INFINITELY MANY SOLUTIONS FOR FRACTIONAL SCHRÖDINGER-MAXWELL EQUATIONS*

Jiafa $\mathrm{Xu}^{1, \dagger}$, Zhongli Wei ${ }^{2}$, Donal O'Regan ${ }^{3}$ and Yujun Cui ${ }^{4}$

Abstract In this paper using fountain theorems we study the existence of infinitely many solutions for fractional Schrödinger-Maxwell equations

$$
\left\{\begin{array}{l}
(-\Delta)^{\alpha} u+\lambda V(x) u+\phi u=f(x, u)-\mu g(x)|u|^{q-2} u, \text { in } \mathbb{R}^{3}, \\
(-\Delta)^{\alpha} \phi=K_{\alpha} u^{2}, \text { in } \mathbb{R}^{3},
\end{array}\right.
$$

where $\lambda, \mu>0$ are two parameters, $\alpha \in(0,1], K_{\alpha}=\frac{\pi^{-\alpha} \Gamma(\alpha)}{\pi^{-(3-2 \alpha) / 2} \Gamma((3-2 \alpha) / 2)}$ and $(-\Delta)^{\alpha}$ is the fractional Laplacian. Under appropriate assumptions on f and g we obtain an existence theorem for this system.

Keywords Fractional Laplacian, Schrödinger-Maxwell equations, infinitely many solutions.

MSC(2010) 35J20, 35J60.

1. Introduction

In this paper we study the fractional Schrödinger-Maxwell equations

$$
\left\{\begin{array}{l}
(-\Delta)^{\alpha} u+\lambda V(x) u+\phi u=f(x, u)-\mu g(x)|u|^{q-2} u, \text { in } \mathbb{R}^{3}, \tag{1.1}\\
(-\Delta)^{\alpha} \phi=K_{\alpha} u^{2}, \text { in } \mathbb{R}^{3},
\end{array}\right.
$$

where $\lambda, \mu>0$ are two parameters, $\alpha \in(0,1], K_{\alpha}=\frac{\pi^{-\alpha} \Gamma(\alpha)}{\pi^{-(3-2 \alpha) / 2} \Gamma((3-2 \alpha) / 2)}$ and $(-\Delta)^{\alpha}$ is the fractional Laplacian. Here the fractional Laplacian $(-\Delta)^{\alpha}$ with $\alpha \in$ $(0,1]$ of a function $\varphi: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is defined by $\mathcal{F}\left((-\Delta)^{\alpha} \varphi\right)(\xi)=|\xi|^{2 \alpha} \mathcal{F}(\varphi)(\xi), \forall \alpha \in$ $(0,1]$, where \mathcal{F} is the Fourier transform, i.e., $\mathcal{F}(\varphi)(\xi)=\frac{1}{(2 \pi)^{3 / 2}} \int_{\mathbb{R}^{3}} \exp \{-2 \pi i \xi \cdot x\} d x$.

[^0]If φ is smooth enough then $(-\Delta)^{\alpha}$ can also be computed by the singular integral $(-\Delta)^{\alpha} \varphi(x)=c_{3, \alpha}$ P.V. $\int_{\mathbb{R}^{3}} \frac{\varphi(x)-\varphi(y)}{|x-y|^{3+2 \alpha}} d y$, where P.V. is the principal value and $c_{3, \alpha}$ is a normalization constant.

Fractional models are widely used in various fields, such as physics, signal processing, fluid mechanics, viscoelasticity, mathematical biology, and electrochemistry. For example, Bagley and Torvik [1] used fractional calculus to construct stress-strain relationships for viscoelastic materials, and they proposed a five-parameter model in the form

$$
\sigma(t)+b D^{\beta} \sigma(t)=E_{0} \varepsilon(t)+E_{1} D^{\alpha} \varepsilon(t),
$$

where D^{α}, D^{β} are fractional derivatives, and $\alpha, \beta, b, E_{0}, E_{1}$ are parameters. For more applications in this direction, we refer the reader to $[2,3,5,8,11-14,33,34$, 39-46] and the references therein. Fractional Schrödinger-Maxwell equations or Schrödinger-Poisson equations arise from standing waves for fractional nonlinear Schrödinger equations; for the physical background we refer the reader to $[4,9]$ and the references therein. For results on existence and multiplicity of solutions for Schrödinger-Poisson systems we refer the reader to $[6,7,10,15,17,19-26,28-32,36-$ 38,47-52] and the references therein. Li [19] adopted the (AR) condition to obtain an existence theorem for (1.1) when $\lambda=V=K_{\alpha}=1, \mu=0$. Teng [32] used the method of Pohozaev-Nehari manifolds, the arguments of Brezis-Nirenberg, a monotonic trick and a global compactness lemma to establish the existence of a nontrivial ground state solution when $f=\mu|u|^{q-1} u+|u|^{2_{\alpha}^{*}-2} u, 2_{\alpha}^{*}=\frac{6}{3-2 \alpha} \quad(\lambda=$ $\left.K_{\alpha}=1, \mu=0\right)$. However, there are only a few papers in the literature which consider the effect of the parameter λ, μ and the perturbation term g on the existence of solutions of (1.1); see [17, 25, 28, 36, 37]. In [28], S. Secchi studied nonlinear fractional equations involving the Bessel operator

$$
(I-\Delta)^{\alpha} u+\lambda V(x) u=f(x, u)+\mu \xi(x)|u|^{p-2} u, x \in \mathbb{R}^{N}
$$

where f satisfies the (AR) condition, and $\xi(x)|u|^{p-2} u$ is a sublinear perturbation term.

In our paper, in system (1.1), the functions $u, g, V: \mathbb{R}^{3} \rightarrow \mathbb{R}, f: \mathbb{R}^{3} \times \mathbb{R} \rightarrow \mathbb{R}$ satisfy the following assumptions
(V) $V \in C\left(\mathbb{R}^{3}, \mathbb{R}\right)$, and there is a positive constant $V_{0}>0$ such that $\inf _{x \in \mathbb{R}^{3}} \widetilde{V}(x)>$ $0, \lim _{|x| \rightarrow \infty} \widetilde{V}(x)=+\infty$, where $\widetilde{V}(x)=V(x)+V_{0}$, for $x \in \mathbb{R}^{3}$.
(H1) $\tilde{f} \in C\left(\mathbb{R}^{3} \times \mathbb{R}, \mathbb{R}\right)$, and $\tilde{f}(x, u)=o(u)$ uniformly in $x \in \mathbb{R}^{3}$ as $u \rightarrow 0$, where $\widetilde{f}(x, u)=f(x, u)+\lambda V_{0} u$, for $(x, u) \in \mathbb{R}^{3} \times \mathbb{R}$.
(H2) $\widetilde{F}(x, u)=\int_{0}^{u} \widetilde{f}(x, s) d s \geq 0$ and $\widetilde{\mathscr{F}}(x, u)=\frac{1}{4} \widetilde{f}(x, u) u-\widetilde{F}(x, u) \geq 0$, for $(x, u) \in \mathbb{R}^{3} \times \mathbb{R}$.
(H3) $\lim _{|u| \rightarrow \infty} \frac{\widetilde{f}(x, u) u}{u^{4}}=+\infty$ uniformly in $x \in \mathbb{R}^{3}$.
(H4) There exist $d_{1}, L_{1}>0$ and $\tau \in\left(\frac{3}{2 \alpha}, 2\right), \alpha>\frac{3}{4}$ such that

$$
|\widetilde{f}(x, u)|^{\tau} \leq d_{1} \widetilde{\mathscr{F}}(x, u)|u|^{\tau}, \text { for all } x \in \mathbb{R}^{3}, \text { and }|u| \geq L_{1} .
$$

(H5) $\widetilde{f}(x,-u)=-\widetilde{f}(x, u)$, for $(x, u) \in \mathbb{R}^{3} \times \mathbb{R}$.
(g) $g \in L^{q^{\prime}}\left(\mathbb{R}^{3}\right)$, and $g(x) \geq 0(\not \equiv 0)$, for $x \in \mathbb{R}^{3}$, where $q^{\prime} \in\left(\frac{2_{\alpha}^{*}}{2_{\alpha}^{*}-q}, \frac{2}{2-q}\right], q \in(1,2)$. Now, we state the main result of our paper.

Theorem 1.1. Suppose that (V), (H1)-(H5) and (g) hold. Then for any $\mu>0$, there exists $\Lambda>0$ such that system (1.1) possesses infinitely many solutions when $\lambda \geq \Lambda$.

Remark 1.1. Condition (H4) (see $[6,20,38]$) is weaker than the (AR) condition $(\mathrm{H} 4)^{\prime}$ there exists $\vartheta>4$ such that $0<\vartheta \widetilde{F}(x, u) \leq \widetilde{f}(x, u) u$ for all $(x, u) \in \mathbb{R}^{3} \times \mathbb{R}$ with $u \neq 0$.

Note if $\widetilde{f}(x, t)=e^{|x|} t^{3}\left[2 \ln \left(1+t^{2}\right)+\frac{t^{2}}{1+t^{2}}\right]$ for all $(x, t) \in \mathbb{R}^{3} \times \mathbb{R}$ then (H4) is satisfied but (H4) is not. Moreover, from the proof of [28, Lemma 2.3] note (H1) and (H4)' imply (H4).

Finally we note that in $[17,25,28,36,37]$ the authors used the (AR) condition (not $(\mathrm{H} 4))$ to discuss the effect of parameters and perturbation terms on the existence of solutions for their problem.

Remark 1.2. If the potential function V satisfies condition (V), then the following automatically holds:
(V1) $V \in C\left(\mathbb{R}^{3}, \mathbb{R}\right)$, and V is bounded from below, i.e., there exists a positive constant $V_{0}>0$ such that $V(x)+V_{0}>0$ for all $x \in \mathbb{R}^{3}$.
(V2) There exists $b>0$ such that meas $\left\{x \in \mathbb{R}^{3}: \widetilde{V}(x) \leq b\right\}$ is finite; here meas denotes the Lebesgue measure.

2. Variational settings and preliminary results

For any $1 \leq r<\infty, L^{r}\left(\mathbb{R}^{3}\right)$ is the usual Lebesgue space with the norm

$$
\|u\|_{r}=\left(\int_{\mathbb{R}^{3}}|u(x)|^{r} d x\right)^{\frac{1}{r}}
$$

The fractional order Sobolev space

$$
H^{\alpha}\left(\mathbb{R}^{3}\right)=\left\{u \in L^{2}\left(\mathbb{R}^{3}\right): \int_{\mathbb{R}^{3}}\left(|\xi|^{2 \alpha} \hat{u}^{2}+\hat{u}^{2}\right) d \xi<\infty\right\}
$$

where $\hat{u}=\mathcal{F}(u)$, and the norm is defined by

$$
\|u\|_{H^{\alpha}\left(\mathbb{R}^{3}\right)}=\left(\int_{\mathbb{R}^{3}}\left(|\xi|^{2 \alpha} \hat{u}^{2}+\hat{u}\right) d \xi\right)^{\frac{1}{2}}
$$

The space $D^{\alpha}\left(\mathbb{R}^{3}\right)$ is defined as the completion of $C_{0}^{\infty}\left(\mathbb{R}^{3}\right)$ under the norms

$$
\|u\|_{D^{\alpha}\left(\mathbb{R}^{3}\right)}=\left(\int_{\mathbb{R}^{3}}\left(|\xi|^{2 \alpha} \hat{u}^{2}\right) d \xi\right)^{\frac{1}{2}}=\left(\int_{\mathbb{R}^{3}}\left|(-\Delta)^{\alpha / 2} u(x)\right|^{2} d x\right)^{\frac{1}{2}}
$$

Note that, from Plancherel's theorem we have $\|u\|_{2}=\|\hat{u}\|_{2}$, and

$$
\begin{aligned}
\int_{\mathbb{R}^{3}}\left|(-\Delta)^{\alpha / 2} u(x)\right|^{2} d x & =\int_{\mathbb{R}^{3}}\left(\left(-\widehat{\Delta)^{\alpha / 2} u}(\xi)\right)^{2} d \xi=\int_{\mathbb{R}^{3}}\left(|\xi|^{\alpha} \hat{u}(\xi)\right)^{2} d \xi\right. \\
& =\int_{\mathbb{R}^{3}}|\xi|^{2 \alpha} \hat{u}^{2} d \xi<\infty, \forall u \in H^{\alpha}\left(\mathbb{R}^{3}\right)
\end{aligned}
$$

It follows that

$$
\|u\|_{H^{\alpha}\left(\mathbb{R}^{3}\right)}=\left(\int_{\mathbb{R}^{3}}\left(\left|(-\Delta)^{\frac{\alpha}{2}} u(x)\right|^{2}+u^{2}\right) d x\right)^{\frac{1}{2}}
$$

In our problem we work with the space

$$
\begin{equation*}
E:=\left\{u \in H^{\alpha}\left(\mathbb{R}^{3}\right):\left(\int_{\mathbb{R}^{3}}\left(\left|(-\Delta)^{\frac{\alpha}{2}} u(x)\right|^{2}+\lambda \widetilde{V}(x) u^{2}\right) d x\right)^{\frac{1}{2}}<\infty\right\} \tag{2.1}
\end{equation*}
$$

Now E is a Hilbert space with the inner product

$$
(u, v):=\int_{\mathbb{R}^{3}}\left((-\Delta)^{\frac{\alpha}{2}} u(x) \cdot(-\Delta)^{\frac{\alpha}{2}} v(x)+\lambda \widetilde{V}(x) u v\right) d x
$$

and its norm is $\|u\|=\sqrt{(u, u)}$.
Lemma 2.1 (see $[7,10])$. $H^{\alpha}\left(\mathbb{R}^{3}\right)$ is continuously embedded into $L^{p}\left(\mathbb{R}^{3}\right)$ for $p \in$ $\left[2,2_{\alpha}^{*}\right]$; and compactly embedded into $L_{l o c}^{p}\left(\mathbb{R}^{3}\right)$ for $p \in\left[2,2_{\alpha}^{*}\right)$ where $2_{\alpha}^{*}=\frac{6}{3-2 \alpha}$. Therefore, there exists a positive constant C_{P} such that

$$
\begin{equation*}
\|u\|_{p} \leq C_{p}\|u\|_{H^{\alpha}\left(\mathbb{R}^{3}\right)} \tag{2.2}
\end{equation*}
$$

Lemma 2.2 (see [29]). Under the assumptions (V), the space E is compactly embedded into $L^{p}\left(\mathbb{R}^{3}\right)$ for $p \in\left[2,2_{\alpha}^{*}\right)$.

Lemma 2.3 (see [16]). For $1<p<\infty$ and $0<\alpha<N / p$, we have

$$
\begin{equation*}
\|u\|_{L^{\frac{p N}{N-p \alpha}\left(\mathbb{R}^{N}\right)}} \leq B\left\|(-\Delta)^{\alpha / 2} u\right\|_{L^{p}\left(\mathbb{R}^{N}\right)} \tag{2.3}
\end{equation*}
$$

with best constant

$$
B=2^{-\alpha} \pi^{-\alpha / 2} \frac{\Gamma((N-\alpha) / 2)}{\Gamma((N+\alpha) / 2)}\left(\frac{\Gamma(N)}{\Gamma(N / 2)}\right)^{\alpha / N}
$$

Lemma 2.4. For any $u \in H^{\alpha}\left(\mathbb{R}^{N}\right)$ and for any $h \in D^{-\alpha}\left(\mathbb{R}^{N}\right)$, there exists a unique solution $\phi=\left((-\Delta)^{\alpha}+u^{2}\right)^{-1} h \in D^{\alpha}\left(\mathbb{R}^{N}\right)$ of the equation

$$
(-\Delta)^{\alpha} \phi+u^{2} \phi=h
$$

(here $D^{-\alpha}\left(\mathbb{R}^{N}\right)$ is the dual space of $D^{\alpha}\left(\mathbb{R}^{N}\right)$). Moreover, for every $u \in H^{\alpha}\left(\mathbb{R}^{N}\right)$ and for every $h, g \in D^{-\alpha}\left(\mathbb{R}^{N}\right)$, we have

$$
\begin{equation*}
\left\langle h,\left((-\Delta)^{\alpha}+u^{2}\right)^{-1} g\right\rangle=\left\langle g,\left((-\Delta)^{\alpha}+u^{2}\right)^{-1} h\right\rangle \tag{2.4}
\end{equation*}
$$

where $\langle\cdot, \cdot\rangle$ denotes the duality pairing between $D^{-\alpha}\left(\mathbb{R}^{N}\right)$ and $D^{\alpha}\left(\mathbb{R}^{N}\right)$.
Proof. If $u \in H^{\alpha}\left(\mathbb{R}^{N}\right)$, then by the Hölder inequality and (2.3), we have

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} u^{2} \phi^{2} d x \leq\|u\|_{2 p}^{2}\|\phi\|_{2 q}^{2} \leq B^{2}\|u\|_{2 p}^{2}\|\phi\|_{D^{\alpha}}^{2} \tag{2.5}
\end{equation*}
$$

where $\frac{1}{p}+\frac{1}{q}=1, q=\frac{N}{N-2 \alpha}, 2 q=2_{\alpha}^{*}$. Thus $\left(\int_{\mathbb{R}^{N}}\left|(-\Delta)^{\alpha / 2} \phi\right|^{2} d x+\int_{\mathbb{R}^{N}} u^{2} \phi^{2} d x\right)^{1 / 2}$ is a norm in $D^{\alpha}\left(\mathbb{R}^{N}\right)$ equivalent to $\|\phi\|_{D^{\alpha}}$. Hence, by applying the Lax-Milgram Lemma, we establish the existence part. For every $u \in H^{\alpha}\left(\mathbb{R}^{N}\right)$ and for every
$h, g \in D^{-\alpha}\left(\mathbb{R}^{N}\right)$, we have $\phi_{g}=\left((-\Delta)^{\alpha}+u^{2}\right)^{-1} g, \phi_{h}=\left((-\Delta)^{\alpha}+u^{2}\right)^{-1} h$. Hence,

$$
\begin{aligned}
\left\langle h,\left((-\Delta)^{\alpha}+u^{2}\right)^{-1} g\right\rangle & =\int_{\mathbb{R}^{N}} h\left((-\Delta)^{\alpha}+u^{2}\right)^{-1} g d x=\int_{\mathbb{R}^{N}} h \phi_{g} d x \\
& =\int_{\mathbb{R}^{N}}\left((-\Delta)^{\alpha}+u^{2}\right) \phi_{h} \phi_{g} d x=\int_{\mathbb{R}^{N}}\left((-\Delta)^{\alpha} \phi_{h}+u^{2} \phi_{h}\right) \phi_{g} d x \\
& =\int_{\mathbb{R}^{N}}\left((-\Delta)^{\alpha} \phi_{g}+u^{2} \phi_{g}\right) \phi_{h} d x=\int_{\mathbb{R}^{N}} g \phi_{h} d x \\
& =\int_{\mathbb{R}^{N}} g\left((-\Delta)^{\alpha}+u^{2}\right)^{-1} h d x=\left\langle g,\left((-\Delta)^{\alpha}+u^{2}\right)^{-1} h\right\rangle
\end{aligned}
$$

so we have (2.4).
Lemma 2.5 (see [18]). Let f be a function in $C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$. Then for $\alpha \in(0, n)$, we have

$$
\begin{align*}
\mathcal{C}_{\alpha} & \doteq \pi^{-\alpha / 2} \Gamma(-\alpha / 2) \tag{2.6}\\
\mathcal{C}_{\alpha}\left(\xi^{-\alpha} \hat{f}(\xi)\right)^{\vee}(x) & =\mathcal{C}_{n-\alpha} \int_{\mathbb{R}^{n}}|x-y|^{\alpha-n} f(y) d y \tag{2.7}
\end{align*}
$$

Lemma 2.6. For every $u \in H^{\alpha}$ there exists a unique $\phi=\phi(u) \in D^{\alpha}$ which solves the second equation in (1.1). Furthermore, $\phi(u)$ is given by

$$
\begin{equation*}
\phi(u)(x)=\int_{\mathbb{R}^{3}}|x-y|^{2 \alpha-3} u^{2}(y) d y \tag{2.8}
\end{equation*}
$$

As a consequence, the map $\Phi: u \in H^{\alpha} \longmapsto \phi(u) \in D^{\alpha}$ is of class C^{1} and

$$
\begin{equation*}
[\Phi(u)]^{\prime}(v)(x)=2 \int_{\mathbb{R}^{3}}|x-y|^{2 \alpha-3} u(y) v(y) d y, \forall u, v \in H^{\alpha} \tag{2.9}
\end{equation*}
$$

Proof. The existence and uniqueness part follows from Lemma 2.4. From Lemma 2.5 and the Fourier transform of the second equation in (1.1), the representation formula (2.8) holds for $u \in C_{0}^{\infty}\left(\mathbb{R}^{3}\right)$; by density it can be extended for any $u \in H^{\alpha}$. The representation formula (2.9) is clear.

System (1.1) is the Euler-Lagrange equations corresponding to the functional $J: H^{\alpha}\left(\mathbb{R}^{3}\right) \times D^{\alpha}\left(\mathbb{R}^{3}\right) \rightarrow \mathbb{R}:$

$$
\begin{aligned}
J(u, \phi)= & \frac{1}{2} \int_{\mathbb{R}^{3}}\left(\left|(-\Delta)^{\frac{\alpha}{2}} u(x)\right|^{2}+\lambda \widetilde{V}(x) u^{2}-\frac{1}{2}\left|(-\Delta)^{\frac{\alpha}{2}} \phi(x)\right|^{2}+K_{\alpha} \phi u^{2}\right) d x \\
& -\int_{\mathbb{R}^{3}} \widetilde{F}(x, u) d x+\frac{\mu}{q} \int_{\mathbb{R}^{3}} g(x)|u|^{q} d x
\end{aligned}
$$

where $\widetilde{F}(x, t)=\int_{0}^{t} \widetilde{f}(x, s) d s, t \in \mathbb{R}$.
Evidently, the action functional J belongs to $C^{1}\left(H^{\alpha}\left(\mathbb{R}^{3}\right) \times D^{\alpha}\left(\mathbb{R}^{3}\right), \mathbb{R}\right)$ and the partial derivatives in (u, ϕ) are given, for $\xi \in H^{\alpha}\left(\mathbb{R}^{3}\right)$ and $\eta \in D^{\alpha}\left(\mathbb{R}^{3}\right)$, by

$$
\begin{aligned}
\left\langle\frac{\partial J}{\partial u}(u, \phi), \xi\right\rangle= & \int_{\mathbb{R}^{3}}\left((-\Delta)^{\frac{\alpha}{2}} u(x)(-\Delta)^{\frac{\alpha}{2}} \xi(x)+\lambda \widetilde{V}(x) u \xi+K_{\alpha} \phi u \xi\right) d x \\
& -\int_{\mathbb{R}^{3}} \widetilde{f}(x, u) \xi(x) d x+\mu \int_{\mathbb{R}^{3}} g(x)|u|^{q-2} u \xi(x) d x \\
\left\langle\frac{\partial J}{\partial \phi}(u, \phi), \eta\right\rangle= & \frac{1}{2} \int_{\mathbb{R}^{3}}\left(-(-\Delta)^{\frac{\alpha}{2}} \phi(x)(-\Delta)^{\frac{\alpha}{2}} \eta(x)+K_{\alpha} u^{2} \eta\right) d x
\end{aligned}
$$

Thus, we have the following result:

Proposition 2.1. The pair (u, ϕ) is a weak solution of system (1.1) if and only if it is a critical point of J in $H^{\alpha}\left(\mathbb{R}^{3}\right) \times D^{\alpha}\left(\mathbb{R}^{3}\right)$.

We can consider the functional $J: H^{\alpha}\left(\mathbb{R}^{3}\right) \rightarrow \mathbb{R}$ defined by $J(u)=J(u, \phi(u))$. After multiplying the second equation in (1.1) by $\phi(u)$ and integrating by parts, we obtain

$$
\int_{\mathbb{R}^{3}}\left|(-\Delta)^{\alpha / 2} \phi(u)\right|^{2} d x=K_{\alpha} \int_{\mathbb{R}^{3}} \phi(x) u^{2} d x
$$

Therefore, the reduced functional takes the form

$$
\begin{align*}
J(u)= & \frac{1}{2} \int_{\mathbb{R}^{3}}\left(\left|(-\Delta)^{\frac{\alpha}{2}} u(x)\right|^{2}+\lambda \widetilde{V}(x) u^{2}\right) d x+\frac{1}{4} K_{\alpha} \int_{\mathbb{R}^{3}} u^{2} \phi(u) d x \tag{2.10}\\
& -\int_{\mathbb{R}^{3}} \widetilde{F}(x, u) d x+\frac{\mu}{q} \int_{\mathbb{R}^{3}} g(x)|u|^{q} d x .
\end{align*}
$$

Lemma 2.7. Assume that there exist $c_{1}, c_{2}>0$ and $p \in\left(4,2_{\alpha}^{*}\right)$ such that

$$
\begin{equation*}
|\widetilde{f}(x, s)| \leq c_{1}|s|+c_{2}|s|^{p-1}, \forall x \in \mathbb{R}^{3}, s \in \mathbb{R} \tag{2.11}
\end{equation*}
$$

Then the following statements are equivalent:
(i) $(u, \phi) \in\left(H^{\alpha} \cap L^{p}\right) \times D^{\alpha}$ is a solution of the system (1.1)-(1.2);
(ii) $u \in H^{\alpha} \cap L^{p}$ is a critical point of J and $\phi=\phi(u)$.

Proof. From assumption (2.11), the Nemitsky operator $u \in H^{\alpha} \cap L^{p} \mapsto F(x, u) \in$ L^{1} is of class C^{1}. Hence, from Lemma 2.6, for every $u, v \in H^{\alpha}$, we have

$$
\begin{aligned}
<J^{\prime}(u), v>= & \int_{\mathbb{R}^{3}}(-\Delta)^{\frac{\alpha}{2}} u(x)(-\Delta)^{\frac{\alpha}{2}} v(x) d x+\int_{\mathbb{R}^{3}} \lambda \widetilde{V}(x) u v d x \\
& +\frac{1}{2} K_{\alpha} \int_{\mathbb{R}^{3}} u v \int_{\mathbb{R}^{3}}|x-y|^{2 \alpha-3} u^{2}(y) d y d x \\
& +\frac{1}{2} K_{\alpha} \int_{\mathbb{R}^{3}} u^{2} \int_{\mathbb{R}^{3}}|x-y|^{2 \alpha-3} u(y) v(y) d y d x \\
& -\int_{\mathbb{R}^{3}} \widetilde{f}(x, u) v d x+\mu \int_{\mathbb{R}^{3}} g(x)|u|^{q-2} u v d x \\
= & \int_{\mathbb{R}^{3}}(-\Delta)^{\frac{\alpha}{2}} u(x)(-\Delta)^{\frac{\alpha}{2}} v(x) d x+\int_{\mathbb{R}^{3}} \lambda \widetilde{V}(x) u v d x \\
& +K_{\alpha} \int_{\mathbb{R}^{3}} u v \phi(u) d x-\int_{\mathbb{R}^{3}} \widetilde{f}(x, u) v d x+\mu \int_{\mathbb{R}^{3}} g(x)|u|^{q-2} u v d x .
\end{aligned}
$$

From the Fubini-Tonelli Theorem we obtain the conclusion.
Remark 2.1. Conditions (H1), (H2), (H4) imply (2.11). From (H2) and (H4), we have

$$
|\widetilde{f}(x, u)|^{\tau} \leq d_{1}\left(\frac{1}{4} \widetilde{f}(x, u) u-\widetilde{F}(x, u)\right)|u|^{\tau} \leq \frac{d_{1}}{4}|\widetilde{f}(x, u)||u|^{\tau+1}
$$

i.e., $|\widetilde{f}(x, u)|^{\tau-1} \leq \frac{d_{1}}{4}|u|^{\tau+1}$ for large u with $\frac{2 \tau}{\tau-1} \in\left(4,2_{\alpha}^{*}\right)$. Combining this with (H1), there exist $c_{1}, c_{2}>0$ such that (2.11) holds. This also implies that

$$
\begin{equation*}
|\widetilde{F}(x, s)| \leq \frac{c_{1}}{2}|s|^{2}+\frac{c_{2}}{p}|s|^{p}, \forall x \in \mathbb{R}^{3}, s \in \mathbb{R} \tag{2.12}
\end{equation*}
$$

If $1 \leq p<\infty$ and $a, b \geq 0$, then

$$
\begin{equation*}
(a+b)^{p} \leq 2^{p-1}\left(a^{p}+b^{p}\right) \tag{2.13}
\end{equation*}
$$

From (1.1), for any $u \in E$ using the Hölder inequality we have

$$
\|\phi(u)\|_{D^{\alpha}}^{2}=K_{\alpha} \int_{\mathbb{R}^{3}} \phi(u) u^{2} d x \leq K_{\alpha}\|\phi(u)\|_{q}\|u\|_{2 p}^{2} \leq C\|\phi(u)\|_{D^{\alpha}}\|u\|_{2 p}^{2}
$$

where $\frac{1}{p}+\frac{1}{q}=1, q=2_{\alpha}^{*}=\frac{6}{3-2 \alpha}, \alpha>\frac{3}{4}$. Here and subsequently, C denotes an universal positive constant. This and Lemma 2.2 imply that

$$
\begin{gather*}
\|\phi(u)\|_{D^{\alpha}} \leq C\|u\|_{2 p}^{2} \leq C\|u\|_{E}^{2} \tag{2.14}\\
\int_{\mathbb{R}^{3}} \phi(u) u^{2} d x \leq C\|u\|_{2 p}^{4} \leq C\|u\|_{E}^{4} \tag{2.15}
\end{gather*}
$$

Lemma 2.8. Suppose that $u_{n} \rightharpoonup u$ in $E, u_{n}(x) \rightarrow u(x)$ for a.e. $x \in \mathbb{R}^{3}$. Then we have

$$
\begin{equation*}
\int_{\mathbb{R}^{3}} \phi\left(u_{n}\right) u_{n}^{2}-\phi(u) u^{2} d x=o(1), \text { as } n \rightarrow \infty \tag{2.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\mathbb{R}^{3}}\left(\phi\left(u_{n}\right) u_{n}-\phi(u) u\right) v d x=o(1), \text { as } n \rightarrow \infty, \forall v \in E . \tag{2.17}
\end{equation*}
$$

Proof. Now $u_{n} \rightarrow u$ in $L^{r}\left(\mathbb{R}^{3}\right)$ with $r \in\left[2,2_{\alpha}^{*}\right)$ after passing to a subsequence. From [32, Lemma 2.3] and [47, Lemma 2.4], we have
(i) $T\left(u_{n}\right)=T(u)+T\left(u_{n}-u\right)+o(1)$ as $n \rightarrow \infty$, where $T(u)=\int_{\mathbb{R}^{3}} \phi(u) u^{2} d x$.
(ii) if $u_{n} \rightharpoonup u$ in E, then $\phi\left(u_{n}\right) \rightharpoonup \phi(u)$ in $D^{\alpha}\left(\mathbb{R}^{3}\right)$.

From (i), by (2.15) for $p=\frac{6}{3+2 \alpha}$ we obtain
$\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{3}} \phi\left(u_{n}\right) u_{n}^{2}-\phi(u) u^{2} d x=\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{3}} \phi\left(u_{n}-u\right)\left(u_{n}-u\right)^{2} d x \leq C\left\|u_{n}-u\right\|_{2 p}^{4} \rightarrow 0$.
From (ii) we have $\phi\left(u_{n}\right) \rightarrow \phi(u)$ in $L^{\frac{12}{3+2 \alpha}}\left(\mathbb{R}^{3}\right)$. Therefore, from (2.2) we have

$$
\begin{align*}
& \int_{\mathbb{R}^{3}} u_{n} v\left(\phi\left(u_{n}\right)-\phi(u)\right) d x \\
\leq & \left(\int_{\mathbb{R}^{3}}\left|u_{n}\right|^{\frac{12}{3+2 \alpha}} d x\right)^{\frac{3+2 \alpha}{12}}\left(\int_{\mathbb{R}^{3}}|v|^{\frac{6}{3-2 \alpha}} d x\right)^{\frac{3-2 \alpha}{6}}\left(\int_{\mathbb{R}^{3}}\left|\phi\left(u_{n}\right)-\phi(u)\right|^{\frac{12}{3+2 \alpha}} d x\right)^{\frac{3+2 \alpha}{12}} \\
\leq & C_{\frac{12}{3+2 \alpha}} C_{\frac{6}{3-2 \alpha}}\left\|u_{n}\right\|\|v\|\left(\int_{\mathbb{R}^{3}}\left|\phi\left(u_{n}\right)-\phi(u)\right|^{\frac{12}{3+2 \alpha}} d x\right)^{\frac{3+2 \alpha}{12}} \\
\rightarrow & 0, \text { as } n \rightarrow \infty, \text { for } u_{n}, u, v \in E . \tag{2.19}
\end{align*}
$$

Note (2.5) and we obtain

$$
\begin{aligned}
\int_{\mathbb{R}^{3}}\left(u_{n}-u\right) v \phi(u) d x & \leq\left(\int_{\mathbb{R}^{3}}\left|u_{n}-u\right|^{2} d x\right)^{\frac{1}{2}}\left(\int_{\mathbb{R}^{3}} v^{2} \phi^{2}(u) d x\right)^{\frac{1}{2}} \\
& \leq B\|v\|_{\frac{12}{3+2 \alpha}}\|\phi\|_{D^{\alpha}}\left(\int_{\mathbb{R}^{3}}\left|u_{n}-u\right|^{2} d x\right)^{\frac{1}{2}} \\
& \rightarrow 0, \text { as } n \rightarrow \infty, \text { for } u_{n}, u, v \in E .
\end{aligned}
$$

Therefore, when $n \rightarrow \infty$ we have

$$
\int_{\mathbb{R}^{3}}\left(\phi\left(u_{n}\right) u_{n}-\phi(u) u\right) v d x=\int_{\mathbb{R}^{3}}\left(\phi\left(u_{n}\right) u_{n}-\phi(u) u_{n}+\phi(u) u_{n}-\phi(u) u\right) v d x=o(1) .
$$

Next we introduce the Fountain theorem under the condition (C), which is weaker than the (PS) condition.
Definition 2.1 (see [27]). Assume that X is a Banach space. We say that $J \in$ $C^{1}(X, \mathbb{R})$ satisfies the Cerami condition (C), if for all $c \in \mathbb{R}$:
(i) any bounded sequence $\left\{u_{n}\right\} \subset X$ satisfying $J\left(u_{n}\right) \rightarrow c, J^{\prime}\left(u_{n}\right) \rightarrow 0$ possesses a convergent subsequence;
(ii) there exist $\sigma, R, \beta>0$ such that for any $u \in J^{-1}([c-\sigma, c+\sigma])$ with $\|u\| \geq$ $R,\left\|J^{\prime}(u)\right\|\|u\| \geq \beta$.

Lemma 2.9 (see [27]). Assume that $X=\overline{\bigoplus_{j=1}^{\infty} X_{j}}$, where X_{j} are finite dimensional subspaces of X. For each $k \in \mathbb{N}$, let $Y_{k}=\bigoplus_{j=1}^{k} X_{j}, Z_{k}=\overline{\bigoplus_{j=k}^{\infty} X_{j}}$. Suppose that $J \in C^{1}(X, \mathbb{R})$ satisfies condition (C), and $J(-u)=J(u)$. Assume for each $k \in \mathbb{N}$, there exist $\rho_{k}>r_{k}>0$ such that
(i) $b_{k}=\inf _{u \in Z_{k} \cap S_{r_{k}}} J(u) \rightarrow+\infty, k \rightarrow \infty$,
(ii) $a_{k}=\max _{u \in Y_{k} \cap S_{\rho_{k}}} J(u) \leq 0$, where $S_{\rho}=\{u \in X:\|u\|=\rho\}$.

Then J has a sequence of critical points u_{n}, such that $J\left(u_{n}\right) \rightarrow+\infty$ as $n \rightarrow \infty$.

3. Proof of Theorem 1.1

We first prove that the energy functional J satisfies condition (C) in Definition 2.1.
Lemma 3.1. Suppose the assumptions in Theorem 1.1 hold (with $\Lambda>0$ chosen appropriately). Then J satisfies condition (C).

Proof. For every $c \in \mathbb{R}$, we assume that $\left\{u_{n}\right\}_{n \in \mathbb{N}} \subset E$ is bounded and

$$
J\left(u_{n}\right) \rightarrow c, J^{\prime}\left(u_{n}\right) \rightarrow 0, \text { as } n \rightarrow \infty
$$

Therefore, passing to a subsequence if necessary, there exists $u \in E$ such that

$$
\left\{\begin{array}{l}
u_{n} \rightharpoonup u \text { weakly in } E \tag{3.1}\\
u_{n} \rightarrow u \text { strongly in } L^{p}\left(\mathbb{R}^{3}\right) \text { for } p \in\left[2,2_{\alpha}^{*}\right), \\
u_{n} \rightarrow u \text { for a.e. } x \in \mathbb{R}^{3}
\end{array}\right.
$$

We now show that

$$
\begin{equation*}
J\left(u_{n}-u\right)=c-J(u)+o(1), \quad<J^{\prime}\left(u_{n}-u\right), v>=o(1), \text { as } n \rightarrow \infty, \forall v \in E . \tag{3.2}
\end{equation*}
$$

Let $w_{n}=u_{n}-u$. Then $w_{n} \rightharpoonup 0$ in $E, w_{n} \rightarrow 0$ in $L^{r}\left(\mathbb{R}^{3}\right)$ with $r \in\left[2,2_{\alpha}^{*}\right)$ and $w_{n} \rightarrow 0$ for a.e. $x \in \mathbb{R}^{3}$ after passing to a subsequence. Since $u_{n} \rightharpoonup u$ in E, we have $\left(u_{n}-u, u\right) \rightarrow 0$ as $n \rightarrow \infty$, which implies

$$
\left\|u_{n}\right\|^{2}=\left(w_{n}+u, w_{n}+u\right)=\left\|w_{n}\right\|^{2}+\|u\|^{2}+o(1), \text { as } n \rightarrow \infty
$$

Note (2.18) and (2.19), and we easily see that

$$
\int_{\mathbb{R}^{3}} \phi\left(u_{n}-u\right)\left(u_{n}-u\right)^{2} d x \rightarrow 0, \text { as } n \rightarrow \infty
$$

and

$$
\int_{\mathbb{R}^{3}} \phi\left(u_{n}-u\right)\left(u_{n}-u\right) v d x \rightarrow 0, \text { as } n \rightarrow \infty, \forall v \in E .
$$

To prove (3.2), it will be enough to show that as $n \rightarrow \infty$,

$$
\begin{gather*}
\int_{\mathbb{R}^{3}}\left(\widetilde{F}\left(x, u_{n}\right)-\widetilde{F}\left(x, u_{n}-u\right)-\widetilde{F}(x, u)\right) d x=o(1) \tag{3.3}\\
\int_{\mathbb{R}^{3}} g(x)\left(\left|u_{n}\right|^{q}-\left|u_{n}-u\right|^{q}-|u|^{q}\right) d x=o(1) \tag{3.4}\\
\int_{\mathbb{R}^{3}}\left(\widetilde{f}\left(x, u_{n}\right)-\widetilde{f}\left(x, u_{n}-u\right)-\widetilde{f}(x, u)\right) v d x=o(1) \tag{3.5}
\end{gather*}
$$

and

$$
\begin{equation*}
\int_{\mathbb{R}^{3}} g(x)\left(\left|u_{n}\right|^{q-2} u_{n}-\left|u_{n}-u\right|^{q-2}\left(u_{n}-u\right)-|u|^{q-2} u\right) v d x=o(1) \tag{3.6}
\end{equation*}
$$

for all $v \in E$.
We only prove (3.3) and (3.4) (the proofs of (3.5) and (3.6) are similar). Note that $u_{n} \rightharpoonup u$ in E, and from Lemma A. 1 of [35], there exists $\sigma(x) \in L^{r}\left(\mathbb{R}^{3}\right)$ with $r \in\left[2,2_{\alpha}^{*}\right)$ such that

$$
\begin{equation*}
\left|u_{n}(x)\right| \leq \sigma(x), \quad|u(x)| \leq \sigma(x), \text { for } x \in \mathbb{R}^{3}, n \in \mathbb{N} \tag{3.7}
\end{equation*}
$$

From this and (2.12), for $\sigma_{1} \in L^{2}\left(\mathbb{R}^{3}\right), \sigma_{2} \in L^{p}\left(\mathbb{R}^{3}\right)$ with $p \in\left(4,2_{\alpha}^{*}\right)$, we have

$$
\begin{aligned}
\left|\widetilde{F}\left(x, u_{n}\right)-\widetilde{F}(x, u)\right| & \leq \frac{c_{1}}{2}\left(\left|u_{n}\right|^{2}+|u|^{2}\right)+\frac{c_{2}}{p}\left(\left|u_{n}\right|^{p}+|u|^{p}\right) \\
& \leq c_{1} \sigma_{1}^{2}(x)+\frac{2 c_{2}}{p} \sigma_{2}^{p}(x) \in L^{1}\left(\mathbb{R}^{3}\right)
\end{aligned}
$$

Hence, the Lebesgue dominated convergence theorem yields

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left|\int_{\mathbb{R}^{3}}\left(\widetilde{F}\left(x, u_{n}\right)-\widetilde{F}(x, u)\right) d x\right| \leq \lim _{n \rightarrow \infty} \int_{\mathbb{R}^{3}}\left|\left(\widetilde{F}\left(x, u_{n}\right)-\widetilde{F}(x, u)\right)\right| d x \\
& =\int_{\mathbb{R}^{3}} \lim _{n \rightarrow \infty}\left|\left(\widetilde{F}\left(x, u_{n}\right)-\widetilde{F}(x, u)\right)\right| d x \rightarrow 0
\end{aligned}
$$

On the other hand, from (2.12) and the Hölder inequality, for $p \in\left(4,2_{\alpha}^{*}\right)$ we have

$$
\int_{\mathbb{R}^{3}} \widetilde{F}\left(x, u_{n}-u\right) d x \leq \int_{\mathbb{R}^{3}}\left(\frac{c_{1}}{2}\left|w_{n}\right|^{2}+\frac{c_{2}}{p}\left|w_{n}\right|^{p}\right) d x \rightarrow 0, \text { as } n \rightarrow \infty
$$

This proves (3.3). From (g) and the Hölder inequality, for $\frac{q q^{\prime}}{q^{\prime}-1} \in\left[2,2_{\alpha}^{*}\right)$ we have

$$
\int_{\mathbb{R}^{3}} g(x)\left|u_{n}-u\right|^{q} d x \leq\|g\|_{q^{\prime}}\left(\int_{\mathbb{R}^{3}}\left|u_{n}-u\right|^{\frac{q q^{\prime}}{q^{\prime}-1}} d x\right)^{\frac{q^{\prime}-1}{q^{\prime}}} \rightarrow 0, \text { as } n \rightarrow \infty
$$

Since

$$
\left|\int_{\mathbb{R}^{3}} g(x)\left(\left|u_{n}\right|^{q}-|u|^{q}\right) d x\right| \leq \int_{\mathbb{R}^{3}} g(x)\left|u_{n}-u\right|^{q} d x
$$

the proof of (3.4) is complete.
Recall $w_{n}=u_{n}-u$. From (2.11), (2.12) and (3.7) we have

$$
\begin{aligned}
\int_{\mathbb{R}^{3}} \widetilde{\mathscr{F}}\left(x, w_{n}\right) d x & =\int_{\mathbb{R}^{3}}\left(\frac{1}{4} \widetilde{f}\left(x, w_{n}\right) w_{n}-\widetilde{F}\left(x, w_{n}\right)\right) d x \\
& \leq \int_{\mathbb{R}^{3}}\left(\frac{3}{4} c_{1}\left|w_{n}\right|^{2}+\frac{p+4}{4 p} c_{2}\left|w_{n}\right|^{p}\right) d x \\
& \leq \int_{\mathbb{R}^{3}}\left(3 c_{1} \sigma_{1}^{2}(x)+\frac{p+4}{p} 2^{p-2} c_{2} \sigma_{2}^{p}(x)\right) d x \\
& \leq \widetilde{M}
\end{aligned}
$$

where $\widetilde{M}>0$.
As $\widetilde{V}(x)<b$ on a set of finite measure (see Remark 1.2) and $w_{n} \rightharpoonup 0$ in E, from (2.2) we have

$$
\left\|w_{n}\right\|_{2}^{2}=\int_{\mathbb{R}^{3}}\left|w_{n}\right|^{2} d x \leq \frac{1}{\lambda b} \int_{\widetilde{V} \geq b} \lambda \widetilde{V}(x)\left|w_{n}\right|^{2} d x+\int_{\widetilde{V}<b}\left|w_{n}\right|^{2} d x \leq \frac{1}{\lambda b}\left\|w_{n}\right\|^{2}+o(1)
$$

From this and the Hölder inequality, for $s=\frac{2 \tau}{\tau-1} \in\left(4,2_{\alpha}^{*}\right)$, fixed $\nu \in\left(s, 2_{\alpha}^{*}\right)$ we have

$$
\begin{aligned}
\left\|w_{n}\right\|_{s}^{s} & =\int_{\mathbb{R}^{3}}\left|w_{n}\right|^{s} d x=\int_{\mathbb{R}^{3}}\left|w_{n}\right|^{\frac{2(\nu-s)}{\nu-2}}\left|w_{n}\right|^{s-\frac{2(\nu-s)}{\nu-2}} d x \\
& \leq\left(\int_{\mathbb{R}^{3}}\left|w_{n}\right|^{\frac{2(\nu-s)}{\nu-2} \frac{\nu-2}{\nu-s}} d x\right)^{\frac{\nu-s}{\nu-2}}\left(\int_{\mathbb{R}^{3}}\left|w_{n}\right|^{\left(s-\frac{2(\nu-s)}{\nu-2}\right) \frac{\nu-2}{s-2}} d x\right)^{\frac{s-2}{\nu-2}} \\
& =\left(\int_{\mathbb{R}^{3}}\left|w_{n}\right|^{2} d x\right)^{\frac{\nu-s}{\nu-2}}\left(\int_{\mathbb{R}^{3}}\left|w_{n}\right|^{\nu} d x\right)^{\frac{s-2}{\nu-2}} \\
& \leq\left(\frac{1}{\lambda b}\right)^{\frac{\nu-s}{\nu-2}} C_{\nu}^{\frac{\nu(s-2)}{\nu-2}}\left\|w_{n}\right\|^{\frac{2(\nu-s)}{\nu-2}}\left\|w_{n}\right\|^{\frac{\nu(s-2)}{\nu-2}} \\
& =\left(\frac{1}{\lambda b}\right)^{\frac{\nu-s}{\nu-2}} C_{\nu}^{\frac{\nu(s-2)}{\nu-2}}\left\|w_{n}\right\|^{s}, \text { for } C_{\nu}>0
\end{aligned}
$$

From (H1), for any $\varepsilon>0$, there exists $\delta=\delta(\varepsilon)>0$ such that $|\widetilde{f}(x, u)| \leq \varepsilon|u|$ for $x \in \mathbb{R}^{3}$ and $|u| \leq \delta$. Moreover, (H4) is also satisfied for $|u| \geq \delta$. Therefore, we have

$$
\int_{\left|w_{n}\right| \leq \delta} \widetilde{f}\left(x, w_{n}\right) w_{n} d x \leq \varepsilon \int_{\left|w_{n}\right| \leq \delta}\left|w_{n}\right|^{2} d x \leq \frac{\varepsilon}{\lambda b}\left\|w_{n}\right\|^{2}+o(1)
$$

and

$$
\begin{aligned}
\int_{\left|w_{n}\right| \geq \delta} \widetilde{f}\left(x, w_{n}\right) w_{n} d x & =\int_{\left|w_{n}\right| \geq \delta} \frac{\tilde{f}\left(x, w_{n}\right)}{w_{n}} w_{n}^{2} d x \\
& \leq\left(\int_{\left|w_{n}\right| \geq \delta}\left|\frac{\widetilde{f}\left(x, w_{n}\right)}{w_{n}}\right|^{\tau} d x\right)^{1 / \tau}\left(\int_{\left|w_{n}\right| \geq \delta}\left|w_{n}\right|^{\frac{2 \tau}{\tau-1}} d x\right)^{(\tau-1) / \tau}
\end{aligned}
$$

$$
\begin{aligned}
& \leq\left(\int_{\left|w_{n}\right| \geq \delta} d_{1} \widetilde{\mathscr{F}}(x, u) d x\right)^{1 / \tau}\left\|w_{n}\right\|_{s}^{2} \\
& \leq\left(d_{1} \widetilde{M}\right)^{1 / \tau}\left(\frac{1}{\lambda b}\right)^{\frac{2(\nu-s)}{(\sqrt{(\nu-2)}} C_{\nu}^{\frac{2 \nu(s-2)}{s(\nu-2)}}\left\|w_{n}\right\|^{2}+o(1) .}
\end{aligned}
$$

Consequently, from (3.2) we obtain

$$
\begin{aligned}
o(1) & \left.=<J^{\prime}\left(w_{n}\right), w_{n}\right\rangle \\
& =\left\|w_{n}\right\|^{2}+K_{\alpha} \int_{\mathbb{R}^{3}} w_{n}^{2} \phi\left(w_{n}\right) d x-\int_{\mathbb{R}^{3}} \widetilde{f}\left(x, w_{n}\right) w_{n} d x+\mu \int_{\mathbb{R}^{3}} g(x)\left|w_{n}\right|^{q} d x \\
& \geq\left[1-\frac{\varepsilon}{\lambda b}-\left(d_{1} \widetilde{M}\right)^{1 / \tau}\left(\frac{1}{\lambda b}\right)^{\frac{2(\nu-s)}{s(\nu-2)}} C_{\nu}^{\frac{2 \nu(s-2)}{s(\nu-2)}}\right]\left\|w_{n}\right\|^{2}+o(1) .
\end{aligned}
$$

Thus there exists $\Lambda>0$ such that $w_{n} \rightarrow 0$ in E when $\lambda>\Lambda$. This implies that $u_{n} \rightarrow u$ in E, and Definition 2.1 (i) holds.

Next, we prove condition in Definition 2.1 (ii) holds. If not, there exist $c \in \mathbb{R}$ and $\left\{u_{n}\right\}_{n \in \mathbb{N}} \subset E$ satisfying

$$
\begin{equation*}
J\left(u_{n}\right) \rightarrow c,\left\|u_{n}\right\| \rightarrow \infty,\left\|J^{\prime}\left(u_{n}\right)\right\|\left\|u_{n}\right\| \rightarrow 0, \text { as } n \rightarrow \infty \tag{3.8}
\end{equation*}
$$

Then we have

$$
\begin{align*}
c+o(1) & =J\left(u_{n}\right)-\frac{1}{4}<J^{\prime}\left(u_{n}\right), u_{n}> \\
& =\frac{1}{2}\left\|u_{n}\right\|^{2}+\int_{\mathbb{R}^{3}} \widetilde{\mathscr{F}}\left(x, u_{n}\right) d x+\left(\frac{\mu}{q}-\frac{\mu}{4}\right) \int_{\mathbb{R}^{3}} g(x)\left|u_{n}\right|^{q} d x \tag{3.9}\\
& \geq \int_{\mathbb{R}^{3}} \widetilde{\mathscr{F}}\left(x, u_{n}\right) d x .
\end{align*}
$$

In view of the definition of $J^{\prime},(3.8),(2.2)$ and (g) we obtain

$$
\left.\begin{array}{rl}
1 & =\frac{\left\|u_{n}\right\|^{2}}{\left\|u_{n}\right\|^{2}} \\
& =\frac{\left\langle J^{\prime}\left(u_{n}\right), u_{n}>\right.}{\left\|u_{n}\right\|^{2}}-\frac{K_{\alpha} \int_{\mathbb{R}^{3}} u_{n}^{2} \phi\left(u_{n}\right) d x}{\left\|u_{n}\right\|^{2}}+\frac{\int_{\mathbb{R}^{3}} \tilde{f}\left(x, u_{n}\right) u_{n} d x}{\left\|u_{n}\right\|^{2}}-\mu \frac{\int_{\mathbb{R}^{3}} g(x)\left|u_{n}\right|^{q} d x}{\left\|u_{n}\right\|^{2}} \\
& \leq \limsup _{n \rightarrow \infty}\left[\frac{\left\langle J^{\prime}\left(u_{n}\right), u_{n}>\right.}{\left\|u_{n}\right\|^{2}}+\frac{\int_{\mathbb{R}^{3}} \tilde{f}\left(x, u_{n}\right) u_{n} d x}{\left\|u_{n}\right\|^{2}}+\mu \frac{\| \|_{q^{\prime}} C^{q} \frac{q^{\prime}}{q^{\prime}-1}}{\left\|u_{n}\right\|^{q}}\right. \\
\left\|u_{n}\right\|^{2}
\end{array}\right] \quad \begin{aligned}
& \text { limsup } \tag{3.10}\\
& \\
&
\end{aligned}
$$

Define $v_{n}=\frac{u_{n}}{\left\|u_{n}\right\|}$, and note $\left\|v_{n}\right\|=1$. Passing to a subsequence, there exists a $v \in E$ such that $v_{n} \rightharpoonup v$ weakly in $E, v_{n} \rightarrow v$ strongly in $L^{r}\left(\mathbb{R}^{3}\right)$ with $r \in\left[2,2_{\alpha}^{*}\right)$, $v_{n}(x) \rightarrow v(x)$ for a.e. $x \in \mathbb{R}^{3}$. For $0 \leq a<b$, let $\Omega_{n}(a, b)=\left\{x \in \mathbb{R}^{3}: a \leq\left|u_{n}(x)\right|<\right.$ $b\}$. Now we consider the following two cases.

Case 1: Suppose $v=0$.

Then $v_{n} \rightarrow 0$ in $L^{r}\left(\mathbb{R}^{3}\right)$ with $r \in\left[2,2_{\alpha}^{*}\right), v_{n}(x) \rightarrow 0$ for a.e. $x \in \mathbb{R}^{3}$. Let L_{1} be as in (H4), and from (2.11) we have

$$
\begin{align*}
\int_{\Omega_{n}\left(0, L_{1}\right)} \frac{\tilde{f}\left(x, u_{n}\right) u_{n}}{\left\|u_{n}\right\|^{2}} \mathrm{~d} x & =\int_{\Omega_{n}\left(0, L_{1}\right)} \frac{\widetilde{f}\left(x, u_{n}\right) u_{n}}{\left|u_{n}\right|^{2}}\left|v_{n}\right|^{2} \mathrm{~d} x \\
& \leq\left(c_{1}+c_{2} L_{1}^{p-2}\right) \int_{\Omega_{n}\left(0, L_{1}\right)}\left|v_{n}\right|^{2} \mathrm{~d} x \tag{3.11}\\
& \leq\left(c_{1}+c_{2} L_{1}^{p-2}\right) \int_{\mathbb{R}^{3}}\left|v_{n}\right|^{2} \mathrm{~d} x \rightarrow 0 .
\end{align*}
$$

On the other hand, if we set $\tau^{\prime}=\tau /(\tau-1)$, then $2 \tau^{\prime} \in\left(4,2_{\alpha}^{*}\right)$. Frpm the Hölder inequality, (3.9) and (H4) we obtain

$$
\begin{align*}
\int_{\Omega_{n}\left(L_{1}, \infty\right)} \frac{\tilde{f}\left(x, u_{n}\right) u_{n}}{\left\|u_{n}\right\|^{2}} \mathrm{~d} x & =\int_{\Omega_{n}\left(L_{1}, \infty\right)} \frac{\tilde{f}\left(x, u_{n}\right) u_{n}}{\left|u_{n}\right|^{2}}\left|v_{n}\right|^{2} \mathrm{~d} x \\
& \leq\left(\int_{\Omega_{n}\left(L_{1}, \infty\right)}\left(\frac{\widetilde{f}\left(x, u_{n}\right) u_{n}}{\left|u_{n}\right|^{2}}\right)^{\tau} \mathrm{d} x\right)^{\frac{1}{\tau}}\left(\int_{\Omega_{n}\left(L_{1}, \infty\right)}\left|v_{n}\right|^{2 \tau^{\prime}} \mathrm{d} x\right)^{\frac{1}{\tau^{\prime}}} \\
& \leq\left(\int_{\Omega_{n}\left(L_{1}, \infty\right)}\left|\frac{\widetilde{f}\left(x, u_{n}\right)}{u_{n}}\right|^{\tau} \mathrm{d} x\right)^{\frac{1}{\tau}}\left(\int_{\Omega_{n}\left(L_{1}, \infty\right)}\left|v_{n}\right|^{2 \tau^{\prime}} \mathrm{d} x\right)^{\frac{1}{\tau^{\prime}}} \\
& \leq\left(\int_{\Omega_{n}\left(L_{1}, \infty\right)} d_{1} \widetilde{\mathscr{F}}(x, u) \mathrm{d} x\right)^{\frac{1}{\tau}}\left(\int_{\Omega_{n}\left(L_{1}, \infty\right)}\left|v_{n}\right|^{2 \tau^{\prime}} \mathrm{d} x\right)^{\frac{1}{\tau^{\prime}}} \\
& \leq\left[d_{1}(c+1)\right]^{\frac{1}{\tau}}\left(\int_{\mathbb{R}^{3}}\left|v_{n}\right|^{2 \tau^{\prime}} \mathrm{d} x\right)^{\frac{1}{\tau^{\prime}}} \rightarrow 0 \tag{3.12}
\end{align*}
$$

Combining (3.11) and (3.12), we have

$$
\begin{equation*}
\int_{\mathbb{R}^{3}} \frac{\tilde{f}\left(x, u_{n}\right) u_{n}}{\left\|u_{n}\right\|^{2}} \mathrm{~d} x=\int_{\Omega_{n}\left(0, L_{1}\right)} \frac{\tilde{f}\left(x, u_{n}\right) u_{n}}{\left\|u_{n}\right\|^{2}} \mathrm{~d} x+\int_{\Omega_{n}\left(L_{1}, \infty\right)} \frac{\tilde{f}\left(x, u_{n}\right) u_{n}}{\left\|u_{n}\right\|^{2}} \mathrm{~d} x \rightarrow 0 \tag{3.13}
\end{equation*}
$$

which contradicts (3.10).
Case 2: Suppose $v \neq 0$.
Then we set $A=\left\{x \in \mathbb{R}^{3}: v(x) \neq 0\right\}$ and $\operatorname{meas}(A)>0$. For $x \in A$, we have $\lim _{n \rightarrow \infty}\left|u_{n}(x)\right|=\infty$, and hence $A \subset \Omega_{n}\left(L_{1}, \infty\right)$ for large n. From (2.11), (2.15), (2.2) and (H3), note the nonnegativity of $f(x, u) u$, Fatou's Lemma enables us to obtain

$$
\begin{aligned}
& 0= \lim _{n \rightarrow \infty} \\
&=J^{\prime}\left(u_{n}\right), u_{n}> \\
&\left\|u_{n}\right\|^{4} \\
& \lim _{n \rightarrow \infty} {\left[\frac{\left\|u_{n}\right\|^{2}}{\left\|u_{n}\right\|^{4}}+K_{\alpha} \frac{\int_{\mathbb{R}^{3}} u_{n}^{2} \phi\left(u_{n}\right) d x}{\left\|u_{n}\right\|^{4}}-\frac{\int_{\mathbb{R}^{3}} \tilde{f}\left(x, u_{n}\right) u_{n} d x}{\left\|u_{n}\right\|^{4}}+\mu \frac{\int_{\mathbb{R}^{3}} g(x)\left|u_{n}\right|^{q} d x}{\left\|u_{n}\right\|^{4}}\right] } \\
& \leq \lim _{n \rightarrow \infty} {\left[\frac{\left\|u_{n}\right\|^{q}}{\left\|u_{n}\right\|^{4}} \mu\|g\|_{q^{\prime}} C_{\frac{q q^{\prime}}{q}}^{q^{\prime}-1}\right.} \\
&-K_{\alpha} C \frac{\left\|u_{n}\right\|^{4}}{\left\|u_{n}\right\|^{4}}-\int_{\Omega_{n}\left(0, L_{1}\right)} \frac{\widetilde{f}\left(x, u_{n}\right) u_{n}}{\left\|u_{n}\right\|^{4}} \mathrm{~d} x \\
&\left.-\int_{\Omega_{n}\left(L_{1}, \infty\right)} \frac{\widetilde{f}\left(x, u_{n}\right) u_{n}}{\left|u_{n}\right|^{4}}\left|v_{n}\right|^{4} \mathrm{~d} x\right]
\end{aligned}
$$

$$
\begin{aligned}
\leq & K_{\alpha} C+\limsup _{n \rightarrow \infty} \int_{\Omega_{n}\left(0, L_{1}\right)} \frac{\tilde{f}\left(x, u_{n}\right) u_{n}}{\left\|u_{n}\right\|^{4}} \mathrm{~d} x-\liminf _{n \rightarrow \infty} \int_{\Omega_{n}\left(L_{1}, \infty\right)} \frac{\tilde{f}\left(x, u_{n}\right) u_{n}}{\left|u_{n}\right|^{4}}\left|v_{n}\right|^{4} \mathrm{~d} x \\
\leq & K_{\alpha} C+\limsup _{n \rightarrow \infty} \frac{c_{1} L_{1}^{2}+c_{2} L_{1}^{p}}{\left\|u_{n}\right\|^{4}} \cdot \operatorname{meas}\left(\Omega_{n}\left(0, L_{1}\right)\right) \\
& -\liminf _{n \rightarrow \infty} \int_{\Omega_{n}\left(L_{1}, \infty\right)} \frac{\widetilde{f}\left(x, u_{n}\right) u_{n}}{\left|u_{n}\right|^{4}}\left[\chi_{\Omega_{n}\left(L_{1}, \infty\right)}(x)\right]\left|v_{n}\right|^{4} \mathrm{~d} x \\
\leq & K_{\alpha} C-\int_{\Omega_{n}\left(L_{1}, \infty\right)} \liminf _{n \rightarrow \infty} \frac{\tilde{f}\left(x, u_{n}\right) u_{n}}{\left|u_{n}\right|^{4}}\left[\chi_{\Omega_{n}\left(L_{1}, \infty\right)}(x)\right]\left|v_{n}\right|^{4} \mathrm{~d} x \\
\rightarrow & -\infty .
\end{aligned}
$$

This is also a contradiction.
Combining the above two cases we have that Definition 2.1 (ii) holds.
Lemma 3.2. Suppose the assumptions in Theorem 1.1 hold. Then there exist constants $\rho, \beta>0$ such that $J(u) \geq \beta$ when $\|u\|=\rho$.
Proof. Note that $q \in\left(\frac{6}{3+2 \alpha}, 2\right]$. From (2.12) and (2.2), we have

$$
\begin{aligned}
J(u) & =\frac{1}{2}\|u\|^{2}+\frac{1}{4} K_{a} \int_{R^{3}} \phi(u) u^{2} d x-\int_{\mathbb{R}^{3}} \widetilde{F}(x, u) d x-\mu \int_{\mathbb{R}^{3}} g(x) u d x \\
& \geq \frac{1}{2}\|u\|^{2}-\int_{\mathbb{R}^{3}} \widetilde{F}(x, u) d x-\mu \int_{\mathbb{R}^{3}} g(x) u d x \\
& \geq \frac{1}{2}\|u\|^{2}-\frac{c_{1}}{2}\|u\|_{2}^{2}-\frac{c_{2}}{p}\|u\|_{p}^{p}-\mu\|g\|_{q}\|u\|_{\frac{q}{q-1}} \\
& \geq \frac{1}{2}\|u\|^{2}-\frac{c_{1}}{2} C_{2}^{2}\|u\|^{2}-\frac{c_{2}}{p} C_{p}^{p}\|u\|^{p}-\mu C_{\frac{q}{q-1}}\|g\|_{q}\|u\| .
\end{aligned}
$$

Note that c_{1} can be arbitrarily small, and let $c_{1}=\frac{1}{2 C_{2}^{2}}$, and then

$$
\begin{aligned}
J(u) & \geq \frac{1}{4}\|u\|^{2}-\frac{c_{2}}{p} C_{p}^{p}\|u\|^{p}-\mu C_{\frac{q}{q-1}}\|g\|_{q}\|u\| \\
& \geq\|u\|\left(\frac{1}{4}\|u\|-\frac{c_{2}}{p} C_{p}^{p}\|u\|^{p-1}-\mu C_{\frac{q}{q-1}}\|g\|_{q}\right) .
\end{aligned}
$$

Note that $p \in\left(4,2_{\alpha}^{*}\right)$, and we obtain a $\rho>0$ such that $h(\rho)=\frac{1}{4} \rho-\frac{c_{2}}{p} C_{p}^{p} \rho^{p-1}>0$. Consequently, we choose a sufficiently small $\mu>0$ such that $h(\rho)-\mu C_{\frac{q}{q-1}}^{q-1}\|g\|_{q}>0$.

Proof of Theorem 1.1. Now, we use Lemma 2.9 to prove Theorem 1.1. We first give the direct decomposition for the space E. Note that E is a Hilbert space, so let e_{j} be an orthonomormal basis of E and define $X_{j}=\mathbb{R}_{e_{j}}$, and we have

$$
\begin{equation*}
Y_{k}=\bigoplus_{j=1}^{k} X_{j}, \quad Z_{k}=\overline{\bigoplus_{j=k}^{\infty} X_{j}}, \quad k \in \mathbb{N} . \tag{3.14}
\end{equation*}
$$

In what follows, we show that, for each $k \in \mathbb{N}$, there exist $\rho_{k}>r_{k}>0$ such that

$$
\begin{equation*}
b_{k}=\inf _{u \in Z_{k},\|u\|=r_{k}} J(u) \rightarrow+\infty, k \rightarrow \infty, \tag{3.15}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{k}=\max _{u \in Y_{k},\|u\|=\rho_{k}} J(u) \leq 0 \tag{3.16}
\end{equation*}
$$

From Lemma 2.2 and Lemma 3.8 in [35], for $r \in\left[2,2_{\alpha}^{*}\right)$ we have

$$
\begin{equation*}
\beta_{k}(r)=\sup _{u \in Z_{k},\|u\|=1}\|u\|_{r} \rightarrow 0, k \rightarrow \infty \tag{3.17}
\end{equation*}
$$

This, together with (2.12) and (2.2), implies that

$$
\begin{align*}
J(u) & =\frac{1}{2}\|u\|^{2}+\frac{1}{4} K_{\alpha} \int_{\mathbb{R}^{3}} u^{2} \phi(u) d x-\int_{\mathbb{R}^{3}} \widetilde{F}(x, u) d x+\frac{\mu}{q} \int_{\mathbb{R}^{3}} g(x)|u|^{q} d x \\
& \geq \frac{1}{2}\|u\|^{2}-\int_{\mathbb{R}^{3}} \widetilde{F}(x, u) d x \\
& \geq \frac{1}{2}\|u\|^{2}-\frac{c_{1}}{2}\|u\|_{2}^{2}-\frac{c_{2}}{p}\|u\|_{p}^{p} \tag{3.18}\\
& \geq \frac{1}{2}\|u\|^{2}-\frac{c_{1}}{2} C_{2}^{2}\|u\|^{2}-\frac{c_{2}}{p}\|u\|_{p}^{p}
\end{align*}
$$

Note from (H1) we see that c_{1} can be chosen arbitrarily small, so if we take $c_{1} \leq$ $\frac{1}{2} C_{2}^{-2}$ and $r_{k}=\left(c_{2} \beta_{k}^{p}\right)^{\frac{1}{2-p}}$, by (3.18), for $u \in Z_{k}$, and $\|u\|=r_{k}$, we find
$J(u) \geq \frac{1}{4}\|u\|^{2}-\frac{c_{2}}{p} \beta_{k}^{p}\|u\|^{p} \geq\left(\frac{1}{4}-\frac{1}{p}\right)\left(c_{2} \beta_{k}^{p}\right)^{\frac{2}{2-p}} \rightarrow+\infty$, as $k \rightarrow+\infty$, with $p>4$.
Therefore, (3.15) holds.
On the other hand, from L'Hospital rule and (H3) we have

$$
\lim _{|u| \rightarrow \infty} \frac{\widetilde{F}(x, u)}{|u|^{4}}=+\infty \text { uniformly in } x \in \mathbb{R}^{3}
$$

Hence, there exists sufficiently large $\vartheta_{k}>0$ such that

$$
\widetilde{F}(x, u) \geq \vartheta_{k}|u|^{4}, \text { for } x \in \mathbb{R}^{3},|u|>L_{2}, \text { for some } L_{2}>0
$$

From (2.12) with $p \in\left(4,2_{\alpha}^{*}\right)$, we have

$$
\widetilde{F}(x, u) \leq|u|^{2}\left(\frac{c_{1}}{2}+\frac{c_{2}}{p}|u|^{p-2}\right) \leq\left(\frac{c_{1}}{2}+\frac{c_{2}}{p} L_{2}^{p-2}\right)|u|^{2}, \text { for } x \in \mathbb{R}^{3},|u| \leq L_{2}
$$

As a result, there exists $\mathcal{M}=\frac{c_{1}}{2}+\frac{c_{2}}{p} L_{2}^{p-2}$ such that

$$
\begin{equation*}
\widetilde{F}(x, u) \geq \vartheta_{k}|u|^{4}-\mathcal{M}|u|^{2}, \text { for } x \in \mathbb{R}^{3}, u \in \mathbb{R} \tag{3.19}
\end{equation*}
$$

Since $\operatorname{dim} Y_{k}<\infty$ and all norms are equivalent in the finite-dimensional space, from (3.19), (2.15) and (g) we have

$$
\begin{align*}
J(u) & =\frac{1}{2}\|u\|^{2}+\frac{1}{4} K_{\alpha} \int_{\mathbb{R}^{3}} u^{2} \phi(u) d x-\int_{\mathbb{R}^{3}} \widetilde{F}(x, u) d x+\frac{\mu}{q} \int_{\mathbb{R}^{3}} g(x)|u|^{q} d x \\
& \leq \frac{1}{2}\|u\|^{2}+\frac{1}{4} K_{\alpha} C\|u\|^{4}-\vartheta_{k}\|u\|_{4}^{4}+\mathcal{M}\|u\|_{2}^{2}+\frac{\mu}{q}\|g\|_{g^{\prime}}\|u\|_{\frac{q q^{\prime}}{q^{\prime}-1}}^{q} \\
& \leq \frac{1}{2}\|u\|^{2}+\frac{1}{4} K_{\alpha} C\|u\|^{4}-\vartheta_{k} C_{k}^{4}\|u\|^{4}+\mathcal{M}\|u\|_{2}^{2}+\frac{\mu}{q}\|g\|_{g^{\prime}}\|u\|_{\frac{q q^{\prime}}{q^{\prime}-1}}^{q}, C_{k}>0 . \tag{3.20}
\end{align*}
$$

Note that ϑ_{k} can be chosen large enough, so we take $u \in Y_{k}$ and large $\rho_{k}\left(\rho_{k}>r_{k}\right)$ such that

$$
J(u) \leq 0, \text { for } u \in Y_{k},\|u\|=\rho_{k}
$$

Thus (3.16) holds.
Finally, (H5) implies that J is an even functional on E. Thus J satisfies all conditions of Lemma 2.9. Then J has a sequence of critical points u_{n}, such that $J\left(u_{n}\right) \rightarrow+\infty$ as $n \rightarrow \infty$. This means that (1.1) has infinitely many high energy solutions $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ such that
$\frac{1}{2}\left\|u_{n}\right\|^{2}+\frac{1}{4} K_{\alpha} \int_{\mathbb{R}^{3}} u_{n}^{2} \phi\left(u_{n}\right) d x-\int_{\mathbb{R}^{3}} \widetilde{F}\left(x, u_{n}\right) d x+\frac{\mu}{q} \int_{\mathbb{R}^{3}} g(x)\left|u_{n}\right|^{q} d x \rightarrow+\infty$, as $n \rightarrow \infty$.

Acknowledgements. We would like to express our thanks to the anonymous referees and the editor for their constructive comments and suggestions, which greatly improved this article.

References

[1] R. Bagley and P. Torvik, A theoretical basis for the application of fractional calculus to viscoelasticity, J. Rheol., 1983, 27(3), 201-210.
[2] Z. Bai and Y. Zhang, Solvability of fractional three-point boundary value problems with nonlinear growth, Appl. Math. Comput., 2011, 218(5), 1719-1725.
[3] Z. Bai, Y. Chen, H. Lian and S. Sun, On the existence of blow up solutions for a class of fractional differential equations, Fract. Calc. Appl. Anal., 2014, 17(4), 1175-1187.
[4] V. Benci and D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonl. Anal., 1998, 11(2), 283-293.
[5] Y. Cui, Uniqueness of solution for boundary value problems for fractional differential equations, Appl. Math. Lett., 2016, 51, 48-54.
[6] B. Cheng and X. Tang, New existence of solutions for the Fractional pLaplacian equations with sign-changing potential and nonlinearity, Mediterr. J. Math., 2016, 13(5), 3373-3387.
[7] X. Chang, Ground state solutions of asymptotically linear fractional Schrödinger equations, J. Math. Phys., 2013, 54, Article ID 061504.
[8] L. Debnath, Recent applications of fractional calculus to science and engineering, Int. J. Math. Math. Sci., 2003, 2003(54), 3413-3442.
[9] T. D'Aprile and D. Mugnai, Solitary waves for nonlinear Klein-GordonMaxwell and Schrödinger-Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A, 2004, 134(5), 893-906.
[10] P. Felmer, A. Quaas and J. Tan, Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 2012, 142(6), 1237-1262.
[11] Y. Guo, Nontrivial solutions for boundary-value problems of nonlinear fractional differential equations, Bull. Korean Math. Soc., 2010, 47(1), 81-87.
[12] Y. Guo, Nontrivial periodic solutions of nonlinear functional differential systems with feedback control, Turkish J. Math., 2010, 34(1), 35-44.
[13] X. Hao, H. Wang, L. Liu and Y. Cui, Positive solutions for a system of nonlinear fractional nonlocal boundary value problems with parameters and pLaplacian operator, Bound. Value Probl., 2017, Article ID 182, 18.
[14] J. He, X. Zhang, L. Liu, Y. Wu and Y. Cui, Existence and asymptotic analysis of positive solutions for a singular fractional differential equation with nonlocal boundary conditions, Bound. Value Probl., 2018, Article ID 189, 17.
[15] X. He, A. Qian and W. Zou, Existence and concentration of positive solutions for quasi-linear Schrödinger equations with critical growth, Nonlinearity, 2013, 26(12), 3137-3168.
[16] H. Hajaiej, X. Yu and Z. Zhai, Fractional Gagliardo-Nirenberg and Hardy inequalities under Lorentz norms, J. Math. Anal. Appl., 2012, 396(2), 569-577.
[17] S. Khoutir and H. Chen, Multiple nontrivial solutions for a nonhomogeneous Schrödinger-Poisson system in \mathbb{R}^{3}, Electron. J. Qual. Theory Differ. Equ., 2017, 2017(28), 1-17.
[18] E. Lieb and M. Loss, Analysis, Vol. 14 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, second edition, 2001.
[19] K. Li, Existence of nontrivial solutions for nonlinear fractional SchrödingerPoisson equations, Appl. Math. Lett., 2017, 72, 1-9.
[20] L. Li, A. Boucherif and N. Daoudi-Merzagui, Multiple solutions for 4superlinear Klein-Gordon-Maxwell system without odd nonlinearity, Taiwanese J. Math., 2017, 21(1), 151-165.
[21] J. Liu and A. Qian, Ground state solution for a Schrödinger-Poisson equation with critical growth, Nonlinear Anal. Real World Appl., 2018, 40, 428-443.
[22] A. Mao and H. Chang, Kirchhoff type problems in R^{N} with radial potentials and locally Lipschitz functional, Appl. Math. Lett., 2016, 62, 49-54.
[23] A. Mao and W. Wang, Nontrivial solutions of nonlocal fourth order elliptic equation of Kirchhoff type in \mathbb{R}^{3}, J. Math. Anal. Appl., 2018, 459(1), 556-563.
[24] A. Mao, L. Yang, A. Qian and S. Luan, Existence and concentration of solutions of Schrödinger-Poisson system, Appl. Math. Lett., 2017, 68, 8-12.
[25] P. Pucci, M. Xiang and B. Zhang, Multiple solutions for nonhomogeneous Schrödinger-Kirchhoff type equations involving the fractional p-Laplacian in \mathbb{R}^{N}, Calc. Var., 2015, 54(3), 2785-2806.
[26] A. Qian, Infinitely many sign-changing solutions for a Schrödinger equation, Adv. Difference Equ., 2011, Article ID 39, 6.
[27] A. Qian and C. Li, Infinitely many solutions for a Robin boundary value problem, Int. J. Differ. Equ., 2010, Article ID 548702, 9.
[28] S. Secchi, Concave-convex nonlinearities for some nonlinear fractional equations involving the Bessel operator, Complex Var. Elliptic Equ., 2017, 62(5), 654-669.
[29] Z. Shen and F. Gao, On the existence of solutions for the critical fractional Laplacian equation in \mathbb{R}^{N}, Abstract Appl. Anal., 2014, Article ID 143741, 10.
[30] M. Shao and A. Mao, Multiplicity of solutions to Schrödinger-Poisson system with concave-convex nonlinearities, Appl. Math. Lett., 2018, 83, 212-218.
[31] Y. Sun, L. Liu and Y. Wu, The existence and uniqueness of positive monotone solutions for a class of nonlinear Schrödinger equations on infinite domains, J. Comput. Appl. Math., 2017, 321, 478-486.
[32] K. Teng, Existence of ground state solutions for the nonlinear fractional Schrödinger-Poisson system with critical Sobolev exponent, J. Differential Equations, 2016, 261(6), 3061-3106.
[33] J. Wu, X. Zhang, L. Liu, Y. Wu and Y. Cui, The convergence analysis and error estimation for unique solution of a p-Laplacian fractional differential equation with singular decreasing nonlinearity, Bound. Value Probl., 2018, Article ID 82, 15 .
[34] Y. Wang and J. Jiang, Existence and nonexistence of positive solutions for the fractional coupled system involving generalized p-Laplacian, Adv. Difference Equ., 2017, Article ID 337, 19.
[35] M. Willem, Minimax theorems, Boston: Birkhäser, 1996.
[36] J. Xu, Z. Wei and W. Dong, Weak solutions for a fractional p-Laplacian equation with sign-changing potential, Complex Complex Var. Elliptic Equ., 2016, 61(2), 284-296.
[37] L. Yang, Multiplicity of solutions for fractional Schrödinger equations with perturbation, Bound. Value Probl., 2015, Article ID 56, 9.
[38] Y. Ye and C. Tang, Existence and multiplicity of solutions for SchrödingerPoisson equations with sign-changing potential, Calc. Var., 2015, 53(1-2), 383411.
[39] M. Zuo, X. Hao, L. Liu and Y. Cui, Existence results for impulsive fractional integro-differential equation of mixed type with constant coefficient and antiperiodic boundary conditions, Bound. Value Probl., 2017, Article ID 161, 15.
[40] Y. Zou and G. He, On the uniqueness of solutions for a class of fractional differential equations, Appl. Math. Lett., 2017, 74, 68-73.
[41] Z. Yue and Y. Zou, New uniqueness results for fractional differential equation with dependence on the first order derivative, Adv. Difference Equ., 2019, Article ID 38, 9.
[42] K. Zhang, On a sign-changing solution for some fractional differential equations, Bound. Value Probl., 2017, Article ID 59, 8.
[43] X. Zhang, J. Wu, L. Liu, Y. Wu and Y. Cui, Convergence analysis of iterative scheme and error estimation of positive solution for a fractional differential equation, Math. Model. Anal., 2018, 23(4), 611-626.
[44] Y. Zhang, Existence results for a coupled system of nonlinear fractional multipoint boundary value problems at resonance, J. Inequal. Appl., 2018, Article ID 198, 17.
[45] X. Zhang, L. Liu, Y. Wu and Y. Zou, Existence and uniqueness of solutions for systems of fractional differential equations with Riemann-Stieltjes integral boundary condition, Adv. Difference Equ., 2018, Article ID 204, 15.
[46] X. Zhang, L. Liu and Y. Zou, Fixed-point theorems for systems of operator equations and their applications to the fractional differential equations, J. Funct. Spaces, 2018, Article ID 7469868, 9.
[47] J. Zhang, João Marcos do Ó and M. Squassina, Fractional Schrödinger-Poisson systems with a general subcritical or critical nonlinearity, Adv. Nonlinear Stud., 2016, 16, 15-30.
[48] X. Zhang, L. Liu, Y. Wu and Y. Cui, New result on the critical exponent for solution of an ordinary fractional differential problem, J. Funct. Spaces, 2017, Article ID 3976469, 4.
[49] X. Zhang, J. Jiang, Y. Wu and Y. Cui, Existence and asymptotic properties of solutions for a nonlinear Schrödinger elliptic equation from geophysical fluid flows, Appl. Math. Lett., 2019, 90, 229-237.
[50] X. Zhang, L. Liu, Y. Wu and Y. Cui, Entire blow-up solutions for a quasilinear p-Laplacian Schrödinger equation with a non-square diffusion term, Appl. Math. Lett., 2017, 74, 85-93.
[51] X. Zhang, L. Liu, Y. Wu and Y. Cui, Existence of infinitely solutions for a modified nonlinear Schrödinger equation via dual approach, Electron. J. Differential Equ., 2018, 2018(147), 1-15.
[52] X. Zhang, L. Liu, Y. Wu and Y. Cui, The existence and nonexistence of entire large solutions for a quasilinear Schrödinger elliptic system by dual approach, J. Math. Anal. Appl., 2018, 464(2), 1089-1106.

[^0]: \dagger the corresponding author.
 Email address: xujiafa292@sina.com(J. Xu), jnwzl32@163.com(Z. Wei),
 donal.oregan@nuigalway.ie(D. O'Regan), cyj720201@163.com(Y. Cui)
 ${ }^{1}$ School of Mathematical Sciences, Chongqing Normal University, Chongqing 401331, China
 ${ }^{2}$ Department of Mathematics, Shandong Jianzhu University, Jinan 250101, China
 ${ }^{3}$ School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland
 ${ }^{4}$ State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China
 *The authors were supported by Talent Project of Chongqing Normal University (No. 02030307-0040), the National Natural Science Foundation of China(No. 11601048), Natural Science Foundation of Chongqing (No. cstc2016jcyjA0181), Natural Science Foundation of Chongqing Normal University (No. 16XYY24).

