For EDITORS

For READERS

All Issues

Vol.15, 2025
Vol.14, 2024
Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 9, Number 3, 2019, Pages 1120-1131                                                                DOI:10.11948/2156-907X.20180349
The stability of Hausdorff dimension for the level sets under the perturbation of conformal repellers
Lan Xu
Keywords:Hausdorff dimension, conformal repellers, topological pressure, multifractal analysis.
Abstract:
      Let $M$ be a $C^\infty$ compact Riemann manifold. $f:M\to M$ is a $C^1$ map and $\Lambda_f \subset M$ is a conformal repeller of $f$. Suppose $\varphi:M\to\mathbb{R}$ is a continuous function and let $f_k$ be nonconformal perturbation of the map $f$. We consider the stability of Hausdorff dimension of level sets for Birkhorff average of potential function $\varphi$ with respect to $f_k$ and $f$.
PDF      Download reader