For EDITORS

For READERS

All Issues

Vol.15, 2025
Vol.14, 2024
Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 8, Number 3, 2018, Pages 1021-1032                                                                DOI:10.11948/2018.1021
Global higher integrability of solutions to subelliptic double obstacle problems
Guangwei Du,Fushan Li
Keywords:Global higher integrability, subelliptic equation, double obstacle problems.
Abstract:
      In this paper we consider the double obstacle problems associated with nonlinear subelliptic equation \[X^*A(x,u,Xu)+ B(x,u,Xu)=0, \ \ x\in\Omega,\] where $X=(X_1,\ldots,X_m)$ is a system of smooth vector fields defined in $\mathbb{R}^n$ satisfying H\"{o}rmander""s condition. The global higher integrability for the gradients of the solutions is obtained under a capacitary assumption on the complement of the domain $\Omega$.
PDF      Download reader