For EDITORS

For READERS

All Issues

Vol.15, 2025
Vol.14, 2024
Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 9, Number 2, 2019, Pages 547-567                                                                DOI:10.11948/2156-907X.20180068
A time fractional functional differential equation driven by the fractional Brownian motion
Jingqi Han,Litan Yan
Keywords:Fractional Brownian motion, the caputo derivative, stochastic functional differential equation, time delay.
Abstract:
      Let $B^H$ be a fractional Brownian motion with Hurst index $H>\frac12$. In this paper, we prove the global existence and uniqueness of the equation $$ \begin{cases} ^CD_t^{\gamma}x(t)=f(x_t)+G(x_t)\frac{d}{dt}B^H(t),\ \ \ \ &t\in(0,T], \x(t)=\eta(t), \ \ \ \ \ &t\in[-r,0], \end{cases} $$ where $\max\{H,2-2H\}<\gamma<1$, $^CD_t^{\gamma}$ is the Caputo derivative, and $x_t\in \mathcal{C}_r=\mathcal{C}([-r,0],\mathbb{R})$ with $x_t(u)=x(t+u),u\in[-r,0]$. We also study the dependence of the solution on the initial condition.
PDF      Download reader