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Abstract Let M be a C°° compact Riemann manifold. f: M — M is a
C' map and Ay C M is a conformal repeller of f. Suppose ¢ : M — R is
a continuous function and let f; be nonconformal perturbation of the map
f. We consider the stability of Hausdorff dimension of level sets for Birkhorff
average of potential function ¢ with respect to fi and f.
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1. Introduction

The theory of multifractal analysis is a subfield of the dimension theory of dynam-
ical systems. It studies the complexity of the level sets of invariant local quantities
obtained from a dynamical system. For example, we can consider Birkhoff average,
Lyapunov exponents, pointwise dimensions, or local entropies. These functions are
usually only measurable and thus level sets are rarely manifold. Hence, in order to
measure the complexity of these sets it is appropriate to use quantities such as the
topological entropy or the Hausdorff dimension. The dimension spectrum has been
extensively studied for Holder continuous potentials for C'+® conformal repellers A
in [3,4,7,10]. Feng etc [6] consider the dimension spectrum for the Birkhoff average
of continuous potentials on C1*< conformal repellers A. Barrel etc [1] consider C*
conformal repellers and potentials for which ® is almost additive. Barreira etc [2]
study the spectrum of u—dimension for the almost additive potential with a unique
equilibrium measure. Cao [5] study the dimension spectrum of asymptotically ad-
ditive potentials for C! average conformal repellers.

It is interesting to know whether the subtle structure of dimension survives after
small perturbations of the original system. We will consider this problem in this
paper. Let M be a C*° Riemann manifold, dim M = d. Let U be an open subset
of M and let f : U — M be a C! map. Suppose A C U is a compact invariant
set on which f is conformal expanding. Let ¢ : M — R be a continuous potential
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function. For any x € A, we define the ergodic limit, when it exists, as

a(z) = lim S, s(z).

n—oo

Given a € R, we consider the level set:
L,={xeA:a(z)=a}l.
The dimension spectrum D : R — R is defined by
D(a) = dimpyL,.

If fi is a nonconformal perturbation of f, then there exists a nonconformal repeller
Ay, such that fi|a, is topological conjugate to f|a. We will consider the dimension
spectrum for ¢ with respect to the map f; on Ax and study the stability of Hausdorff
dimension for level sets.

2. Preliminaries

In this section we briefly recall some notations about topological pressure and Haus-
dorff dimensions of sets.

2.1. Topological pressure

We first recall the notion of topological pressure (see Pesin [8] for more details).
Let f : X — X be a continuous map. Given a finite cover V, we denote W, (V)
the collection of vectors V. = (Vo,V4,...,V,) with Vi, V4,...,V,, € V. For each
V € W,(V), we write m(V) = n and we consider the open set

X(WV)y= )"
k=0

Now let ¢ be a continuous function. For each V € W, (V) we write

supx (v Snep(2), if X (V) # 0,

—00, otherwise.

(V)=

Given a set Z C X and a € R, we define the function

M(Z,0a,¢,V) = lim inf » _ exp(—am(V) +¢(V),
ver
where the infimum is taken over all finite or countable collections I' C |J,.~,, Wk (V)
such that (Jy . X(V) D Z. B
We also define Pz(p,V) = inf{a € R: M(Z,a,¢,V) = 0}. Then the limit

P = li P,
7 () s o 7(0,V)

is called the topogical pressure of ¢ in the set Z.
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Next we give the definition of the topological pressure of subset using a seper-
ated set. Let X be a compact metric space with a metric d and f : X — X
is a continuous transformation. We define a new metric d, on X by d,(z,y) =
maxo<i<n—1 d(fiz, fly) for z,y € X. By(z,8) = {y € X : dp(z,y) < &} is a bal-
1 centered at x with radius § under the metric d,,. Now fix a potential function
¢p: X >R Given Z C X, >0and N € N, let P(Z,N,d) be the collection of
countable sets {(z;,n;) C Z x {N,N + 1,...}} such that Z C |J; By, (x;,9). For
each s € R, consider the set functions

mP(Z?Sa¢7N7 6) = P(iZn]{‘/ 5) Z ea:p(—nis + S’m(b(xz))a
T (i)

mp(Z,s,¢,6) = ]\}gnoo mp(Z,s, ¢, N,0).

This function is non-increasing in s, and takes values co and 0 at all but at most
one value of s. Denote the critical value of s by

Py (6,0) =inf{s e R: mp(Z,s,$,5) =0}
=sup{s € R: mp(Z,s,¢,d) = o},

we get mp(Z,s,$,0) = oo when s < Pz(¢,0) and 0 when s > Pz(¢4,d). The
topological pressure of ¢ on Z is defined as

Py(¢) = lim P7(.0).

The limit exists because given d; < d2, we have P(Z, N,d;) C P(Z, N, d3) and hence
mP(Zv S, ¢7 51) > mP(Z7 S, d)a 62)7 then PZ(¢7 51) > P(Zv N, 52)

2.2. Hausdorff dimensions of sets

Given a subset Z of X, for s > 0 and § > 0, define
H§(Z) = inf {Z \Ui|* : Z | Ui, diam(U;) < 5} :

Note that H3(Z) is decreasing in §. Thus, the limit
H(Z) = lim H3(2)
6—0
exists(may be infinite). H*(Z) is called s—dimensional Hausdorff measures of Z.

And the hausdorff dimension of Z, denoted by dimpy Z, is defined as follows:

dimyg Z = inf{s : H*(Z) = 0} = sup{s : H*(Z) = o0}.

3. Main result

Let M be a C* compact Riemann manifold. f : M — M is a C' map and
Ay C M is a conformal repeller of f. Let M(Ay, f) the set of all f-invariant Borel
probability measures supported on Ay. For each u € M(Ay, f), denote by h,(f)
the measure-theoretic entropy of f with respect to pu.
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Suppose ¢ : M — R is a continuous function. For o € R, the level set L, is
defined as 5 (2)
Lo =Lj,={x €Ay nlingo — = al,
where S, rp(z) = Z?;(} @(fi(x)) is the Birkhoff sum of ¢ respect to f. It is easy
to check that L, # 0 if and only if & € [mingeaq(a,, ) [ @dp, max e, p) | edp).

For every k € N, we now consider a C* map f, : M — M which is C! close to
f. Suppose the sequence {fi} converges to f as k — oco. By the structure stability
of expanding maps, there exists Ay C M which is a repeller(may not be conformal)
of fi such that fi|a, is topological conjugate to f|a,. More precisely, there exists
a homeomorphism 7, : A — Ay satisfies mp o f = fi o m, and 7 — Id as k — oo.

For ap € [mingeaq(ay,f) fapdu,maxueM(Akyfk)fgod,u], we denote the corre-
sponding level set for fi by

Sn7.fk 90(1")

n = Ozk}.

A .
La, = Lfk,oék = {.’E € Aklnh_fgo

In the following we write

a= min du, @ = max d
o NEM(Afvf)/SO s MGM(AM”)/SD K
and

= min du, @r = max / d
b #GM(Akyfk)/gp H HEM(Ag, fr) P

for convenience.
It is easy to check that limg_,~ o, = a. In fact, suppose m € M(A, f) such
that [ @dm = a, then m;, = mim € M(Ay, fi) and o), < [ @dm,,. Hence

limsupay, < lim /godmk = lim /<p07rkdm:/g0dm:g.
k—o0 k—o0

k—o0

On the other hand, let lim,, o0 = liminfg o0 o There exists m;, € M(Ag,, fr,)
such that [ @dm; = a; . Suppose m is a limit point of {m,, }, then m € M(A, f).
Therefore

a< /(pdm: lim [ pdm, = liminf/gpdmk.
n—o0 " k—o00

Similarly, we obtain that limy_,o, @x = @. Thus for every a € (o, @) and every se-
quence {ay } satisfies limy_, o ap, = @, we conclude that ay, € (a4, @) for sufficiently
large k € N.

The main result in this paper is the following theorem.

Theorem 3.1. Suppose a € (a,@). If limg_yo0 o = v, then

lim dimyg L., = dimg L.
k—o0

4. The proof of main result

In this section, we give the proof of main result Theorem 3.1. In order to prove
theorem, we start with some lemmas.
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Lemma 4.1. For a € (o, @), we have

hu(
dimy L, = max “7/ d —a}—mlnT, ,
. ueMmff{floganndu‘ P (.2)

where T(q, «) is the unique root of equation P(q(p —a) —tlog||Df]|) = 0.

This lemma is an immediate consequence of Theorem C in Cao [5], since Ay is
a conformal repeller.

Lemma 4.2. Suppose pp € M(Ag, fi) for k € N, if ux, — p in the weak™* topology
in M(X), then p € M(Ay, f) and limsup,_, o by, (fx) < hu(f).

Proof. Since pu € M(Ag, fr), for any continuous g : M — R, we have

/gofkduk :/gd,uk~

/gOfdu=kli_>rgo/gOfduk
dmn ([ g0 fdm [ g0 fudin+ [ g0 fidm)

Therefore

dm [ go(f =~ fodm+ Jim [go fidn

hm /gduk
/gdu.

This implies p is f-invariant.

For every k, let i), = (m;,')* . Then i, (B) = uy(mi(B)) for any measurable
B C X and i, € M(Ay, f). We claim that fi,, — p as k — oo. In fact, for any
continuous g : M — R, we have

/gdﬁk:/gowk_ld,uk:/gowilduk—/gOﬂ',:ldu—F/gOﬂ',:ldu.

By using p, — p and 7, — Id, we have that limy_, [ 9dfi;, = [ gdp, which implies
My =
Since entropy is conjugacy invariant then we have hy, (fx) = hgz, (f). The upper
semi-continuity of the map p +— h,(f) implies that
limsup Ay, (fx) = limsup hg, (f) < hu(f).

k—o0 k—o0

Lemma 4.3. If oy € (o, ak), then
t«(k) < dimpgLg, <t*(k),
where t,(k), t*(k) is the root of equation
Pr,, (—tlog |[|Dfk|l) = 0 and Pr,, (—=tlogm(Dfy)) =

respectively.
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Proof. First we proof that dimpgL,, > t.(k). Without loss of generality, we
assume (k) > 0. Since the inequality holds for ¢, (k) = 0. For every 0 < s < t.(k),
we have Pr, (f, —slog||Dfgll) > 0 and denote it by A. Let p be small enough
such that sp < A. Then there exists ro such that if d(z,y) < ro then

_, _ Dfi(x)
S TAT

By the definition of the Haudorff measure, for every € > 0, there is a cover C. =
{B(x;,7i),7; < £} such that

ML) +12> Y (2r)°

B(z;,r;)€Ce

Fix ¢ > 0, for every B(xz;, ;) there exists n; € N such that B(x;,r;) C By, (24, 9) but
B(z;,7;) € Bp,+1(%;,0). Hence there exists y € B(x;, r;) such that d(f} (z;), fi(y))
§fori=0,1,---,n; but d(f{*(x;), £ (y)) > . Thus we have

§ < d(fi (), ;?"_“(y)) < K|Dfi(©lld(iy)
< KIS D fu(FLE) i < Ke™PIGEGH|D fu(f (i) 7.

A

Therefore
0

Z N — j '
Ke"iPHj;(Jl 1D fr.(f7 ()]

T

It implies that

Z (27“1‘)32(?23 Z i1 -

B(zi.m)eC. B s €IS, 1D fi(f(xa))®

26)°
B (KZ Z exp(—8Sn,, f, log || D fi(x:)|| — snip)
Bni(xi,é)

(20)°
Ks

v

mP(LOthpv —slog ||ka||7N7 6)7

where N = min{n;}. Obviously, we can see that N — oo as ¢ — 0. From the
definition of topological pressure and the fact that sp < Pr,, (fi, —slog | D fkl|), it
follows that
lim mp(La,,sp, —slog||Dfi|l, N,d) = cc.
N—o00

Thus we have limg_, oo HE(Ly, ) = co. Hence dimpy Lo, > s. The arbitrariness of
s < t«(k) implies that dimp Ly, > t.(k).

Next we prove that dimg L, < t*(k).

For every s > t*(k), we have Pr, (fi,—slogm(Df)) 2 B < 0. Then there
exists 69 > 0 such that Pr, (fi,—slogm(Df),d) < B < 0if§ < d. Hence
mp(La,, 2, —slogm(Dfy),5) = 0. Let p > 0 be small enough and satisfy sp < —Z.

It has e™” < :igg;:z; < e if d(z,y) is sufficiently small. Observe that

E, —slogm(Dfx), N, 9)

mP(Lam 2
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=i Y exp(—pni 58y, (logm(Dfi(x:))))

Bni(zi,é)
B ni—1 . —s
=inf{ > ew(=gn) - [[ (mDAf )

where the infimum is taken over by the set of all covers Cs = {B,,,(x;,9) : n; > N}
of Ly, . For any y € By, (z,9), there exists £ € By, (z;,0) such that

6 2 d(fy (xa), i () =2 m(Df" (§))) (i, y)

n;—1 n;—1
> [[ mDf(F©)d(wi,y) = e [ m(Dfu(fl(z:)d (@i, ).
j=0 7=0
Therefore
. demiP
diam (B, (7,0)) < ——— v .
H]LO m(D fi(fi(z:)))
Thus

mp(Lay, ,—slogm(Dfi), N, )

L\J\m

> inf { Z eXP(*gni —snip) - % - diam(By, (%'75))8}
Bn

; (w3,0)
> inf L diam(By, (1, 6))
B, (%4,0) 0

> 557'[5( K-

Taking N — oo, we get

B
0 =mp(Lq,, 5 —slogm(Dfi),9)
B
= lim mp(La,, —, —slogm(Dfx), N,0)
N—o00 2

1 S
> 5737-[5(‘[/0%)'
This implies H3(Lq, ) = 0 and hence H*(L,, ) = 0. This shows that dimg(La, ) < s.
Since s > t*(k) is arbitrary, we obtain that dimg(Le,) < t*(k). O
Lemma 4.4. t,(k),t*(k), oy is defined as above, then

(fx) / }
t.(k) = max s ‘ di, = o
) ukeM(Ak,m{ Tlog [Dfyldus | ] £ = o

and

(k) = (1) ’/d = }
(k) MkE./I;/tn?/i(k,fk {flogm D fi)dug PaE = Ok
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Proof. By modifying the argument in the proof of Theorem 4.1 in Cao [5], we
obtain that

Pr., (g DA = x5t gD fuldua] [ e = ).

€M (Mg, fx)

Then for every puy € M(Ag, fi) with [ pdu, = ax, we have

%Jh%%ﬁm/bMDhWMSQ

Thus
h’ll«k (fk)

[log | D filldus.
On the other hand, the upper semi-continuity of the map pr — hy, (f) implies
that there exists pj with [ oduj = aj such that

t.(k) >

Pr,, (=t (k) log [ D fill) = hu; (fi) — t*(k)/log 1D ficlldpy, = 0.

/1 (fk)

W Therefore

Hence we have t.(k) =

P (fr) / }
t.(k) = max Lkl dp, = ay ¢ -
(k) e €M (A, fre) {flog ||ka||duk‘ patE k

Similar arguments shows that

(fx) /
(k) = i ‘ g =
( ) #ke/{IAl(aK(lwfk {flogm ka: dﬂk PR =

O
For ay, € (o, k), we now consider the equation

P(q(e — ax) —tlog [ Dfel]) = 0 (4.1)

where ¢ € R. For fixed ay, g, the function py(t) = P(q(¢—ax) —tlog|| D fx||) is con-
tinuous and strictly decreasing. Moreover, lim;_, o pr(t) = 400, limy_ o0 pr(t) =
—o0. Then there exists a unique root Tj(q, o) of equation (4.1).

In the next we want to establish the equality t.(k) = minger Tk(q, o). This
process is a slightly modification of Proposition 4.3 in Cao [5]. Here we present it
for completeness.

Lemma 4.5. if ai € (o, k), then

;gﬂgp( (e — ar) — t.(k)log [ D fel]) = 0

Proof. Given § > 0 and m € N, we consider the set
L5y ={z € Ay : |Sn, 5, 0(z) — nag| < dn for n > m}.

It is easy to check that Lo, C (550 Umen Ls,m- Let V be a finite cover of Ay
with sufficiently small diameter such that |p(z1) — ¢(z2)| < 0 for every V € V and
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r1,22 € V. Now take I' C UJ,,~,, Wa(V) such that Ls,,, C Uy cp X(V). Without
loss of generality we assume that there is no V with X(V) () Ls., = 0. Then for
any z in X(V), there exists y € X(V) () Ls.m = 0 such that

ISmevy,po () = m(V)ag| < |Spvy, p0(2) = Smvy, 50 ()]
HSmv), s (y) — m(V)au|
<m(V)s +m(V)d = 2m(V)é.

It means that —2m(V)d < Sy, v, 5, 0(V)=m(V)ag, < 2m(V')é and hence q( Sy, vy, 7,
(V) —m(V)ag) + 2|glm(V)é > 0. Then for every S € R, we have

> exp(=Bm(V) = t.(k)Smvy, g log | D fi| (V)
ver

<Y exp(=Bm(V) + 2|gm(V)S + q(Smv). 1,0 (V) = m(V)aug)
ver

—L (k) Sm(v). . 10g | D f[|(V)

> exp(=Bm(V) +2alm(V)8 + [a(Smev), s — m(V)ax)
ver

=t (k) Simv), 1, log || D fi[[1 (V).

This implies that

IN

M(L&mv B, —t« (k)Sm(V),fk log ”kanv V)
S M(L5,m’ B - 2‘q|57 q(Sm(V%f}c(p - m(v)ak) — 1ty (k)S'm(\/'),f;C 10g ||ka||> V)

Then
Prs ., (=t«(k)log[[Dfil|,V) = 2|q|6 < Pr;,, (q(¢ — ax) — t.(k)log | D fi[|, V).
Letting diam(V) — 0, we have
Pr; , (=t«(k)log [|Dfi|l) < Prs . (q(¢ — o) — t. (k) log [| Dfk|]) + 2|q|6

for every § > 0 and ¢ € R. On the other hand, by the definition of ¢.(k) we have

0= Pr,, (=t(k)log||Dfkll) < Py, _, L5 (—t(k) log [| D fx[])

= sup Pr;,, (—tu(k)log | Dfill) < P(q(e — ar) — t«(k) log | D fi[]) + 2|q|0.
me

Since § > 0 is arbitrary, we obtain P(q(¢ — ax) — t«(k)log||Dfk||) > 0. This
completes the proof of the lemma. O

Lemma 4.6. if oy € (o, 0k), then

anéﬂlg P(q(p — ag) — t«(k)log ||D fi|]) = 0.

Proof. Let 7 be the distance of oy to R\(ay, ax). For g € R, define

Fi.(q) = P(q(p — ar) — tu(k)log || D fi|).
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Then Fy(q) is continuous. Let § = ax + 5+ when ¢ > 0, and 8 = oy — % when

g < 0. Then 8 € (a,ak). It means that there exists pr € M(Ag, fr) such that
lim,, oo f(pduk = . Therefore

Fula) = max{lu(f) + [ (ale = ax) = t.(k)log | Dfe )}

1
— () = t.(0) [ Tog | DAildps + 3 el

> Dy (fr) + [ (gl — ai) =t (k) log | D fiel[)dpr

= hy,, (fe) + [ (a(@ = B) +q(B — ar) — t.(k)log | D fil|)dp

We note that the right-hand side of the inequality takes arbitrarily large values
for |g| sufficiently large. Thus there exists M € R such that Fj(q) > Fj(0) with
lgl > M. The continuity of Fj(q) implies that Fj(g) attains a minimum at some
points ¢ with |gx| < M. Thus for every ¢ > qi, Fx(¢) — Fr(qr) > 0. Let g be the
equilibrium of ¢(p — a) — t.« (k) log || D fx||. Then

Ful@) = Filar) < hu, () + [ lalo = an) — t.(0) log | D1 s
(b5 + [ (autio = an) —t.6)log DSl )
— (- a) [ (o~ o)y

Hence [(¢ — ay)dp, > 0. Now without loss of generality, suppose p, — 11 as
g — qr. The upper semi-continuity of entropy h,, implies that

Fio(qe) = lim Fi(q) < T, (fi) + /(%(@ — ag) — tu (k) log || D fi ) dvy.
Thus v; is an equilibrium of g, (¢ — ax) — t.(k)log || D fx]| and [(p — ay)dvy > 0.

Similarly by considering the case ¢ < ¢, then Fj(q) — Fr(gx) > 0 and we
can find an invariant measeure o such that v, is an equilibrium of gx (¢ — ag) —
t«(k)log || D fil| and [(¢ — ag)drs < 0.

For a € [0,1], let pq = avy 4+ (1 —a)ve. Then p(a) = [(¢ — au)dp, is continuous
on [0,1] and p(0) < 0,p(1) > 0. Hence there exists ag such that p(ag) = [(¢ —
ag)diiq, = 0. Since vy, v are equilibriums of ¢x (¢ — ax) — t.« (k) log || D fx||, then fiq,
is an equilibrium of gx (¢ — ax) — t.(k)log|| D fxl|. If Fi(qr) > 0, then h,, (fr) —

t«(k) [log || D fi|ldpa, > 0. Therefore we have
h
to(k) < 220
W< Tios D sl

This contradicts the fact

P (fr) / }
t.(k) = max Lkl duk, = ay ¢ -
(k) e €M (A, fre) {flog ||ka||duk‘ patE k

hLa,
Hence Fk(gk) = 0 and t*(k) = Wf’e”d#ao.

lemma. O

This completes the proof of the
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Remark 4.1. In the proof of lemma 4.6, we can prove that there exists M € R
such that for £ € N sufficient large, Fj(¢) attains a minimum at some points g
with |gx| < M. In fact, we only take r; > 7 > 0 for some 7 and sufficient large k.

Lemma 4.7. If oy € (qy,,Qx), then t.(k) = minger Tk (g, k).

Proof. It follows from lemma 4.6 that if oy, € (ay,, @), then there exists g such
that

0= Flgr) = Plar(p — ax) = tu(k)log || D fi)-
Hence t.(k) = Tk(qr, o). On the other hand, for every ¢ € R, F(q) = P(q(¢ —
ay) — te(k)log ||D frl]) > 0 which implies t.(k) < Ty (g, o) for every ¢ € R. Hence
ti(k) = minger{Tk(g, a)}- O

Now we move to the proof of Theorem 3.1.
Proof. 1t is sufficient to verify that

limsupdimg L,, < dimpg L, < liminfdimg L, .
k—o00 k—o00

By lemma 4.3 and lemma 4.4 we have

: Py (f) / }
dimpg Ly, <t*(k) = max — dug, = o
& *) PEM(Ak, fr) {flogm(ka)duk‘ P =

for oy, € (ay, @) Supppose fi, is the fy-invariant measure at which the maximum
in the last equality can be attained. Then

hﬁk (fk)
Jlogm(D fi)dfix
Without loss of generality, we may assume i — p* as k — oo. It implies u* €

M(Ay, f) and [ pdp* = limp_oo [ @dfir, = limp_oo ax = . Then by lemma 4.2
and lemma 4.1 we have

dimpy Ly, < and/cpdﬁk = ay.

. . . i, (fx)

limsupdimpy Ly, < limsu M —

ic—mp H k:—)oop Jlogm(D fy.)dpu

= (f)
= Jlogm(Df)dpr
hy(f) / }

<  max — ke di =
T peM(ALS) {flogm(Df)d,u‘ pan
= dimH La.

On the other hand, by lemma 4.7

dimg Ly, > t.«(k) = min Ty (g, o).
q€R
Take g such that minger Ty (g, ax) = Tk(qx, o). By Remark 4.1 we obtain that
lgk| < M for every large k. This implies that the sequence {g;} has limit point.
Without loss of generality, we may assume limy_ o, gx = ¢*. By Theorem 9.8 in
Walters [9, p216] we have

Pa, (frs ar(p — ax) — tlog | D fill) = Pa(f, (qr(¢ — ar) — tlog || D fxl]) o m,).
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Then

Pr (i, @k (0 — ar) = tlog | Dfill) = Pa(f,q" (¢ — @) — tlog || Df]))

as k — oo. Hence limy_, o0 Tk (qx, ax) = T(q*, @).
Therefore for sufficiently small € > 0 we have

liminf dimpy La, > T(¢",a) — e > minT(q,a) — e = dimpy L, — €.
k— o0 ) q€R

As € is arbitrary, we obtain that

liminf dimyg Lo, > dimg L,.
k—o0

This implies the result. O
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