All Issues

Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 8, Number 3, 2018, Pages 915-927                                                                DOI:10.11948/2018.915
Inverse problems in magneto-electroscanning (in encephalography, for magnetic microscopes, etc.)
Alexandre Sergeevich Demidov
Keywords:Inverse problems, integral equations, pseudo-differential operators, magneto-electroscanning
      Contrary to the prevailing opinion about the incorrectness of the inverse MEEG-problem, we prove its unique solvability in the framework of the system of Maxwell''s equations [3]. The solution of this problem is the distribution of ${\bf y} \mapsto {\bf q}({\bf y})$ current dipoles of brain neurons that occupies the region $Y \subset \mathbb{R}^3 $. It is uniquely determined by the non-invasive measurements of the electric and magnetic fields induced by the current dipoles of neurons on the patient""s head. The solution can be represented in the form ${\bf q}={\bf q}_0+{\bf p}_0\delta\Big|_{\partial Y}$, where ${\bf q}_0$ is the usual function defined in $Y,$ and ${\bf p}_0\delta\Big|_{\partial Y} $ is a $\delta$-function on the boundary of the domain $Y$ with a certain density ${\bf p}_0$. It is essential that ${\bf p}_0$ and ${\bf q}_0$ are interrelated. This ensures the correctness of the inverse MEEG-problem. However, the components of the required 3-dimensional distribution $ {\bf q} $ must turn out to be linearly dependent if only the magnetic field ${\bf B}$ is taken into account. This question is considered in detail in a flat model of the situation.
PDF      Download reader