Volume 8, Number 4, 2018, Pages 1239-1259 DOI:10.11948/2018.1239 |
Infinitely many bound state solutions of Schrodinger-Poisson equations in $\mathbb{R}^3$ |
Xu Zhang,Shiwang Ma,Qinlin Xie |
Keywords:Schrodinger-Poisson system, infinitely many solutions, without symmetric condition. |
Abstract: |
In this paper, we study a system of Schr\"odinger-Poisson equation
\[
\left\{
\begin{array}{c}
-\Delta u+a(x)u+K(x)\phi u=|u|^{p-2}u,\quad \quad \quad \ \ \ \ \ \ x\in \mathbb{R}^3, \-\Delta \phi=K(x)u^2,\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \ x\in \mathbb{R}^3,
\end{array}
\right.
\]
where $p\in (4,6)$ and $ K\geq (\not\equiv) 0$. Under some suitable decay assumptions but without any symmetry property on $a$ and $K$, we obtain infinitely many solutions of this system. |
PDF Download reader
|
|
|
|