For EDITORS

For READERS

All Issues

Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 9, Number 1, 2019, Pages 57-74                                                                DOI:10.11948/2019.57
Krylov subspace methods with deflation and balancing preconditioners for least squares problems
Liang Zhao,Tingzhu Huang,Liangjian Deng
Keywords:Least squares problems, Krylov subspace methods, deflation preconditioner, GMRES methods, CGLS methods.
Abstract:
      For solving least squares problems, the CGLS method is a typical method in the point of view of iterative methods. When the least squares problems are ill-conditioned, the convergence behavior of the CGLS method will present a deteriorated result. We expect to select other iterative Krylov subspace methods to overcome the disadvantage of CGLS. Here the GMRES method is a suitable algorithm for the reason that it is derived from the minimal residual norm approach, which coincides with least squares problems. Ken Hayami proposed BAGMRES for solving least squares problems in [\emph{GMRES Methods for Least Squares Problems, SIAM J. Matrix Anal. Appl., 31(2010)}, pp.2400-2430]. The deflation and balancing preconditioners can optimize the convergence rate through modulating spectral distribution. Hence, in this paper we utilize preconditioned iterative Krylov subspace methods with deflation and balancing preconditioners in order to solve ill-conditioned least squares problems. Numerical experiments show that the methods proposed in this paper are better than the CGLS method.
PDF      Download reader