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A TIME FRACTIONAL FUNCTIONAL
DIFFERENTIAL EQUATION DRIVEN BY THE
FRACTIONAL BROWNIAN MOTION*

Jingqi Han! and Litan Yan'!$

Abstract Let B be a fractional Brownian motion with Hurst index H > %
In this paper, we prove the global existence and uniqueness of the equation

{CDZ’x(t) = f(z:) + Glz) B (),  te(0,T],
l‘(t) = 77(75)7 t S [_Tv 0]7

where max{H,2 —-2H} < vy < 1, © D7 is the Caputo derivative, and z; € C, =
C([-r,0],R) with z;(u) = z(t + u),u € [—r,0]. We also study the dependence
of the solution on the initial condition.
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1. Introduction

Recall that a mean zero Gaussian process B = {BJf ¢ > 0} is called a fractional
Brownian motion(fBm) with Hurst index H € (0,1) if B =0 and

E [BI'BI] = % (21 4 s2H — |t — s?H]
for all t,5s > 0. When H = 1/2, B coincides with the standard Brownian mo-
tion B. BY is neither a semimartingale nor a Markov process unless H = 1/2, so
many of the powerful techniques from stochastic analysis are not available when
dealing with B¥. As a Gaussian process, one can construct the stochastic calculus
of variations with respect to B. Some surveys and complete literatures for frac-
tional Brownian motion could be found in Biagini et al [3], Hu [9], Mandelbrot and
Ness [11], Mishura [12], Nourdin [13], Nualart [15] and the references therein.

On the other hand, differential equation with fractional derivative can be used
to describe the hereditary character of various kinds of materials and processes.
Compare to the classical differential equation, the fractional order models are better
to fit the models of the real life. The advantages of fractional derivatives become
apparent in various fields of science and engineering such as control theory, porous
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media, viscoelasticity, image and signal processing etc. As a result, the study of time
fractional differential equations attracts a lot of interest by many researchers (see,
for examples, [1,2,10,16]). For the stochastic functional equation, in Boufoussi and
S Hajji [4], the authors prove a global existence and uniqueness for the solution of
a stochastic functional differential equation driven by a fBm with Hurst parameter
H> % Thereafter, Boufoussi et al [5] extend this to functional differential equation
in Hilbert space by the properties of semigroup. Although there are a few references
(see [7,8] ) studying stochastic functional differential equation driven by fBm, such
researches are not amply and it is worthwhile to study more. In this paper, we
consider the time fractional functional differential equation of the form

(1.1)

{CDz:c(t) = f(z:) + Gla) BH(t),  te(0,T],
x(t) = n(t), t € [~r,0],

with 1 < H <1 and max{H,2 — 2H} < v < 1 where

e “D] denotes the Caputo derivative;

o 1, € C, with z4(u) = z(t + u) for v € [-r,0], C, = C([—r,0]) is the space of
continuous functions f from [—r, 0] to R endowed by the uniform norm ||-||¢,;

o f,G:C, — R are proper functions;

e 7 :[—7r,0] = R is a smooth function.

Tt is important to note that (1.1) can be written as the integral form

2(t) = n(0) + w5 Jo (t — 8) 7 f(w,)ds
+1i7 Jo(t— ) G(wy)dBH (s),  te€(0,T], (1.2)
z(t) =n(), te[-r0].

In this paper, we assume that the integral with respect to B is a pathwise
Riemann-Stieltjes (R-S) integral in the sense of Zahle [18,19]. Similar to the result
given by Nualart and Rascanu [14], we extend it to the time fractional cases. In
fact, by Young [17] if we have a stochastic processes {u(t),t > 0} whose trajectories
are A\-Holder continuous with A > 1—H, then the R-S integral fOT u(s)dB* (s) exists
for each trajectory. Then, by fractional calculus, Zéhle [18] introduced a generalized
Stieltjes integral, which is expressed in terms of fractional derivative operators. This
integral coincides with R-S integral fOT fdg where f, g are both Hélder continuous
of order A and w, respectively, with A +w > 1.

This paper is organized as follows. In Section 2, we present assumptions on the
coefficients and some necessary preliminaries on the fractional integral and deriva-
tive are given. The basic knowledge of extended Stieltjes integrals is also introduced.
In Section 3, we derive some useful estimates for these indefinite integrals. In Sec-
tion 4, we obtain the existence, uniqueness and dependence on the initial data for
the solution of the deterministic equations as some preliminaries studying the so-
lution of (1.1). In the last section, we apply the results of Section 4 to our time
fractional stochastic equations driven by a fBm and give the proofs of our main
results.
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2. Preliminaries

Throughout this paper we fix a time interval [0,7] and a complete probability
space (€,.#,P). We assume that £ < H < 1 is arbitrary but fixed and we let
B = {BHE t > 0} be a one-dimensional fBm with Hurst index H defined on
(Q,.%,P). Consider the equivalent equation (1.2) in the later sections and let us
consider the following assumptions on the coefficients.

(H.f) The function f is Lipschitz continuous and has linear growth; that is, there
exist constants C7 and C5 such that for all £, € C,.

1£(€) = fF(m] < Cull€ = nlle, and |F(§)] < Co(1 + [[€]le, )-

(H.G) The function G is Fréchet differentiable. Moreover, there exist constants C
and Cy such that for all £, € C,.

|IDG(&)|e(e,.r) < C3 and |[DG(E) — DG(n)|ec, vy < Call§ —nlle, -

It is important to note that assumption (H.G) implies that the linear growth prop-
erty, i.e., there exists a constant C'5 > 0 such that

1G] < C5(1+[[€lle.)

for all &,n € C,. Given real numbers a < b and u € (0, 1], we will denote by C*([a, ])
the space of p-Hoélder continuous functions f : [a,b] — R, endowed with the norm
|f(t) — f(s)]
[l = 1f+ sup ————,

a<s<i<p (t—s)H

where || f[| = sup;ejqp |f(1)]-
Now, we recall some definitions and notions of fractional calculus.

Definition 2.1. Let o« > 0. The fractional integral of order a for a function
f:]0,00) = R is defined as

orpyo L[
If(t)_F(a)/O (tfs)l—ad t>0,

provided the right side is point-wise defined on [0,00), where I'(-) is the classical
Gamma function defined by I'(z) = [t e~ dt.

Definition 2.2. Let n > 0 be an integer number and let n — 1 < a < n. The
Caputo derivative of order « for a function f € C"([0,00)) is defined as

1 A C)
C na _ _ mm—a g(n)
Dyf(t) = ds=1 t) t>0.
tf() F(n_a)/(; (t—8)1+a_n S f () >

Based on fractional integrals and derivatives, Zdhle [18] has introduced the
Riemann-Stieltjes integral. We refer the reader to the papers of Zdahle [18, 19]
and Nualart and Rascanu [14] for the general theory of this integral. Fix a param-

eter 0 < a < %, and denote by W*1(0,T;R) the space of measurable functions
f:10,T] = R such that

o= [ (L4 [TIZIO ) g < o,
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We also denote by W'=2°(0, T; R) the space of measurable functions g : [0, 7] — R
such that

= OO ) g,
ol = sup OGO [ < o,

Clearly,
C'=*(0, T;R) C W' (0, T;R) C C'*(0,T;R), Ve > 0.

Given two functions f € W0, T;R) and g € W1=°(0,T;R), the generalized
Stieltjes integral fOT f(s)dg(s) is defined by

T T
/ F(s)dg(s) = (—1)° / Dg. f(t) DY gr_(t)dt,
0 0

o _ 1 f(t) LI = f(s)
Pi0 = gy (G v [ )

Dhoge (1) = 71° (g(t) —9(T) , /T 9(t) — g(s) ds) |

where

and

Tl—a)\ (T—b° (s — t)att

Furthermore, we have the estimate

| [ sda] < 8@l (21)
where
== sup |Di== 1
Aa(g) = F(l — Oé) O<§<?<T|Dt_ gt—(5)| < F(l — Oé)F(Oé) Hng—Oé,OO'

3. Some priori estimates

Throughout this paper we assume that % < v < 1 is arbitrary but fixed and we let
max{r,2—2v} <y <1,a € (2—v—7,v). For g € C¥([0,T]) and = € C=*([-r, T)),
we denote

1(x)(t) = / (t— 5 f(xa)ds
and

J(@)(t) = / (t — 571G (z,)dg(s).

The following proposition provides the basic estimate for iterative calculus in Ba-
nach fixed point theorem applied to the time fractional differential equation consid-
ered in this paper. We will use M to denote a generic constant which may change
from line to line.

Proposition 3.1. Let g € C¥([0,T)), x € C*=*([-r,T]). Under conditions (H.f)
and (H.G) we have
I(z), J(x) € C'=*([0, T)).
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Proof. Let ap = min{l —a,a+~v— 1} and fix 8 € (1 — v, aq). It follows that

I(2)(t) — I(2)(s)) = / (t— u)"™ f () du / (s — u) ™ flaa)du

< / (=)™ f ) — (5 — u) " f ()| du + / (¢ — )™ f ()] du
<M / 1+ zalle,) [(5 — w7~ = (¢ — u)™Y] du
+M/ (1+ [ulle.) (t— w) ' du

< M(t—9)" 1+ |olhi-a) < Mt =)' 1+ [|lz]1-a)

for s,t € [0,T] with s < ¢, which implies that I(x) € C'=%([0,T]). For the second
point, we have

(@) (1) — J()(s)]
< / (t - u)" G lau)dg(u)

=Jn + Ji2

n / s ) — (- w) ] Glaa)dg(u)

for s,t € [0,T] with s < ¢t. From (2.1) we can write

’t—u” 1Gxu‘
Ji1 <Ag(g =)

/ [limarmcte ot )

By the condition (H.G) and v — 8 > 1 — o we get

du
(3.1)

t— 'y 1 u _ 'y 1
Elt— ) G (x d < EM(t— ) 1+ lzulle, )du

u—s U*S (3~2)
—M(t—s)7 5(1+Hxlll_a)§M( s)' a(1+|\w||1—a)-

for s,t € [0,T] with s < ¢. Using again the condition (H.G) we have

/ / |t_u (ﬁ o 1G(%)‘dvdu
—v)ft

‘ t—u —(t—v)7~ 1] xv)’—|—‘(t—u)'y_1[G(xu)—G(xv)H
S (w1 e

M t—u t— o) (1 + [|2]1—a)

// | (uv)ﬁﬂ” dvdu
Y M(t—u)Y 1u7v1 Nel|l1—q
Ny el g,

SMt—N P fzlh-a) + M(t =) a]1-q
< M(t =)' 1+ [|zfh-a)



552 J. Han & L. Yan

[(t—u) =t =t —v) Y|

/ / u—v)ﬁﬂ dvdu
(t—u)? "t —(t—utw)~

/ /0 RS dwdu

by the next fact

t—s t—v—s —
/ ZJ: w)'” dwdu
o o v (3.4)
t—s—w — U—FU))
o dvdw
0 0 w
(t—s—w)? (t—9) w?
- - Y
/0 wﬁ“ ( g )
1w 1
< = — Z(t_ g\ B
_/0 o dw 'y(t s)
for s,¢ € [0,T] with s < ¢t. Combining this with (3.2) and (3.3), we see that
Jin <Mt =) (1+ l2]i-a)
for s,t € [0,T] with s < t. Now, we estimate Ji2. Form (2.1), we have
s t — y—1 _ _ ~y—1 G u
0 u
Sl =) = (s —w) T [Glrl) — Gla)]|
+ /0 /0 (= 0)pH dvdu (3.5)
s u t— y—1 _ t— y—1 _ _ y—1 _ a1 G .
+// e ) et C k) e Gt A LG B
0 Jo (u—v)PHt

For the first term, by the condition (H.G)

s f [(t —u)?"t— (s — u)’y_l] G(xu)’
w8

<M (14 ||z]l1-a) /OS [(s —u) ™t = (t —u)1] wBdu

M (1t e]1a) {/0(.9 - u)"’_lu_'gdu—/ot(t - u)”‘lu_ﬂdu—i—/st(t _ u)“’_lu_ﬂdu}

=M (14 ||z]|1-a) {(37—/3 _ t"/—ﬁ) B(1 - 8,7) +/ (t— u)”/_lu_ﬁdu}

du

t
<M (1+ Ilell—a)/ (t—uw) ' du < M 1+ ||z]l1-a) (t —5)77. (3.6)
For the second term,

/ /u | t — ) (s —u)’™ 1] [G(zy) — G(x”)Hdvdu

(u —v)pst1

/ / (s — u)’ —<t W olla, (3.7)

(u—v)Pte

< M(t—8)"||z|1—a-



Time fractional FDEs driven by a fBm 553

For the last term, some elementary calculations may show that

(u —v)Bf+1

// Suu_v)(ﬁ‘il“ 1dvdu// tuu_v)(;ﬂw dvdu
// uv)(ﬁtﬂ vt dvdu

/ / (u— v)(ﬁtﬂ o dvdu (3.8)
B
- /: /0 ((zte:?);: dvdu + M(t —s)7~F

for s,t € [0,T] with s < t. It follows from the condition (H.G) that

/s /“ [ —u)™ =t =v) = (s —w) " + (s —v)"7| G(zy)| dvdu
(

(u —v)st+1 (3.9)
L+ ||2]i-a) (t—8)77F

for s,t € [0,T] with s < t. Combining this with (3.6) and (3.7), we get that
Jiz < M(t— )" (1+ ||z][1-a)
for s,¢ € [0,T] with s < ¢. Thus, we have showed that
[T (@)(t) = J(x)(s)] = Jux + Jra < M(t =)' (1 + [J]l1-a)

for s,t € [0,T] with s < t, and the proposition follows. O

For any A > 0, we introduce the following equivalent norm in the space C1=%({a, b])
defined by

—xt e |2(t) — a(s)]
ZT{1—a,x = Sup e )|+ sup e T—"——.
|| || “ t€la,b] ‘ ( )| a<s<t<b (t - 5)1 @

Proposition 3.2. Let g € C¥([0,T]) and x € C'=*([—r,T]). Under the conditions
(H.f) and (H.G), there exist some constants My, Ma, c1(N), c2(N) > 0 such that

(@) [l1-ax < My +er(M][z]1-ax

and
[J(@)l1—ax < M2+ c2(N)||z]l1—ar,

where constants My and My are independent of A, and c1(\),c2(A) = 0 as A — co.
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Proof. We first prove the first assertion. For ¢, s € [0,T] with s < ¢, we have

B*Atu(z)(t) I(x)(s) 7)\t|f0 [t—u” H@a) = (s—u) T (@ ]du|

(t—s)t- (t—s)—
e ) dl
+e e . (3.10)

By the condition (H.f), we get

St —u) "  f(wa)du

t N ~y—1 ‘
e~ M ‘ < e~ M fs (¢ —w) ( c.) du
(t—s)t= (t—s)t- (3.11)
1 Mzl ax [T e7F
y+a—1 s
<MT + Nt 1 /0 ey dz

and

e Lo [ =)t f ) — (S—U)”_lf(xu)}du|
(t—s)i-
e*M

< (D /OS [(s — u)?’ ™t — (t — u)“’fl} (14 |zylle,)du
< MTa+’Y—1 + (|1|;’,C_||18)?’_);l AS [(s B U)’Y—l . (t . u)ry—l] e—A(t—u)du (312)

SMTa+'y—1+ ||$||1—a7>\ {/S(S u)ﬂ/—l —A(s—u)du

(t—s)-e
(- fyern)

SMTa-i-'y—l_’_ ||$||1*04,)\ /(t u)’y Lo=At=1) g,

(t—s)i-o
1, Mzllizanx e ”?
a+y—1 «,
< MT s / Sl

Substituting (3.11) and (3.12) in (3.10) to lead the first result since o + v > 1.

For the second assertion, let 8 € (1 — v, ag) as in the proof of Proposition 3.1.
Then, by (2.1) we have that

ot (@)(F) — J(2)(s)|
t «

(t—s)-
cenello (6= = (5= w) G dg| St —up G dg\
(t—s)t=e (t—s)i-

/ /u 1[(t = u) _(S_U)w1(_(15—@)714—(5—1})71] G(z)|

w = o)PH dvdu

//“ [[(t —w) s(ui););jl[G( G(zy)] / |(t— uu"f_ ;G xu)’du
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Ere ]t —u) T Glr) = (= 0) T G )|
Jr/s /S (u—0)f+ dvdu
5
:Z Jo
i=1
We need to estimate Jo;,7 = 1,2,...,5. From the condition (H.G), we get
MA e M u)? (1 + ||z,
o < Mt e lnule.)
(u—s)
t _ oY1= A(t—w)
3 MA/B(Q)TMMA Al [N
(t—s)t=> Js (u—1s)f
. N (3.14)
< MAy() TP+~ 4 MA4(g)|la| / Y
= 5(9) Blg 1—a,\ G — w2 (u—3)P
fta- As(9)ll=ll1- g e”?
y—B+a—1 Bs\g 1—a,\

< MAg(o)T MR [
and

MA e M [(t—u) ™! = (t—v)"] Gz,
Jos < '8 {/ / u—(v)5+)1 ] ( )‘dvdu

e  —

MAg(g)e= [(t— t—v) 7 (14 e N
< tfsla {// i A G ]( ezl ’)\)dvdu

(u —v)pt1

w) 't e |zl —a.x
/ / (=)o dv du} (3.15)

—ptra—1_, MAs(@)z]1-ax
<MAg(g)T7 Pt 2 %
— ﬂ(g) + (t_s)lfa

t u)Y " —(t—v)’~ 1] —A(t—v) P (t—u) " lemME-w
{// (u—v)Pit dvdu—i—/s/s (u—v)Pra dvdu

prac1 | MAg(g)||z]li—ax
<MAg(g)TV—B+a-1 p ’
= B(g) + (t _ 8)170[

t—s pt—s—w [,y—1 _ y—17 ,—A(v+w)
X / / [v (v +w) ] ¢ dvdw
0 0 fwﬂ+1
t
+ / (t —u) e A=W (g — s)lﬁadu}

[zllian [ - [zlli—ax [ atr—2 -
SMA{;(Q){I—F)\Q_M_Z_I ) € z a+'y B- 2d +)\a+7'yal ) Zoz+'y 26 ZdZ .

For the term J5;, we have

e~ Mt /s [(S _ u)'y—l _ (t _ u)'y—l] e
0

(t _ s)lfa uﬁ

du
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~rae e () e

—At t —1_ ) u
t—u)Y
e / (t—u)le "
s

<
~ (t—s)te ub
for all s,t € [0,T] with s < ¢. It follows that

MAg(g)e™ [* [(s—u) ™" — (t —u) '] (L+e*[z]i—an)
Jo1 < - . du
(t—s) o "

ttas , MAg(@)lzlli—ape™ [° [(s—u) ™! — (t —u) ] et
< MAa(q)TV1+o=8 B , / p
=~ 5(9) + (tis)lfoz 0 uﬁ u

“1ta-p , MAs(g)lllli- k e=?

y—1+a—p s(g 1—a) e

< MAﬁ(g)T + \Y—1+a—p iglo)/o 227()‘77(/{7 _ Z)ﬁ dz (316)

for ¢,s € [0 T] with s < t. For the term Jos, we have

(t—s)t= a// = 717(t7v)w*1]}6/\udvdu

(u —v)B+1

S u_fjm:”“]
<// e e )
t—s +_al-a (// //) u:it)ﬁﬁ)”_l] e/\udvdu

for t,s € [0,T] with s < t, which implies that

o < MAB _/\f/ / (s —u)r~1 (8—1})"”1] - [(t—u)"”l — (t—v)”’l]

(u —v)s+1

(1 + Hvacr)dvdu
MAg(g)e M |[z]l1—an

<MAg(g)TVPre-1 4 (3.17)

(t—s)l-@
S {(s—w) Tt = (s =) = [(t—u) Tt = (t—v) T }eM
X/o /0 (U= v)PiT dvdu

[zlli—ax [ 4
SMAg(g){l—F)\aﬂ;l ; e 70t =6-24,

N lz][1—a,n sup /k e ? &
)\'Y*B‘f’a*l k>0Jo 22*0‘*’7(]{; — Z)B
for t,s € [0,T] with s < t. For the last term Ja3, we have

MAf; / / S—u ’Y 1 (t_u)'yfl] e)\uHx”l—a,)\
Jog <

(u —v)Pta
MAB( ) )\tllel a,\ s—u y—1 _ —u ~y—1 ekuul—a—ﬁ " .
< MRl e [l —up ot - -] du (3.18)

MAs@eli-an [* s aeroay,
\otv—1 0

IN




Time fractional FDEs driven by a fBm 557

for ¢,s € [0,T] with s < t. Thus, we have showed that there exist some constants
Ms, c2(A) > 0 such that

[J(2)][1—ax < M2+ c2(N)[|z]l1—a,x,

and My is independent of A\, and ca(A) — 0 as A — oo. This completes the proof.
O
In order to prove main results by using the Banach fixed point theorem we need

an additional estimate.

Proposition 3.3. Let g € C¥([0,T]),z,y € C*=*([-r,T]). Under the condition-
s (H.f) and (H.G), there exist some constants c1(N\) and ca(A) > 0 such that
c1(A),c2(A) = 0 as A — oo, and
(@) = IW)l1-ax < ccM)llz = ylli-a.x
and
17(2) = JW)llh-ax < c2(X) (L + [[2]li-a + ylli-a) 2 = ylli-a.x-
Proof. By the Lipschitz property of f, we have

o L(@)() — I(y)(t)*f( )(s) + I(y)(s)|

A |M — (s =) 1 (@) = £ (o) du

/|H“ (@) = S du

Mo [*
N 0

Aotvy—1 22—a—y

for any ¢, s € [0,T] with s < ¢, which implies that the first assertion holds.
To prove the second assertion, let 8 € (1 — v, ag) as in the proof of Proposition
3.1. We have

e—kt

=9l [T (2)(8) = J(y)(s) = J(2)(s) + T (y)(s)|

]

[ = e — Gl o}
= J31 + J32

/ [ = = (s — )] [Gla) — Clya)] dg

_|_

for t,s € [0,T] with s < ¢t. From (2.1), we have

Ag(gle ™ | 17 [[E=w) ™! = (s —w)1][Gla) = Glya)]]
J31 S(tﬁ_ S)ia {/ " du
Srulft—u) "t —(s—u) " = (t—v) " 4 (s—v) " [G(xy) — G (Yo
[ [l o o e (Gl GO,

(u—v)B+1

S lt—u) ™ = (s—u) (G (x) = Gl2y) = Glyu) +G(y0)]|
+// dvdu
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3

=As(9) Y Ki. (3.19)

=1

Similar to the proof of Proposition 3.2, we have

M|z — ylli—anx g e””
Ky < Wigg/o pem L (320)
and
1 > —z oat+y—p—2
K2 S M”Jj — y”l—a,)\ W (& z dz (321)
0

1 k -2
—|—7sup/ e—dz .
Avta=By o Jo 2270 (k= 2)P

By the mean value theorem and the condition (H.G), we have for all u,v € [0,T]
(see Boufoussi et al [5] for detail)

1G(@u) = G(yu) — G(x0) + G(y)]|
SC3qu —Yu — Ty + vaCr + [C4qu - x’U”CT + C4Hyu - y’U”CT] ||Z‘u - yu”C'r'

It follows that

K < o> {/a /u H(f —u)l = (s— 11,)7*1] | Csllxw — Yu — To + Yolle, dudu
o Jo

T (t—s)lme (u —v)f+l

s “ t— vl - -t C u — dw . C u — Yv . u — Ju -
+// [t =" — (s = ]| [Cullew — @olle, + Callyu = lle,] |12 yc,dvdu}
0 JO

(u—v)Bs+t
= L1 + Lg.
(3.22)
Some elementary calculations may show that
I < Mef)\t s u [(S _ u)’y—l _ (t _ u)’y—l] e/\uHaj _ y||1_a7/\d g
SRR (u— )7+ o
s o Jo u—=2v
2 = ylli-an
SM—0 T
and
g MO [ lem e o el e+ n) e,
= t-s) Sy Jo (u—v)fte

Mz — yll1i-ax
< W_la (zlhi-a + l¥lli—a)

for all s,t € [0,T] with s < ¢. According to inequalities (3.19)—(3.22), we get

Js1 < e+ [lzflima + [yli—a)llz = ylli—an (3.23)
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and limy_, c(A) = 0. Now, let us estimate the term J32. From (2.1), we have that

=\t — )™ 1 _
Jao < . A {/ | (t e S); G(yu)”du
- e G Gl
+/S / oo - (321
Lo |(t - u)’y_l (G(2y) — G(z0) — G(yu) + G(yv)H .
o/ (o) dude

3
(Q)ZKé-

Obviously, we have

M|z — ylli—anx g e’”
! }
e R ii%/o B I 329
e _ Ml =yl
T —Yll1—a, —z _a+y—p—2

In the same arguments as in the term K3, we get

(t—u)’™ 103||Iu*yu*13v+yv||cr
K; (t —s) (t—s)l-a {/ / (u—v)Ptt e

/ / ’Y 1 04”3:“ - IUHC + C(4||yu vaCT] ||xu - yu”CT dvdu
(u — 'U)/8+1
M|z — yl[1—a,x
<o U lelia + lylh-o), (3.27)

where we have used the next estimates:

w) " 2w — yulle,
t—sla// u—v)ﬂ‘*‘“ dvdu
Mz —ylli—an “lem At

< (t—s)a / / ( )BJra dvdu
A(t— u)(u )
< M||x—y||1—a,>\/ Gt~ o

Mz —ylli—ax [ _agy—2 -
< W/@ 29T T %e T dz.

It follows from (3.24)-(3.27) that

du

Jz2 < ¢ (N1 + [[#][1-a + [[ylli-a) = = ylli-an (3.28)
and limy_, o ¢(\) = 0. Thus, we have showed that the estimate
[J(x) = J(W)] < e(N) X+ |zlli-a + [Ylli-a) 2 = ylli—a,x

holds and the constant ¢(\) satisfied limy_,o, ¢(A) = 0, and the second assertion
follows. N
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Define the functions
U C ([, 1)) — C([—r,T))
by ¥(z)(t) = x(t) for t € [—r,0] and

V@)(t) = 2(0) + 55 [ =7 s+ g [ =Gt

for t > 0. According to Proposition 3.2 and Proposition 3.3, we get the following
result.

Corollary 3.1. Let g € C*([0,7)) and x,y € C*=%([-r,T]). Under the condi-
tions (H.f) and (H.G), there exist some constants M, c1(X),ca(N) > 0 such that
c1(A), c2(A) = 0 as A — oo, and

[P () [[1—an <M+ lzolli—ax + cr(M)||z[l1-a,x
and

() = U(Y)lh-ax < 2o = Yolli-ax + c2(X) L+ [|2]1-a + [[yll-a) 2 = yll1-a,r-

4. Deterministic time fractional functional differen-
tial equation

Keep the notations in Section 3. For g € C¥([0,T1]), we consider the deterministic
time functional differential equation of the form

{ (t) n(0) + Ty fo 5)7~ 1f(x8)d3+r(7) fo ’Y 1G(a:8)dg( ) te (OaT]a

(t) =mn(), € [-n, 0]
(4.1)

Theorem 4.1. Let f and G satisfy the conditions (H.f) and (H.G). If n€CY([-r,0]),
then the equation (4.1) admits a unique solution in C*=%([—r,T]).

Proof. We first prove existence of the solution. Let
HE ([~ 17, {x el ([~ T,T])|:E =mnon [—r, 0}}
and define an operator
© M1 ([, Tm) = H ([ T m)
by ®(x)(t) = n(t) for t € [—r,0] and

1 ' — )" F (2 )ds 1 t — )G (x s
w5 = eds 7 [ =97 Gl dnts)

for ¢ > 0. By Corollary 3.1, we have

[@(@)[l-ax < M+ [Inll1-a.x + M) l2l1-a.x,
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where M is a constant and Alim c¢(A) = 0. Let Ag be sufficiently large such that
— 00
C()\O) < % and let My = 2(||77||1—a,>\0 -+ M) and
B)‘U = {{,C € Hl_a([_r7 T}vn)|”x‘|17a,)\0 < MO} .

Then, we have that ® maps B), into itself. We now need to show there exists
A > X s.t. @ is a contraction on B, under the norm || - |[1—q,x. By Corollary 3.1,
we have

[@(2) = @(Y)ll1-an < WA+ |2[1i-a + [¥li-a)llz = ylli-ax

for all z,y € H'=%([-r,T],n). It follows from proper choice of A (see Boufoussi
and Hajji [4]) such that ® is a contraction on the Bj of the complete metric space
C'=2([-r,T]), which implies that ® has a fixed point z in By,. From the definition
of ®, the fixed point x is a solution of (4.1) in C*=%([—r,TY)).

We now prove uniqueness of the solution. Let z an y be two solutions of (4.1)
in C1=%([-r,T]). By using Corollary 3.1, we obtain that

1
Iz = ylli-an < Slle = ylli-an
for A large enough, which shows that x = y. This completes the proof. O
Lemma 4.1 (Nualart and Rascanu [14]). Given 0 < a < 1,a,b > 0. Let z :
[0,4+00) — [0,+00) be a continuous function such that
t
x(t) <a+ bta/ (t—s8)" s “x(s)ds

0

for each t. Then
1
z(t) < adyecb "t

where ¢, and d, are two positive constants depending only on «.
Proposition 4.1. Under the same condition of Theorem 4.1, if v +v > %, the
solution x of (4.1) satisfies

1
Jol-a < ex(1+ [nlli-a)eap (c2As(g) 7757 )

for any o € (% — v,v), where c1,co > 0 are two constants depending only on
a’ /87 77 T’

Proof. For ¢t > 0 we assume that

h(t) = sup |z(s)|+ sup M

SE[—mr,t] —r<s<u<t (u _ S)lfa :
We have
o) — (o) ! ) — ) — (s =)t T )
w—s)i= =w_sio {/0 |[(w—v) " = (s —0)7Y] f(x,)] d

+ /u [(w— )" flay)| dv + /0 [(u—v)""! = (s —v)"" 1] G(xy)dg
[ =it | )

4
= ZKQ/L

i=1

_|_
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for 0 < s < u < t. By the condition (H.f), we have

K21 <

ﬁ /OS [(s — )7 — (u— v)”fl] 1+ [|zyle,) dv

# /Su(u — )" (14 h(v))dv < M <1 + /Ot (t_zg?—a—vd”)

Koy <M (1 + /Ot (h(v)dv> (4.4)

t—wv)2-o7

<

and

for 0 <s <u<t. For B € (1l—v,a), from the inequality (2.1) we get

{/ | ’Y 1G :CU
< 1 dv
o v—s

//’ A 9)?3111_9)7_1G($9)‘d9dv}

As(9) Y (u—v)’” 1[|G(90 ) — G(zs)| + |G(zs)] As(g)
(u —Bs / (v—s)8 dv+ (u%

urY  [(u—v) "= (u—0)"" G (xg) + (u—v) " [G(wy) — G(zo
/ (0 —g)p+1

<

for 0 < s < u < t. By the condition (H.G), we have that
1 Y (u— )" G(y) — Gz
iy OO S

(v—s)°

( u o 1—a—p t
S M / h(U)(U 5) dU S MTlfafﬂ / h('l)) d’U
e s (u=w)tty o (t—w)*me=

and

1 * (u— )G ()|
)i O‘/s dv

(u—s)1— (v—s)P

Mo o) (14 )
(u_s)a / CEDE v
< M(T7P+ 1 4 h(s)(u — 5)7 P B(1L— B,7)

t
<M {T""ﬁ*"—l +(y-B+a— 1)/0 u_v’;ﬁl_wdv}

for 0 < s < u < t. Similarly, we also have that

L oot e cte,,,

ﬁ+1

IN

(u—s)t-

u—U'Y L — (u—0)""'] h(0)
§M+ =) // B dfdv

u—y—s yl 4+ y—1 hWu—vy—x
:M+W/ / v (y x)ﬁJrl}( y )dmdy
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u—s Uu—r—=s y—1 _ y—1 h o
ﬂ‘“#/ [ e

rB+1
<My / /“"” [yt - yzﬁz Jhu=a),
t
gmm/o QT M+/O T
and
T
S a/ / ﬂﬁ)ll "1 gy

<M/ ),

for0<s<u<t. Consequently

o atn@ oo [ o) »

for0<s<u<t.
For Kss, by (2.1), we have

Ko<, Aﬁ M{/ |[(w— v) 1,, 0G|
[(w— o) = (s — 0] Gla) — [(u— 6) = (s — )] G(zo)
+// I } (’079)[[3*1 ] 0|d0d}
<ufsl"/ ‘(U7v é*U)W ]G(Iv)ldv
[[(w—v) "t = (s=v)""' = (u—0)"1+ (s = 0)] G(zo)|
s {/ / =0+ i
u—0)7"t = (s —v)7 [G(xy) — G(zp))
/ / ! G)ﬁjl : ded”}
(4.6)
for0<s<u<t. By the condition (H G) we have
| v)"’_l] G(xv)‘
(u — s) 1 @ / vﬂ dv
< MAgs(g) /s [(s=v)™t = (u—v)"1 (1+h(v))dv
(u—s)t=2 J, vP @)
1 U (u— )" h(v) '
SMAg(g){lJr (u—s)l—o‘/s o5 dv}

for0<s<u<t Similarly, by the fact

e [ [ L
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o) 1 O N LR
= el A = AR R
t h(v)
< ), G

for 0 < s < u <t, we have

/S U [(u—0)" " = (s—v)" " = (u—0)"" +(5s—60)7"1] G(zo)|
(u—s) (v—0)B+1

/5 H[(s—v)” (s—0) " —[(u—v)" "t = (u—0)"" ]} (1+h(0))

(v—e)ﬂ+1

{ e
carl /}

and
; s [w =07t = (s —v)771] [G(zy) — G(w)]|
— )= / / (0= 0)F+ dfdv

-«
— (s —v) '] n(v)]

dfdv

dodv

dfdv

M

_u—s) / —0)5"“1

L s—v)" Y = (y =)t Dot~ Bdy

<(u_s>—/0[< e R IO
l—a— ‘ h(U)

<MT ﬁ/o mdv

for 0 < s <u <t. It follows that

K23<MA5(9){1+/0t };}(Q?dv—k/ot (tv})LQ(Z;)Oé’Y)dU} (4.8)

for 0 < s < u < t. Thus, we have gotten the desired estimate

sup |z (u) — x(s)| < M(l—I—A (9)) {1+/0t h(v) [(t_v)—2(2—oz—'y) +v—2ﬁ] dv}

0<s<u<t (U_S)l «
for all ¢t € [0,T], which implies immediately that
< mlli—a + M (14 Ag( 1+ h )72C=e=) 4 28 dy
ﬂ
< nlli—a + M (14 As(g))

t
X {1 + (1 + T2(27°‘777B)>/ h(v)(t — v)2(20‘7)112(2“"’)152(20‘7)&)}
0
for all ¢ € [0, T]. Combining this with Lemma 4.1, we obtain

1
[2]l1-a < c1(L+ [[n]l1-a) exp(eafs(g) =72777),

and the proposition follows. O
Now, we study the dependance of the solution of (4.1) on the initial condition.
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Proposition 4.2. Let v+~ > 3.a € (2 —v,v) and let the conditions (H.f) and
(H.G) be satisfied. Suppose that n,n™ € C1=%([—r,0]). If z is the solution of (4.1)
and z" is the solution of the same equation with 0™ in place of n, then we have

o = a"1-a <c1lln —nnlaexp{@ (IIwIM” o FE )}
x exp (eshg(9) 777 ) |

where c1,ca,c3 > 0 are constants depending only on o, 8,7, T

Proof. For t > 0, we set

h™(t) = es[tip ] |z (s) —x™(s)|| + ,TSBEUQ | (u) — xziguz ;)TEZ) + fn(8)|

By the similar calculus as in the proof of Proposition 4.1, we get

W) <ln— "1 +M{1 T As(g) (1 I R P Lo )}

t
.{1+(1+T2(2a7»’3)) / hn(v)tzmaw)(tv)2<2aw>vz<2aw>dv}
0

for ¢ > 0. It follows from Lemma 4.1 that

o ="l Serlly = 1o { o (Ul + 172 ) |
x exp (esMalg) 777 )

where c¢q, co, c3 > 0 are constants depending only on «, 3,,7T, which completes the
proof of the proposition. O

5. Time fractional stochastic functional differential
equation driven by fBm

In this section we will apply the results of the previous sections in order to prove
the main theorems of this paper. It is well known that the fractional Brownian
motion BY has v-Holder continuous trajectories of order v < H. Then for all
g e (1 —H, %), the trajectories of B¥ belong to the space W1=%>°(0,T;R). As
a consequence, if u = {u(t),t € [0,T]} is a stochastic process whose trajectories
belong a.s. to the space W1(0,T;R) with 8 € (1 —H, %), the Riemann-Stieltjes
integral fo (s)dBH (s) exists and

T
‘ / u(s)dBH (s)
0

As a simple consequence of these facts, we expound and prove the following theorems
which introduce the uniqueness, existence and dependence of the solution of (1.1)
on the initial condition.

< Ag(B™)
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Theorem 5.1. Let 1 < H < 1 and max{H,2 — 2H} < v < 1. Assume that
the coefficients f,G satisfy the assumptions (H.f) and (H.G), respectively. If a €
(2—H —~,H) and n € C1=%([-r,0]), almost surely, then there exists a unique
solution x of (1.1) with paths in C*=*([—r,T]), P — a.s. If in addition o+ v > %,
then the solution x satisfies

E (=)l _) < o0
forallp > 1.
Theorem 5.2. Assume that o € (% —H, v) Y+ H > %, and that the coeffi-
cients f,G satisfy the assumptions (H.f) and (H.G), respectively. Let n,n"™ €
Cl=([~r,0]) for n > 1. Suppose that x is the solution of (1.1) and that z™ is the
solution of the same equation with n™ in place of n for everyn > 1. If

lim [ = nll1—a =0
n
almost surely, then for P-almost all w € 2, we have
lim Jo" (@, ) - 2(w,)1-0 = 0.
If in addition o + v > %, then
limE|z" —z||}_, =0
forallp > 1.

Proof of Theorem 5.1. The existence and uniqueness of the solution follows
directly from the deterministic Theorem 4.1. Then, by Proposition 4.1, we obtain

1
ol o < (1 + Il —a) exp (cas(B) 77 )

for any o € (% -, H), where c1, co > 0 are constants depending only on «, 3,7, T.
Hence, for all p > 1

l-a =

1 1
Ellz|f_o < 5B+ [nli-a)® + 5 Eexp (2pezp(B) 77 ).
By the classical Fernique’s theorem (see Fernique [6]), we have
Eexp (Ag(B)‘S)) < 00

<2 0O

Proof of Theorem 5.2. It suffices to apply Proposition 4.2 to obtain the almost
sure convergence. The convergence in LP can be obtained by dominated convergence
argument since by Proposition 4.1. We have that

for any 0 < 6 < 2. Consequently, E||z|[]_, < co for all p > 1, as m

1
o0 < I 1-alelia < 2+ Inlha + [771-a) exp (c2s(B) 77
for any n € N. Note that ||n™||1—« is bounded, we can write
2" — z[[1—a <Y = Mexp (CQAﬂ(B)W)

and FYP < oo for all p > 1. O
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