→ 0, as n→∞, for un, u, v ∈ E.
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Therefore, when n→∞ we have∫
R3

(φ(un)un − φ(u)u)vdx =

∫
R3

(φ(un)un − φ(u)un + φ(u)un − φ(u)u)vdx = o(1).

Next we introduce the Fountain theorem under the condition (C), which is weak-
er than the (PS) condition.

Definition 2.1 (see [27]). Assume that X is a Banach space. We say that J ∈
C1(X,R) satisfies the Cerami condition (C), if for all c ∈ R:

(i) any bounded sequence {un} ⊂ X satisfying J(un)→ c, J ′(un)→ 0 possesses
a convergent subsequence;

(ii) there exist σ,R, β > 0 such that for any u ∈ J−1([c− σ, c+ σ]) with ‖u‖ ≥
R, ‖J ′(u)‖‖u‖ ≥ β.

Lemma 2.9 (see [27]). Assume that X =
⊕∞

j=1Xj, where Xj are finite dimension-

al subspaces of X. For each k ∈ N, let Yk =
⊕k

j=1Xj, Zk =
⊕∞

j=kXj. Suppose

that J ∈ C1(X,R) satisfies condition (C), and J(−u) = J(u). Assume for each
k ∈ N, there exist ρk > rk > 0 such that

(i) bk = infu∈Zk∩Srk J(u)→ +∞, k →∞,

(ii) ak = maxu∈Yk∩Sρk J(u) ≤ 0, where Sρ = {u ∈ X : ‖u‖ = ρ}.
Then J has a sequence of critical points un, such that J(un)→ +∞ as n→∞.

3. Proof of Theorem 1.1

We first prove that the energy functional J satisfies condition (C) in Definition 2.1.

Lemma 3.1. Suppose the assumptions in Theorem 1.1 hold (with Λ > 0 chosen
appropriately). Then J satisfies condition (C).

Proof. For every c ∈ R, we assume that {un}n∈N ⊂ E is bounded and

J(un)→ c, J ′(un)→ 0, as n→∞.

Therefore, passing to a subsequence if necessary, there exists u ∈ E such that
un ⇀ u weakly in E,

un → u strongly in Lp(R3) for p ∈ [2, 2∗α),

un → u for a.e. x ∈ R3.

(3.1)

We now show that

J(un − u) = c− J(u) + o(1), < J ′(un − u), v >= o(1), as n→∞,∀v ∈ E. (3.2)

Let wn = un − u. Then wn ⇀ 0 in E, wn → 0 in Lr(R3) with r ∈ [2, 2∗α) and
wn → 0 for a.e. x ∈ R3 after passing to a subsequence. Since un ⇀ u in E, we have
(un − u, u)→ 0 as n→∞, which implies

‖un‖2 = (wn + u,wn + u) = ‖wn‖2 + ‖u‖2 + o(1), as n→∞.
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Note (2.18) and (2.19), and we easily see that∫
R3

φ(un − u)(un − u)2dx→ 0, as n→∞,

and ∫
R3

φ(un − u)(un − u)vdx→ 0, as n→∞,∀v ∈ E.

To prove (3.2), it will be enough to show that as n→∞,∫
R3

(F̃ (x, un)− F̃ (x, un − u)− F̃ (x, u))dx = o(1), (3.3)

∫
R3

g(x)(|un|q − |un − u|q − |u|q)dx = o(1), (3.4)∫
R3

(f̃(x, un)− f̃(x, un − u)− f̃(x, u))vdx = o(1), (3.5)

and ∫
R3

g(x)(|un|q−2un − |un − u|q−2(un − u)− |u|q−2u)vdx = o(1), (3.6)

for all v ∈ E.
We only prove (3.3) and (3.4) (the proofs of (3.5) and (3.6) are similar). Note

that un ⇀ u in E, and from Lemma A.1 of [35], there exists σ(x) ∈ Lr(R3) with
r ∈ [2, 2∗α) such that

|un(x)| ≤ σ(x), |u(x)| ≤ σ(x), for x ∈ R3, n ∈ N. (3.7)

From this and (2.12), for σ1 ∈ L2(R3), σ2 ∈ Lp(R3) with p ∈ (4, 2∗α), we have

|F̃ (x, un)− F̃ (x, u)| ≤ c1
2

(|un|2 + |u|2) +
c2
p

(|un|p + |u|p)

≤ c1σ2
1(x) +

2c2
p
σp2(x) ∈ L1(R3).

Hence, the Lebesgue dominated convergence theorem yields

lim
n→∞

∣∣∣∣∫
R3

(F̃ (x, un)− F̃ (x, u))dx

∣∣∣∣ ≤ lim
n→∞

∫
R3

∣∣∣(F̃ (x, un)− F̃ (x, u))
∣∣∣ dx

=

∫
R3

lim
n→∞

∣∣∣(F̃ (x, un)− F̃ (x, u))
∣∣∣ dx→ 0.

On the other hand, from (2.12) and the Hölder inequality, for p ∈ (4, 2∗α) we have∫
R3

F̃ (x, un − u)dx ≤
∫
R3

(
c1
2
|wn|2 +

c2
p
|wn|p)dx→ 0, as n→∞.

This proves (3.3). From (g) and the Hölder inequality, for qq′

q′−1 ∈ [2, 2∗α) we have

∫
R3

g(x)|un − u|qdx ≤ ‖g‖q′
(∫

R3

|un − u|
qq′
q′−1 dx

) q′−1
q′

→ 0, as n→∞.
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Since ∣∣∣∣∫
R3

g(x)(|un|q − |u|q)dx
∣∣∣∣ ≤ ∫

R3

g(x)|un − u|qdx,

the proof of (3.4) is complete.
Recall wn = un − u. From (2.11), (2.12) and (3.7) we have∫

R3

F̃ (x,wn)dx =

∫
R3

(
1

4
f̃(x,wn)wn − F̃ (x,wn)

)
dx

≤
∫
R3

(
3

4
c1|wn|2 +

p+ 4

4p
c2|wn|p)dx

≤
∫
R3

(3c1σ
2
1(x) +

p+ 4

p
2p−2c2σ

p
2(x))dx

≤ M̃,

where M̃ > 0.
As Ṽ (x) < b on a set of finite measure (see Remark 1.2) and wn ⇀ 0 in E, from

(2.2) we have

‖wn‖22 =

∫
R3

|wn|2dx ≤
1

λb

∫
Ṽ≥b

λṼ (x)|wn|2dx+

∫
Ṽ <b

|wn|2dx ≤
1

λb
‖wn‖2 + o(1).

From this and the Hölder inequality, for s = 2τ
τ−1 ∈ (4, 2∗α), fixed ν ∈ (s, 2∗α) we

have

‖wn‖ss =

∫
R3

|wn|sdx =

∫
R3

|wn|
2(ν−s)
ν−2 |wn|s−

2(ν−s)
ν−2 dx

≤
(∫

R3

|wn|
2(ν−s)
ν−2

ν−2
ν−s dx

) ν−s
ν−2

(∫
R3

|wn|(s−
2(ν−s)
ν−2 ) ν−2

s−2 dx

) s−2
ν−2

=

(∫
R3

|wn|2dx
) ν−s
ν−2

(∫
R3

|wn|νdx
) s−2
ν−2

≤
(

1

λb

) ν−s
ν−2

C
ν(s−2)
ν−2

ν ‖wn‖
2(ν−s)
ν−2 ‖wn‖

ν(s−2)
ν−2

=

(
1

λb

) ν−s
ν−2

C
ν(s−2)
ν−2

ν ‖wn‖s, for Cν > 0.

From (H1), for any ε > 0, there exists δ = δ(ε) > 0 such that |f̃(x, u)| ≤ ε|u| for
x ∈ R3 and |u| ≤ δ. Moreover, (H4) is also satisfied for |u| ≥ δ. Therefore, we have∫

|wn|≤δ
f̃(x,wn)wndx ≤ ε

∫
|wn|≤δ

|wn|2dx ≤
ε

λb
‖wn‖2 + o(1),

and∫
|wn|≥δ

f̃(x,wn)wndx =

∫
|wn|≥δ

f̃(x,wn)

wn
w2
ndx

≤

(∫
|wn|≥δ

∣∣∣∣∣ f̃(x,wn)

wn

∣∣∣∣∣
τ

dx

)1/τ (∫
|wn|≥δ

|wn|
2τ
τ−1 dx

)(τ−1)/τ
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≤

(∫
|wn|≥δ

d1F̃ (x, u)dx

)1/τ

‖wn‖2s

≤ (d1M̃)1/τ

(
1

λb

) 2(ν−s)
s(ν−2)

C
2ν(s−2)
s(ν−2)
ν ‖wn‖2 + o(1).

Consequently, from (3.2) we obtain

o(1) =< J ′(wn), wn >

= ‖wn‖2 +Kα

∫
R3

w2
nφ(wn)dx−

∫
R3

f̃(x,wn)wndx+ µ

∫
R3

g(x)|wn|qdx

≥

1− ε

λb
− (d1M̃)1/τ

(
1

λb

) 2(ν−s)
s(ν−2)

C
2ν(s−2)
s(ν−2)
ν

 ‖wn‖2 + o(1).

Thus there exists Λ > 0 such that wn → 0 in E when λ > Λ. This implies that
un → u in E, and Definition 2.1 (i) holds.

Next, we prove condition in Definition 2.1 (ii) holds. If not, there exist c ∈ R
and {un}n∈N ⊂ E satisfying

J(un)→ c, ‖un‖ → ∞, ‖J ′(un)‖‖un‖ → 0, as n→∞. (3.8)

Then we have

c+ o(1) = J(un)− 1

4
< J ′(un), un >

=
1

2
‖un‖2 +

∫
R3

F̃ (x, un)dx+

(
µ

q
− µ

4

)∫
R3

g(x)|un|qdx

≥
∫
R3

F̃ (x, un)dx.

(3.9)

In view of the definition of J ′, (3.8), (2.2) and (g) we obtain

1 =
‖un‖2

‖un‖2

=
< J ′(un), un >

‖un‖2
−
Kα

∫
R3 u

2
nφ(un)dx

‖un‖2
+

∫
R3 f̃(x, un)undx

‖un‖2
− µ

∫
R3 g(x)|un|qdx
‖un‖2

≤ lim sup
n→∞

< J ′(un), un >

‖un‖2
+

∫
R3 f̃(x, un)undx

‖un‖2
+ µ

‖g‖q′Cqqq′
q′−1

‖un‖q

‖un‖2


≤ lim sup

n→∞

∫
R3 f̃(x, un)undx

‖un‖2
.

(3.10)
Define vn = un

‖un‖ , and note ‖vn‖ = 1. Passing to a subsequence, there exists a

v ∈ E such that vn ⇀ v weakly in E, vn → v strongly in Lr(R3) with r ∈ [2, 2∗α),
vn(x)→ v(x) for a.e. x ∈ R3. For 0 ≤ a < b, let Ωn(a, b) = {x ∈ R3 : a ≤ |un(x)| <
b}. Now we consider the following two cases.

Case 1: Suppose v = 0.



1176 J. Xu, Z. Wei, D. O’Regan, & Y. Cui

Then vn → 0 in Lr(R3) with r ∈ [2, 2∗α), vn(x) → 0 for a.e. x ∈ R3. Let L1 be
as in (H4), and from (2.11) we have∫

Ωn(0,L1)

f̃(x, un)un
‖un‖2

dx =

∫
Ωn(0,L1)

f̃(x, un)un
|un|2

|vn|2dx

≤ (c1 + c2L
p−2
1 )

∫
Ωn(0,L1)

|vn|2dx

≤ (c1 + c2L
p−2
1 )

∫
R3

|vn|2dx→ 0.

(3.11)

On the other hand, if we set τ ′ = τ/(τ − 1), then 2τ ′ ∈ (4, 2∗α). Frpm the Hölder
inequality, (3.9) and (H4) we obtain∫

Ωn(L1,∞)

f̃(x, un)un
‖un‖2

dx =

∫
Ωn(L1,∞)

f̃(x, un)un
|un|2

|vn|2dx

≤

(∫
Ωn(L1,∞)

(
f̃(x, un)un
|un|2

)τ
dx

) 1
τ
(∫

Ωn(L1,∞)

|vn|2τ
′
dx

) 1
τ′

≤

(∫
Ωn(L1,∞)

∣∣∣∣∣ f̃(x, un)

un

∣∣∣∣∣
τ

dx

) 1
τ
(∫

Ωn(L1,∞)

|vn|2τ
′
dx

) 1
τ′

≤

(∫
Ωn(L1,∞)

d1F̃ (x, u)dx

) 1
τ
(∫

Ωn(L1,∞)

|vn|2τ
′
dx

) 1
τ′

≤ [d1(c+ 1)]
1
τ

(∫
R3

|vn|2τ
′
dx

) 1
τ′

→ 0.

(3.12)

Combining (3.11) and (3.12), we have∫
R3

f̃(x, un)un
‖un‖2

dx =

∫
Ωn(0,L1)

f̃(x, un)un
‖un‖2

dx+

∫
Ωn(L1,∞)

f̃(x, un)un
‖un‖2

dx→ 0,

(3.13)
which contradicts (3.10).

Case 2: Suppose v 6= 0.
Then we set A = {x ∈ R3 : v(x) 6= 0} and meas(A) > 0. For x ∈ A, we have

limn→∞ |un(x)| = ∞, and hence A ⊂ Ωn(L1,∞) for large n. From (2.11), (2.15),
(2.2) and (H3), note the nonnegativity of f(x, u)u, Fatou’s Lemma enables us to
obtain

0 = lim
n→∞

< J ′(un), un >

‖un‖4

= lim
n→∞

[
‖un‖2

‖un‖4
+Kα

∫
R3 u

2
nφ(un)dx

‖un‖4
−
∫
R3 f̃(x, un)undx

‖un‖4
+ µ

∫
R3 g(x)|un|qdx
‖un‖4

]

≤ lim
n→∞

[
‖un‖q

‖un‖4
µ‖g‖q′Cqqq′

q′−1

+KαC
‖un‖4

‖un‖4
−
∫

Ωn(0,L1)

f̃(x, un)un
‖un‖4

dx

−
∫

Ωn(L1,∞)

f̃(x, un)un
|un|4

|vn|4dx

]
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≤ KαC + lim sup
n→∞

∫
Ωn(0,L1)

f̃(x, un)un
‖un‖4

dx− lim inf
n→∞

∫
Ωn(L1,∞)

f̃(x, un)un
|un|4

|vn|4dx

≤ KαC + lim sup
n→∞

c1L
2
1 + c2L

p
1

‖un‖4
·meas(Ωn(0, L1))

− lim inf
n→∞

∫
Ωn(L1,∞)

f̃(x, un)un
|un|4

[χΩn(L1,∞)(x)]|vn|4dx

≤ KαC −
∫

Ωn(L1,∞)

lim inf
n→∞

f̃(x, un)un
|un|4

[χΩn(L1,∞)(x)]|vn|4dx

→ −∞.

This is also a contradiction.
Combining the above two cases we have that Definition 2.1 (ii) holds.

Lemma 3.2. Suppose the assumptions in Theorem 1.1 hold. Then there exist con-
stants ρ, β > 0 such that J(u) ≥ β when ‖u‖ = ρ.

Proof. Note that q ∈
(

6
3+2α , 2

]
. From (2.12) and (2.2), we have

J(u) =
1

2
‖ u ‖2 +

1

4
Ka

∫
R3

φ(u)u2dx−
∫
R3

F̃ (x, u)dx− µ
∫
R3

g(x)udx

≥ 1

2
‖ u ‖2 −

∫
R3

F̃ (x, u)dx− µ
∫
R3

g(x)udx

≥ 1

2
‖ u ‖2 −c1

2
‖ u ‖22 −

c2
p
‖ u ‖pp −µ‖g‖q‖u‖ q

q−1

≥ 1

2
‖ u ‖2 −c1

2
C2

2 ‖ u ‖2 −
c2
p
Cpp ‖ u ‖p −µC q

q−1
‖g‖q‖u‖.

Note that c1 can be arbitrarily small, and let c1 = 1
2C2

2
, and then

J(u) ≥ 1

4
‖ u ‖2 −c2

p
Cpp ‖ u ‖p −µC q

q−1
‖g‖q‖u‖

≥ ‖u‖
(

1

4
‖ u ‖ −c2

p
Cpp ‖ u ‖p−1 −µC q

q−1
‖g‖q

)
.

Note that p ∈ (4, 2∗α), and we obtain a ρ > 0 such that h(ρ) = 1
4ρ−

c2
p C

p
pρ
p−1 > 0.

Consequently, we choose a sufficiently small µ > 0 such that h(ρ)−µC q
q−1
‖g‖q > 0.

Proof of Theorem 1.1. Now, we use Lemma 2.9 to prove Theorem 1.1. We first
give the direct decomposition for the space E. Note that E is a Hilbert space, so
let ej be an orthonomormal basis of E and define Xj = Rej , and we have

Yk =

k⊕
j=1

Xj , Zk =
∞⊕
j=k

Xj , k ∈ N. (3.14)

In what follows, we show that, for each k ∈ N, there exist ρk > rk > 0 such that

bk = inf
u∈Zk,‖u‖=rk

J(u)→ +∞, k →∞, (3.15)
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and
ak = max

u∈Yk,‖u‖=ρk
J(u) ≤ 0. (3.16)

From Lemma 2.2 and Lemma 3.8 in [35], for r ∈ [2, 2∗α) we have

βk(r) = sup
u∈Zk,‖u‖=1

‖ u ‖r→ 0, k →∞. (3.17)

This, together with (2.12) and (2.2), implies that

J(u) =
1

2
‖u‖2 +

1

4
Kα

∫
R3

u2φ(u)dx−
∫
R3

F̃ (x, u)dx+
µ

q

∫
R3

g(x)|u|qdx

≥ 1

2
‖u‖2 −

∫
R3

F̃ (x, u)dx

≥ 1

2
‖u‖2 − c1

2
‖u‖22 −

c2
p
‖u‖pp

≥ 1

2
‖u‖2 − c1

2
C2

2‖u‖2 −
c2
p
‖u‖pp.

(3.18)

Note from (H1) we see that c1 can be chosen arbitrarily small, so if we take c1 ≤
1
2C
−2
2 and rk = (c2β

p
k)

1
2−p , by (3.18), for u ∈ Zk, and ‖u‖ = rk, we find

J(u) ≥ 1

4
‖u‖2− c2

p
βpk‖u‖

p ≥
(

1

4
− 1

p

)
(c2β

p
k)

2
2−p → +∞, as k → +∞, with p > 4.

Therefore, (3.15) holds.
On the other hand, from L’Hospital rule and (H3) we have

lim
|u|→∞

F̃ (x, u)

|u|4
= +∞ uniformly in x ∈ R3.

Hence, there exists sufficiently large ϑk > 0 such that

F̃ (x, u) ≥ ϑk|u|4, for x ∈ R3, |u| > L2, for some L2 > 0.

From (2.12) with p ∈ (4, 2∗α), we have

F̃ (x, u) ≤ |u|2
(
c1
2

+
c2
p
|u|p−2

)
≤
(
c1
2

+
c2
p
Lp−2

2

)
|u|2, for x ∈ R3, |u| ≤ L2.

As a result, there exists M = c1
2 + c2

p L
p−2
2 such that

F̃ (x, u) ≥ ϑk|u|4 −M|u|2, for x ∈ R3, u ∈ R. (3.19)

Since dimYk <∞ and all norms are equivalent in the finite-dimensional space, from
(3.19), (2.15) and (g) we have

J(u) =
1

2
‖u‖2 +

1

4
Kα

∫
R3

u2φ(u)dx−
∫
R3

F̃ (x, u)dx+
µ

q

∫
R3

g(x)|u|qdx

≤ 1

2
‖u‖2 +

1

4
KαC‖u‖4 − ϑk‖u‖44 +M‖u‖22 +

µ

q
‖g‖g′‖u‖qqq′

q′−1

≤ 1

2
‖u‖2 +

1

4
KαC‖u‖4 − ϑkC4

k‖u‖4 +M‖u‖22 +
µ

q
‖g‖g′‖u‖qqq′

q′−1

, Ck > 0.

(3.20)
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Note that ϑk can be chosen large enough, so we take u ∈ Yk and large ρk (ρk > rk)
such that

J(u) ≤ 0, for u ∈ Yk, ‖u‖ = ρk.

Thus (3.16) holds.
Finally, (H5) implies that J is an even functional on E. Thus J satisfies all

conditions of Lemma 2.9. Then J has a sequence of critical points un, such that
J(un) → +∞ as n → ∞. This means that (1.1) has infinitely many high energy
solutions {un}n∈N such that

1

2
‖un‖2 +

1

4
Kα

∫
R3

u2
nφ(un)dx−

∫
R3

F̃ (x, un)dx+
µ

q

∫
R3

g(x)|un|qdx→ +∞, as n→∞.
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