Volume 9, Number 3, 2019, Pages 864-883 DOI:10.11948/2156-907X.20180083 |
On the limit cycles for a class of generalized Kukles differential systems |
Amel Boulfoul,Amar Makhlouf,Nawal Mellahi |
Keywords:Limit cycle, averaging theory, Kukles systems. |
Abstract: |
In this paper, we consider the limit cycles of a class of polynomial differential systems of the form $\dot{x}=-y, \hspace{0.2cm} \dot{y}=x-f(x)-g(x)y-h(x)y^{2}-l(x)y^{3},$ where $f(x)=\epsilon f_{1}(x)+\epsilon^{2}f_{2}(x),$ $g(x)=\epsilon g_{1}(x)+\epsilon^{2}g_{2}(x),$ $h(x)=\epsilon h_{1}(x)+\epsilon^{2}h_{2}(x)$ and $l(x)=\epsilon l_{1}(x)+\epsilon^{2}l_{2}(x)$ where $f_{k}(x),$ $g_{k}(x),$ $h_{k}(x)$ and $l_{k}(x)$ have degree $n_{1},$ $n_{2},$ $n_{3}$ and $n_{4},$ respectively for each $k=1,2,$ and $\varepsilon$ is a small parameter. We obtain the maximum number of limit cycles that bifurcate from the periodic orbits of the linear center $\dot{x}=-y,$ $\dot{y}=x$ using the averaging theory of first and second order. |
PDF Download reader
|
|
|
|